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Research on obstacle avoidance 
path planning of UAV in complex 
environments based on improved 
Bézier curve
Zhihao Zhang 1*, Xiaodong Liu 2 & Boyu Feng 2

Obstacle avoidance path planning is considered an essential requirement for unmanned aerial vehicle 
(UAV) to reach its designated mission area and perform its tasks. This study established a motion 
model and obstacle threat model for UAVs, and defined the cost coefficients for evading and crossing 
threat areas. To solve the problem of obstacle avoidance path planning with full coverage of threats, 
the cost coefficients were incorporated into the objective optimization function and solved by a 
combination of Sequential Quadratic Programming and Nonlinear Programming Solver. The problem 
of path planning under threat full coverage with no solution was resolved by improving the Bézier 
curve algorithm. By introducing the dynamic threat velocity obstacle model and calculating the 
relative and absolute collision cones, a path planning algorithm under multiple dynamic threats was 
proposed to solve the difficulties of dynamic obstacle prediction and avoidance. Simulation results 
revealed that the proposed Through-out method was more effective in handling full threat coverage 
and dynamic threats than traditional path planning methods namely, Detour or Cross Gaps. Our study 
offers valuable insights into autonomous path planning for UAVs that operate under complex threat 
conditions. This work is anticipated to contribute to the future development of more advanced and 
intelligent UAV systems.

In recent years, advancements in technology have made UAVs an essential component of modern-day equipment 
for human society. The smooth arrival of UAVs at their mission area depends on efficient path planning, which 
is the core of the flight to the mission area.

Researchers have widely applied Bionic Algorithms to resolve the issue of autonomous path planning for 
UAVs. Bionic algorithms include particle swarm optimization (PSO)1–3, wolf swarm optimization (WSO)4–7, and 
ant colony optimization (ACO)8. Although these algorithms exhibit strong robustness and adaptability, they are 
susceptible to outcomes that are locally optimal9. As it facilitates continual directional adjustments10, genetic algo-
rithms remain a top choice among many scholars. On the downside, genetic algorithms demand ample internal 
computational resources and necessitate high computing power11. Apart from theoretical studies, scholars have 
conducted numerous experimental verifications of UAV path planning algorithms across multiple scenarios and 
tasks12–15. Wu’s research focuses on improving the obstacle avoidance capabilities of UAVs through flexible path 
planning, particularly in disturbed environments16,17. Quan and Ji’s research accomplished fast adaptive path 
planning without maps in unknown environments18,19. Furthermore, Zhou investigated the architecture of UAV 
swarms and accomplished their distributed autonomous navigation20.

As a result, intelligent algorithms have become prevalent in autonomous path planning of UAVs for obstacle 
avoidance, leading to significant research breakthroughs. Nevertheless, certain inadequacies still persist in the 
available literature.

Firstly, many algorithms are prone to falling into local optima. As a result, researchers are striving to improve 
algorithms and obtain the globally optimal path. However, improved algorithms often lead to increased computa-
tion, thereby reducing planning efficiency.

Secondly, previous studies have not found effective solutions to the challenge of achieving full coverage. In 
existing literature, the setting of obstacles is mostly scattered, and there are gaps between obstacles17–20. In fact, 
when UAVs fly over long distances, some continuous mountain ranges can create obstacles throughout a certain 
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area. When the path is full of threats, the UAV must traverse the threat area with minimal cost. The traditional 
Detour or Cross Gaps methods are no longer deemed practical.

Thirdly, most studies on path planning only consider the ideal situation of a fixed threat area13,19. However, 
there might be dynamic obstacle areas in real-world situations as well. The straightforward application of the 
aforementioned algorithms cannot be used to solve path planning issues under dynamic threats.

To resolve the problems mentioned above, this study investigates obstacle avoidance path planning for UAVs 
in complex conditions. We propose path planning methods for UAVs that encounter both static and dynamic 
obstacles. The challenge of path planning for UAVs when navigating through dynamic obstacles and full cover-
age obstructions was addressed using the improved Bézier curve model. Therefore, the proposed method can 
enhance the ability of UAV path planning and offer a viable approach for UAVs to fly safely even under complex 
obstacle conditions.

Modeling
UAV motion model
This study operated under the assumption that the UAV could be modeled as a rigid body with a constant mass. 
Furthermore, for the sake of simplicity, the curvature of the Earth was disregarded in the analytical framework. 
The motion model of the UAV is represented as:

where vuav is the speed, η is the heading angle, and (x, y) denotes the current coordinate position of the UAV.
This study focuses on medium and large fixed-wing UAVs characterized by a high aspect ratio. The parameters 

governing the UAVs under investigation in this research were formulated in alignment with the performance 
metrics mentioned earlier, with a speed range of [100–150] km/h and an acceleration range of [− 5, 5]m/s221–23.

Threat area model
This paper focuses on the research of medium and large fixed wing UAVs. The main static obstacles encountered 
by such UAVs are mountains and tall buildings. In typical scenarios, these obstacles adopt a circular layout. 
Nevertheless, due to the proximity of certain hindrances, they tend to congregate into clusters, frequently giving 
rise to non-uniform configurations. The circular threat area, the fan-shaped threat area and coverage angle were 
set as the radius of r = 15km , radius r = 30km and θ = 120◦ , respectively.

For medium to large UAVs, the dynamic threats are primarily manned and UAVs. In this paper, the dynamic 
threat area was set as a movable circle. Based on common civil aviation aircraft parameters and safe flight inter-
val, the dynamic obstacles area radius, coverage angle and speed range were set at of r = 5km , θ = 360◦ and [0, 
600]km/h.

Path planning under static full coverage threats
In UAV mission planning, obstacle avoidance is regarded as a top priority. Nevertheless, if crossing a threat area 
is inevitable, it is critical to cross it while minimizing exposure to the threat. The initial position of UAV was set 
as (x0, y0) , and the central point of the mission area was set as (xf , yf ) . The route to the mission area is punctuated 
by circular and fan-shaped threat areas. The UAV initiates its journey from the initial position, meticulously 
fine-tuning control variables while ensuring compliance with constraints. Simultaneously, it strives to fulfill the 
stipulated objective function, culminating in its successful arrival at the designated mission area.

Bézier curve model
Enhancing flight performance and mitigating the intricacies of autonomous control necessitate the creation of 
a streamlined, continuous flight path. In pursuit of this, the second-order Bézier curve has been harnessed as a 
model for path depiction, entailing the definition of data points and control points24. Notably, the efficacy and 
intricacy of Bézier curve path planning is focused on the count and placement of control points. In light of this, 
the adoption of the second-order Bézier curve emerges as a judicious choice for path modeling, owing to its 
elevated precision and rapid computational throughput25. The mathematical expression for the second-order 
Bézier curve is as follows:

The data points P0 , and P2 were coordinated, and the control point P1 , as shown as follows:

Receding planning framework
Bézier curve model represents a localized path planning approach, confining its operation to the trajectory’s 
initial and terminal points. This tendency yields outcomes of local optimality while neglecting the broader scope 
of comprehensive planning. In response to this challenge, a backward planning framework was implemented. 
At each sampling time t, an optimized control variable within the finite programming interval [t, t + Tp] was 
established based on the objective function and input from the previous sampling time. The next control input 

(1)
⇀
v
uav

= (vuav × cos η, vuav × sin η),

(2)UAV = (x, y),

(3)B(t) = (1− t)2P0 + 2t(1− t)P1 + t2P2, t ∈ [0, 1]

(4)f (x(t), y(t)) = (1− t)2(x0, y0)+ 2t(1− t)(x1, y1)+ t2(x2, y2), t ∈ [0, 1]



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:16453  | https://doi.org/10.1038/s41598-023-43783-7

www.nature.com/scientificreports/

for interval [t + 1, t + 1+ Tp] was then calculated during the following sampling time t + 1. This process was 
repeated until path planning was complete. The specific planning steps are as follows.

Step 1 Using the objective function and optimization variables, three path segments within the planning time 
[t, t + Tp] on the internal Bézier curve were determined in accordance with the current location [x(t), y(t)] , and 
nine data points and control points ( P0, P1, · · · , P8 ) were obtained.

Step 2 The initial path planning within interval [t, t + Te] was conducted, with determination points P0, P1, 
and P2 selected.

Step 3 At that time, three path segments within time [t + Te , t + Te + Tp] were re-planned according 
to the location of UAVs [x(t + Te), y(t + Te)] on the Bézier curve, and nine data points and control points 
( P0, P1, · · · , P8 ) were redefined.

Step 4 Repeat Step1-Step3 till the UAV reaches the mission area26.

Model optimization and solution
Objective function and constraint conditions
When the UAV embarks on a journey through an area blanketed by full threat coverage, the primary objective 
becomes the minimization of traversal instances while adhering to the following optimization objective function:

where dlast−f  represents the distance between the end point and the center point of the current of the mission 
area, L indicates the side length of the task area, 

√
2L is its diagonal length, i is the number of planned Bézier 

curve segments, i ∈ (1, 2, · · · ,m) , j is the time of each segment, j ∈ (0, 0.1, 0.2, · · · , 1) , i′ is the number of threat 
areas, i′ ∈ (1, 2, · · · ,D) . Besides, diji′ is the distance between obstacle and UAV, robs(i′) denotes the radius of the 
threat area, θiji′ is the angle between the UAV coordinates and the obstacle coordinates, primarily used to judge 
the sector threat area. θobs(i′) is the coverage angle of the obstacle i′ . 1(diji′ ≤ robs(i′),

∣

∣θiji′
∣

∣ ≤ θobs(i′)) , determines 
whether the UAV has entered the threat area by analyzing its position and angle, and assigns a value of 1 in the 
event that the UAV successfully crosses the threat area. If it does not traverse, the result of this function was 
defined as 0. Parameter α refers to the cost coefficient, which is used to adjust the weight after normalization.

Facilitating effective UAV path planning mandates a nuanced assessment of an array of constraints, encom-
passing a spectrum of influential factors such as smoothness, acceleration, obstacles, and speed limitations.

Smooth constraint.  To facilitate a trajectory marked by fluidity and cohesion, the utilization of Bézier curve 
subdivision planning is commonplace. This approach mandates the congruence of derivatives between adjoining 
paths at their junctures, and can be mathematically expressed as follows:

Acceleration constraint.  Constraints must be imposed on the acceleration of UAVs to ensure that their flight 
performance remains within acceptable parameters. This measure helps to keep the speed changes of UAVs 
within a reasonable range:

Speed constraint.  During UAV operations, it is crucial that the vehicle can quickly reach its intended mission 
area while also maneuvering at lower speeds when necessary to avoid threats. In order to achieve this balance 
and guarantee optimal performance, an appropriate speed range must be determined for the UAV:

Evade threat area constraints.  When a UAV is attempting to evade a threat area, the angle and radius of cover-
age of any sector or circular hazard must be taken into account. By considering these factors, the UAV can avoid 
danger to the greatest possible extent. When there are no gaps in the threat area, the UAV should try to move 
around the edge of the area whenever possible.

Solution
Sequential quadratic programming (SQP) algorithm is commonly used to solve nonlinear programming prob-
lems due to its high level of computational efficiency and robust boundary exploration capabilities. This approach 
can be mathematically expressed as follows:

(5)min





dlast−f√
2L

−
α

IJI ′

m
�

i

1
�

j

�

i′∈D
1(diji′ ≤ robs(i′),

�

�θiji′
�

� ≤ θobs(i′))
diji′

robs(i′)

�

,

(6)B′(t = 1)i−1 = B′(t = 0)i .

(7)a ∈ [amin, amax].

(8)v ∈ [vmin, vmax].

(9)
{

d > robs(i′)

if d ≤ robs(i′) and θi ≤ θobs(i′), d → robs(i′)
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The objective function was simplified to a quadratic function at point Xk using the Taylor Expansion.

The above objective function requires certain constraints, which can be mathematically expressed as follows:

Simulations
Simulation experiment design
The mission area encompassed a rectangular expanse measuring 100 km × 100 km, within which both fan-shaped 
and circular threat areas were strategically situated. The fan-shaped threat area radius, the coverage angle, circular 
threat area radius, the coverage angle, the central point coordinate of the mission area and the estimated attack 
position radius were respectively set at robs(i′) = 30km , θobs(i′) = 120◦ , robs(i′) = 15km , θobs(i′) = 360◦ , (100,100) 
and 10 km. After UAV enters the mission area, the path planning was completed. Starting from (0,0), the UAV had 
a speed range of [100,150]km/h and an acceleration range of [− 5, 5]m/s2 . The simulation step size was �t = 0.1s.

In the first task scenario (Fig. 1a), the fan-shaped threat area was defined by the site coordinates (60, 80) and 
(95, 75), while the circular threat area was defined by the site coordinates (75, 100), (100, 90), (100, 115), and 
(115, 100). In the second task scenario (Fig. 1b), the site coordinates of the fan-shaped threat area were changed 
to (60, 80) and (70, 90). It is worth noting, however, that the position of the circular threat area remained unal-
tered throughout these alterations.

In the context of task scenario 1, the UAV can strategically chart its course through the secure zone nestled 
between the two fan-shaped threat regions utilizing the “Cross Gaps” method, which serves as a navigation blue-
print. However, under task scenario 2, the repositioned fan-shaped threat area obstructs the trajectory of UAVs to 
the central locus of the mission area. Upon evading this threat area, the UAV’s path necessitates autonomous plan-
ning through the aid of the selected algorithm, thereby imposing heightened requisites on its planning prowess.

Simulation results and analysis
The simulation experiment was run on a computer that equipped with an eighth-generation i7-6700 K processor, 
32 GB RAM, and a 1 TB hard drive. MATLAB-R2018b was adopted as the simulation software.

(10)min f (x)s.t.

{

gu(X) ≤ 0, (u = 1, 2, · · · , p)
hv(X) = 0, (v = 1, 2, · · · ,m)

(11)

min f (x) =
1

2
[X − Xk]T∇2f (Xk)[X − Xk] + ∇f (Xk)T [X − Xk], s.t.

{

∇gu(X
k)T [X − Xk] + gu(X

k) ≤ 0, (u = 1, 2, · · · , p)

∇hv(X
k)T [X − Xk] + hv(X

k) = 0, (v = 1, 2, · · · ,m)

(12)

min f (x)

s.t.



























c(x) ≤ 0

ceq(x) = 0

A · x ≤ b

Aeq · x = beq

lb ≤ x ≤ ub

Figure 1.   Distribution of threat areas: (a) task scenario 1; (b) task scenario 2.
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Illustrated in Fig. 2a is the outcome of the proposed path planning algorithm for task scenario 1.
The path planning procedure in task scenario 1 was successfully executed in a rapid 5.875 s, yielding a highly 

favorable outcome. As clearly depicted in Fig. 2a, this plan adeptly circumvents the threat area, achieving com-
prehensive avoidance. Notably, for the all-encompassing threat area proximate to the central mission locale, the 
algorithm astutely selects the path with the lowest cost.

Transitioning to task scenario 2, the path planning output generated by the algorithm introduced in this paper 
is depicted in Fig. 2b. The path planning endeavor for task scenario 2 necessitated a cumulative 8.254 s to yield 
the optimal plan. While this marked a marginally longer processing time compared to scenario 1, the resultant 
plan exhibited comparable efficacy. Concretely, the UAV adeptly maneuvers around the fan-shaped threat area, 
making astute choices among several crossing options while traversing the threat area.

Path planning under dynamic threats
In addition to full coverage of static threats, UAVs may also encounter dynamic threats brought by other manned 
or unmanned aerial vehicles during flight, which belong to the complex threat environment faced by UAVs. The 
path planning of UAV under dynamic threat can also be achieved by improving Bézier curve. Because the posi-
tion of the dynamic threat changes in real time, it is necessary to establish a speed obstacle model to predict its 
movement, and then use the improved Bézier curve for segmented path planning.

Speed obstacle model of dynamic obstacles
Based on the relative motion relationship between the UAVs and the threat area, it can be determined whether 
the threat can be avoided or not. According to the speed obstacle method27, the coordinate position of UAV is 
(x0, y0) , the central point of the mission area is (xf , yf ) , and there is a moving circular threat area in the mission 
area. Its central position coordinate is (xobs(i′), yobs(i′)) , the radius is robs(i′) , and the movement speed is vobs(i′) . 
The speed is vuav , the dynamic obstacles area coordinate is (xobs , yobs) , the radius is robs , and the motion speed is 
vobs . Afterwards, the speed obstacle model can be represented, as shown in Fig. 3.

In Fig. 3, vu−o is the relative speed between UAV and dynamic obstacles area,
⇀
v

u−o
= ⇀

v
uav

− ⇀
v
obs

 . lu−o is a straight 
line in vu−o direction, du−o is the distance between the UAV and the center of the threat area, lmo and lno refers 
to the line between the coordinate position of the UAV and the radius of the threat area. The angle between du−o 
and lu−o is ε , and the angle between du−o and lno is δ . The red area indicates the dynamic obstacles area, which is 

Figure 2.   Results of path planning: (a) task scenario 1; (b) task scenario 2.

Figure 3.   Schematic diagram of speed obstacle model.



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:16453  | https://doi.org/10.1038/s41598-023-43783-7

www.nature.com/scientificreports/

called relative collision cone (RCC), RCC = { ⇀
v

u−o
|lu−o ∩ robs �= ∅} . When 

⇀
v

u−o
 is in the RCC area, i.e., ε < δ , the 

UAV needs to avoid the threat area. When 
⇀
v

u−o
 is outside the RCC area, that is, ε > δ , the UAV will refrain from 

entering the threat area without the changes of both the heading and speed. ε, δ could be calculated by (13) and 
(14):

The angle δ should be smaller than π/2 . When δ = π/2 , it indicates that the UAV is located at the boundary 
of the threat area. 

⇀

d
u−o

 is perpendicular to the boundary of the relative collision area. When δ > π/2 , it indicates 
that the UAV has entered the threat area.

For the dynamic obstacles area in Fig. 3, after translating vobs , the relative collision area RCC can be trans-
formed into absolute collision cone (ACC), as shown in Fig. 4.

Figure 4 illustrates the trajectory of the UAV, depicting its trajectory aligned with the current heading, sub-
sequently leading it into the designated threat area, i.e. 

⇀
v
uav

 in ACC area. If the UAV changes its course and speed 
to make 

⇀
v
uav

 outside the ACC area, it can avoid the threat area.
In scenarios where the mission area comprises multiple dynamic obstacle areas, it becomes imperative to 

compute the ACC for varying threat domains, and whether the velocity vector 
⇀
v
uav

 of the UAV is within the ACC 
area was judged. If it is within the area, avoidance is required. Otherwise, there is no need to evade. Multiple 
absolute collision cone (MACC) was defined as MACC =

⋃n
i=1 ACCi′ (Fig. 5).

The crux of the velocity barrier approach in evading threat zones lies in ensuring that the velocity vector ⇀v  
of the UAV remains situated outside the realm of absolute collision. This entails strategic adjustments to the 
UAV’s heading and speed. When confronted with multiple dynamic obstacle areas, a concept known as the 
Multiple Avoidance Collision Cone (MACC) comes into play. To avert potential collisions, the UAV’s velocity 
vector 

⇀
v
uav

 must consistently fall outside the boundaries of the MACC region.
The velocity region of UAV can be expressed as:

(13)δ = arcsin
robs

du−o

(14)ε = arccos

⇀
v

u−o
·
⇀

d
u−o

|| ⇀
v

u−o
|| · ||

⇀

d
u−o

||

(15)Areauav = {vuav , η| |vuav|min ≤ |v′uav| ≤ |vuav|max, 0 ≤ �η ≤ �ηmax}.

Figure 4.   Schematic diagram of absolute collision area.

Figure 5.   Schematic diagram of multiple absolute collision areas.
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Optimized model
The remaining distance between the UAV and the central nexus of the mission area was employed as the objective 
function, while the threat level and ACC were deemed the assessment metrics. Guided by predefined parameters 
encompassing UAV velocity and heading within the threat evasion area, this study embarked on model optimiza-
tion and computational analysis.

When the UAV evaded the dynamic obstacles area, the following optimization objective function was pro-
posed by combining the evasion strategy and constraints:

In (16), the first term indicates that the optimization objective is to minimize the remaining distance between 
the UAV and the central point of the mission area, and the second term is the objective function to avoid the 
dynamic obstacles area. Where, µ(cpa)i′ is the assessed risk of the i′ th dynamic obstacles area, 

⇀
v
uav

 is the current 
velocity vector of the UAV, and ACCi′ represents the absolute collision area. Upon fulfillment of the evasion 
criteria, the UAV adeptly circumvented the designated threat area. The parameter | sin η|max indicates that the 
UAV adjusts the angle to avoid the maximum heading angle in the dynamic obstacles area. vuav(j) − vuav(j−0.1) 
represents the speed change of UAV during evasion. The parameters β and γ are cost coefficients. The weight of 
course angle and speed changes were adjusted, summed them with 

∑m
i

∑1
j

∑

i′∈D , and then normalized them 
with 1/IJI ′.

Simulations
Simulation experiment design
The task area was as 100km× 100km and 3 circular dynamic obstacles areas were set up within the task area. 
Threat area radius is robs(i′) = 5km , coverage angle is θobs(i′) = 360◦ , velocity interval is [0,50]km/h , acceleration 
interval is [−1, 1]m/s2 , and angular velocity interval is[− 0.2,0.2]rad/s . The UAV initiated its journey from the 
origin point (0,0), with its speed range spanning from 100 to 150 km/h , the acceleration interval was [− 5,5]m/s2 , 
the detection distance was 45km , and the simulation step size was �t = 0.1s.

In Fig. 6, the current position of the dynamic obstacle area is visually represented by the red solid circle, while 
the subsequent position of the threat area is indicated by the red dashed circle.In task scenario 1, the coordinates 
of the dynamic obstacles area are (55, 75), (80, 80), (100, 70), and its velocity vector is (– 6, − 6), (− 6, − 6), (− 9, 
− 4). In task scenario 2, the coordinates of the dynamic obstacles area are (20, 70), (50, 10), (95, 25), and its veloc-
ity vector is (6, − 6), (− 6, 6), (− 6, 6). In task scenario 1, a distinct configuration was implemented. Furthermore, 
in task scenario 2, the dynamic obstacle area exhibited a lateral movement relative to the UAV. Consequently, 
the task of devising a path to circumvent these threats becomes notably more intricate.

Simulation results and analysis
For task scenario 1, the path of algorithm planning in this chapter is shown in Fig. 7:

From Fig. 7, the contiguous flight path segment of the UAV is depicted by the solid black line. Significantly, the 
bold solid black line demarcates the ongoing path segment of the UAV. In parallel, the dashed black line signifies 
the meticulously mapped but as yet untraversed path segment. Within Fig. 7d and e, guided by the movement 
trajectory of the threat area, the UAV’s forthcoming planned path navigates through the prevailing threat area. 

(16)

min





dlast−f√
2L

−
1

IJI ′

m
�

i

1
�

j

�

i′∈D
1(µ(cpa)i′ > 0.6,

⇀
v

uav(ij)
∩ACCi′ �= ∅)

�

β|sin η|max + γ

�

�

�

�

vuav(j) − vuav(j−0.1)

vmax − vmin

�

�

�

�

�



.

Figure 6.   Distribution of dynamic threat areas: (a) task scenario 1; (b) task scenario 2.
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In the scenario depicted in Fig. 7f, the UAV executed the previously outlined path planning strategy, success-
fully circumventing potential threats. The threat is moving, and the UAV needs to determine the direction of 
the threat at any time, so we adopt the method of subsection planning. It takes 7.33 s to complete the six section 
planning shown in Fig. 7. For task scenario 2, the path planned by the algorithm in this paper is shown in Fig. 8.

In the context of task scenario 2, the motion logic governing dynamic obstacle area mirrors that of task 
scenario 1. To circumvent the dynamic obstacle areas on both the left and right flanks, parameters β = 5 and 
γ = 10 were defined. As depicted in Fig. 8d, adjustments were notably made to flight speed and heading angle 
in alignment with the path planning objective function and threat avoidance cost function. This orchestrated 
adaptation enabled the UAV to adeptly sidestep the dynamic obstacles. It takes 9.56 s to complete the six section 
planning shown in Fig. 8.

Drawing insights from Figs. 7 and 8, it becomes apparent that the UAV can successfully predict the threat 
direction and implement obstacle avoidance path planning when dealing with two kinds of dynamic threats in 
the same and different directions. When the number of dynamic threats is less than 3, the time to complete the 
obstacle avoidance planning is less than 10 s. This confirms the effectiveness of the path planning algorithm 
proposed in this article against dynamic threats.

Conclusions and outlook
The Throughout path planning model was proposed to solve the problem that the traditional Cross Gaps method 
cannot fulfill the path planning requirements in the presence of complex obstacles faced by the UAV. The path 
planning of UAV in static threat area is analyzed, and the overall framework of UAV path planning is established. 
Based on Bézier curve and receding planning framework, combined with the actual situation of UAV obstacle 
avoidance flight, an optimization model is proposed and constraints are set. By setting the optimization variables 
and cost functions in the optimization model, the UAV can break through the threat of full coverage. In order 
to solve the optimization model, the sequential quadratic programming method and the nonlinear program-
ming solver Fmincon are used for calculation. Experiments show that the proposed method can select the most 
reasonable path in seconds and complete the path planning.

Additionally, the problem of path planning for a UAV facing dynamic obstacles was investigated. The cost 
function for the velocity and heading angle of the UAV was developed to avoid areas with dynamic obstacles, 
and a new path planning algorithm was introduced. Simulation results show that the algorithm can reasonably 
predict the threat movement trend and plan a reasonable escape path for the two kinds of dynamic threats with 
the same direction and different directions.

Figure 7.   Results of path planning for task scenario 1: (a) path segment 1; (b) path segment 2; (c) path segment 
3; (d) path segment 4; (e) path segment 5; (f) path segment 6.
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The research needs to be improved on two aspects. Firstly, the threat area has been reduced to a two-dimen-
sional plane area, and a three-dimensional area should be created to give more detailed direction on path plan-
ning. Secondly, static and dynamic obstacles can be combined and arranged in the same scene for more realistic 
path planning simulations, especially under complex conditions.

Data availability
The main data used in this article is listed in the article. Readers should contact the correspondent if detailed 
data is required.
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