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Inverse design of optical lenses 
enabled by generative flow‑based 
invertible neural networks
Menglong Luo  & Sang‑Shin Lee *

Developing an optical geometric lens system in a conventional way involves substantial effort from 
designers to devise and assess the lens specifications. An expeditious and effortless acquisition of 
lens parameters satisfying the desired lens performance requirements can ease the workload by 
avoiding complex lens design process. In this study, we adopted the Glow, a generative flow model, 
which utilizes latent Gaussian variables to effectively tackle the issues of one‑to‑many mapping 
and information loss caused by dimensional disparities between high‑dimensional lens structure 
parameters and low‑dimensional performance metrics. We developed two lenses to tailor the vertical 
field of view and magnify the horizontal coverage range using two Glow‑based invertible neural 
networks (INNs). By directly inputting the specified lens performance metrics into the proposed INNs, 
optimal inverse‑designed lens specifications can be obtained efficiently with superb precision. The 
implementation of Glow‑assisted INN approach is anticipated to significantly streamline the optical 
lens design workflows.

Over the preceding decades, optical lenses have become increasingly valuable from a commercial standpoint 
and are extensively utilized in diverse applications, including beam  shaping1,  antennas2,3, autonomous  vehicles4,5, 
and virtual reality  products6,7. Obtaining an optical lens system of superior quality necessitates a complex design 
process and extensive refinement, thus requiring substantial dedication of time and effort. Customary procedures 
for the design of optical lenses entail the creation of lens surface data along with the determination of dimension 
and spatial location details. This process evaluates several crucial factors, such as the surface radius of curvature, 
thickness, working distance, conic constant, and manufacturing material. In practical engineering problems, 
the desired lens performance metrics is typically preestablished, whereas the structural parameters of the lens 
are unknown. When confronted with specific requirements, such as prescriptive dimensions for beam width 
and deflection angle area, engineers are supposed to obtain suitable lens parameters that satisfy the specified 
objectives. Although currently available commercial optical software offers certain optimization functions, the 
duration of the optimization process may vary from tens of minutes to several hours. Additionally, optimiza-
tion software may converge to local optima, resulting in failure to produce the optimal outcomes and thus 
requiring further optimization iterations. This negatively affects processing time and complexity. Automatically 
inferring lens specifications from given performance requirements can substantially diminish the intricacy and 
development time of the lens design process. Therefore, our research aimed at conceiving an efficient solution 
to autonomously generate lenses that satisfy the required performance through the application of deep learning 
techniques, thereby streamlining and expediting lens design.

However, the conventional fully connected neural networks exhibit deficiency in predictive precision when 
applied to the inverse lens design. In our previous  study8, a multilayer perceptron (MLP) architecture was 
attempted to serve as the framework of a fully connected neural network for the inverse lens design. The lens 
performance metrics were used as input features while the structural parameters were adopted as output labels 
for the MLP. In practice, the accuracy of the predictions generated by the MLP was found to be as low as approxi-
mately 30%. Performing the lens design utilizing the MLP required a trial-and-error process, in conjunction with 
subsequent analysis facilitated via a database server MySQL to identify the optimal lens structures. Furthermore, 
additional  applications9 of machine learning methods for the lens system development predominantly provide 
initial approximate configurations rather than optimal lens specifications. Inverse design problems are deemed 
to be ill-posed10–12, signifying that they are commonly acknowledged to exhibit the characteristic of one-to-many 
mapping. That is, different combinations of lens structural parameters may yield the same lens performance met-
rics. The inherent one-to-one mapping nature of conventional regression algorithms poses a challenge in dealing 
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with the complexity of one-to-many mapping. Moreover, the MLP cannot mitigate information loss resulting 
from dimensional difference between the lens performance metrics and structural parameters, thus lacking the 
capability of deducing specific lens structures exclusively from the performance metrics. In this context, a more 
competitive deep learning approach leading to precise specifications for the inverse-designed lenses is highly 
desirable. Invertible neural networks (INNs), which are based on the flow models, were first introduced by Ard-
izzone et al.10. The flow models have undergone a series of progressive evolutions and refinements stemming 
from nonlinear independent components  estimation13 and advancing toward real-valued non-volume preserving 
 transformations14–17. This progression culminated with the development of an evolved generative flow model, 
known as  Glow18–21. As technology breakthroughs have endowed invertible models with enhanced capabilities 
to effectively tackle intricate inverse problems, INNs are purposefully engineered to provide a precise inverse 
mapping for each of the forward mapping. Therefore, the INNs not only can infer the outputs from the inputs 
but they can also reconstruct the initial inputs from the outputs without loss of information. The applications 
of INNs have triggered an upsurge in the exploration of inverse design across several scientific investigations, 
including innovative  materials22, aerosols  development23, multiphase  flow24, and  imaging25–27. Nevertheless, 
inverse design applications in the field of optical lenses remain limited. Incorporating Glow-based INNs into 
lens development can facilitate effective inverse design of lens systems by directly predicting the numerous 
parameters of lenses, consequently streamlining the research and exploration of these devices. As a result, our 
intention aligns with the utilization of Glow-based INNs with the intention of implementing the inverse design 
methodology for optical lenses.

In this study, we addressed the inverse design of lenses efficiently by leveraging two Glow-based INNs. It has 
been confirmed that our models yield a sufficiently high level of precision. Furthermore, the models enable the 
prompt derivation of lens specifications that closely match the intended functionalities of the proposed converg-
ing and beam-coverage enhancing lenses. The combination of Glow-based INNs and inverse lens design is a 
prominent scheme for simplifying the lens design workflows. The proposed models can be regarded as potent 
inverse modelling tools providing creators with reliable lens structural parameters to solve the practical require-
ments of lens design.

Structures of the proposed converging and beam‑coverage enhancing lenses
In this work, we attempted to embody an optical module comprising converging and beam-coverage boosting 
lenses, denoted as lenses V and H, respectively. Our goal was to develop lens V to curtail the beam divergence 
observed along the vertical orientation, and lens H to concurrently augment the horizontal propagation range of 
the beams emitted from a light source. Notably, the proposed Glow-based INN technique holds the significant 
potential for the inverse design of various types of lenses. In consideration of multifarious nature of actual engi-
neering situations encountered in lens design concern, such as the use of light sources possessing diverse beam 
divergence angles and different lens manufacturing materials. Therefore, our study focused on the implementa-
tion of lenses made of diverse materials capable of accommodating varying beam divergence angles. Herein, two 
full-width-at-half-maximum angles, namely 20° and 25°, were adopted as the vertical beam divergence θin of the 
light source, respectively. In addition, two categories of materials were selected for the lens system, specifically 
polycarbonate (PC) plastic and HZF6 glass. The refractive indices of PC and HZF6 at a working wavelength of 
1550 nm are 1.56 and 1.72, respectively. The optical system has been subjected to meticulous scrutiny through a 
ray-optic tool, LightTools (LT, Synopsys Inc., USA). The illustration delineated in Fig. 1 portrays the trajectory 
of the beams as they sequentially traverse lenses V and H. The scope of our design is solely responsible for the 
operation of geometric optics rather than diffractive optics. The three beams illustrated in Fig. 1 are representa-
tive of their emission at distinct steering angles. The central beam corresponds to an input deflection angle of 
0°, while the beam located at either end is indicative of the central beam which is being successively scanned 
over the horizontal coverage range. The diminution in the vertical field of view of the beams along the z-axis is 

Figure 1.  Configuration of the proposed lens module and ray tracing associated with the lens functionalities. 
Lenses V and H are devised to diminish vertical beam divergence and amplify horizontal beam coverage, 
respectively.
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concomitant with the expansion of the horizontal coverage range as the beams advance along the y-axis. The 
incident beams, characterized by the θin, horizontal beam divergence φin of 0.23°, and maximum input horizontal 
coverage range Ψin of 15°, are emanated from the light source. These beams then transmit through the anterior 
surface of the lens V and subsequently exit through its posterior surface at a diminished angle of θ. The degree 
of reduction in the vertical field of view is contingent upon the structural parameters of the lens V, including the 
working distance  WDV, center thickness  CTV, conic constant  CCV, and posterior radius of curvature  PRV. After 
the lens V decreases the vertical beam divergence, the beams proceed through the lens H. The front concave 
surface of lens H increases the deflection angle of the beams, while the posterior surface reduces the steering 
angle slightly. To mitigate the potential for excessive growth in the horizontal output beam divergence φ, a convex 
configuration was chosen for the posterior surface of lens H, thereby alleviating the horizontal aberration. At 
the end of the process, the beams pass through the lens H with an output scanning range of Ψ. The horizontal 
deflecting magnification is reliant upon the parameters of the lens H, including the working distance  WDH, center 
thickness  CTH, and radii of both the anterior and posterior surfaces  ARH and  PRH.

Process of the inverse lens design relying on the proposed INNs
The process of the proposed INN-based inverse design of lenses encompasses a sequence of operations. The 
initial step is data acquisition and pre-processing, which plays a crucial role in ensuring the effectiveness and 
accomplishment of deep learning scheme. In this work, the datasets for lenses V and H were obtained through 
LT simulations. The data collection was fulfilled by taking into account the predetermined lens parameters as 
the set of features X for each dataset, while the performance parameters were assigned as the relevant labels 
Y. Subsequently, the pre-processed data were fed into the INNs for both model training and testing purposes. 
Following the completion of the training process, the required lens performance metrics were inputted into 
the INNs, which then inferred the corresponding optimal lens parameters. The entire workflow is described in 
Fig. 2. The implemented INNs were coded in Python and executed on a computer system featuring an Intel Core 
i5-10400 processor, an NVIDIA GeForce GTX 1650 SUPER graphics card, and a memory capacity of 32 GB.

Data acquisition and preliminary processing
The objective of constructing the INNs for the lens system is to derive the structural parameters of the lenses 
directly and autonomously by specifying a set of lens performance metrics encompassing θ, Ψ, and φ. Considering 
that certain elements, such as the dimensions of the lens in terms of height and width, have no substantial influ-
ence on the optical performance of the lens system, the input features X of the proposed INNs were determined 
to be the working distance, center thickness, conic constant, and radius of curvature. The labels Y collected for 
the INNs correspond to the lens performance metrics, including θ of the lens V, as well as Ψ and φ values of the 
lens H. To derive the features and labels, the parameter sweep tool integrated in LT was exploited. The ranges 
of the acquired feature values were established a priori based on previous expertise in lens design. After defin-
ing the features, the data collection instrument obtained the corresponding labels by computing the diversified 
combinations of features. Tables 1 and 2 provide an overview of the features that pertain to the datasets of lenses 
V and H, respectively. Before feeding the raw datasets into the models, the datasets were pre-processed. To ensure 
the dependability of the proposed INNs, a randomized shuffle operation was executed on the datasets, followed 
by the segregation of the datasets into two subgroups, one for training and one for testing, with an allocation 
ratio of 80% and 20%, respectively. Subsequently, we adopted StandardScaler, a class offered by the scikit-learn 

Figure 2.  INNs-based inverse lens design workflow. The process includes three steps: accumulation and 
processing of data, training and evaluation of the proposed INNs, and inverse predictions of lens parameters.
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library, to standardize the features in the dataset (i.e., transforming the features in the dataset into a standard-
ized normal distribution). This conversion serves to promote data comparability across various features, thereby 
streamlining both the learning and optimization processes, while simultaneously augmenting the accuracy and 
effectiveness of the models. In adherence to the method of standardization, the process of manipulating each 
feature of the training set entails the computation of z = x−µ

s  , where x denotes the training samples associated 
with each feature, while μ and s are the mean and standard deviation of the training samples, respectively. The 
process of centering and scaling involves individual computation of relevant statistics on the samples within the 
training set for each feature. After standardization, the distribution of each feature leads to a mean value of zero 
and variance value of one. The resultant mean and standard deviation values were saved and used for subsequent 
processing of the test dataset.

Architecture of the proposed INNs for inverse lens design
Considering that the intrinsic dimension of the labels Y is smaller than that of the input features X, the forward 
transformation process from X to Y may suffer from innate information  loss10. To mitigate this, a latent vari-
able set Z that conforms to a standard Gaussian distribution was introduced. Note that the dimension of set 
Z is equivalent to the dimensional difference between the sets X and Y. The use of variable set Z in the INNs 
ensures that information regarding X that is not encompassed within Y is captured effectively. Consequently, 
the correlation between the inputs X and outcomes Y is remodelled into a relationship between X and [Y, Z]. 
The forward operation represented by F(X) = [Y ,Z] is accompanied by its corresponding inverse operation 
X = F−1(Y ,Z) . The forward and inverse mappings are expounded in Fig. 3a. The key aspect of an INN is to 
provide an architecture that ensures invertibility. Commonly applied strategies to construct the frameworks of 
INNs exploit affine coupling  layers10,12, which divide the inputs X into two segments and apply invertible func-
tions to a single segment only while keeping the other part unaltered. The affine transformation process engages 
the concatenation of multiplicative and additive coupling blocks, thereby leading to multifaceted transforma-
tion effects. The two INNs proposed for lenses V and H are composed of multiple Glow coupling block units 
interspersed with stochastic permutation operations, as depicted in Fig. 3b. The INNs facilitate the alternating 
execution of forward and reverse iterations during the training process, enabling bidirectional gradient propa-
gation and allowing for subsequent parameter updates. To augment the nonlinear characteristics of the INNs, 
the PermuteRandom function was capitalized on to shuffle the data order randomly. Each Glow coupling block 
comprises two subnetworks, namely Subnets 1 and 2, which represent the bottom and top channels, respectively. 
The subnetworks are inclusive of sequential neural networks, each featuring two hidden layers with 256 fully 
connected neurons and the rectified linear unit (ReLU) activation function. The bottom channel initiates input 
data transfer to the latent space, whereas the top channel is responsible for the transfer of the latent space vec-
tor to the data space. Subnets 1 and 2 are exclusively allocated for computing outputs propagating through the 
lower and upper channel, respectively. The input lens parameters X undergo a division into two equal segments 
of length 2 for each coupling block. During the coupling transformation, a portion of the input data is sent to 
Subnet 1 for transformation, whereas the remaining portion remains unchanged. Subsequently, the unmodi-
fied portion is merged with the transformed data to give the outputs. The input data undergo both forward and 
backward propagation during training. Owing to the reversibility of the network, the outputs can experience 
backward propagation. Consequently, the results obtained by backward processing can be close to the inputs.

The INNs enable the sequential execution of forward and backward iterations during training, thus permit-
ting the propagation of gradients in both directions and the subsequent updating of hyperparameters. Each 
coupling block featured a clamp value of 2, which could be leveraged to constrain the range of outputs for the 
bottom channel. In addition, the Adam optimizer was chosen for the reversible training with a learning rate of 
1E–3 and weight decay rate of 1E–5. To ensure stable and reversible training, minor perturbations characterized 
by the standard deviation σ of Gaussian noise were introduced. Specifically, a standard deviation σy of 5E–3 was 

Table 1.  Ranges of the features pertaining to the datasets of the lens V.

Features Minimum Maximum Increment

WDV (mm) 1 7 0.2

CTV (mm) 3 5 0.5

CC –1 0 0.5

PRV (mm) 4 10 0.1

Table 2.  Ranges of the features of the datasets of the lens H.

Features Minimum Maximum Increment

WDH (mm) 24 40 1

CTH (mm) 3 5 1

ARH (mm) 5 10 0.125

PRH (mm) 50 100 10
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allocated to Y and a σz of 2E–3 was assigned to Z. Furthermore, establishing loss functions is integral to guarantee 
the effective training of the models. The total loss function is expressed as Ltotal = �yLy + �zLz + �xLx , where 
�y , �z , and �x were defined as the weighting factors that were all empirically determined to be one. Ly is the mean 
squared error (MSE) loss function, which imposes a constraint on the predicted outputs of the network during 
the forward propagation phase, thus ensuring that predictions remain within the range of ground truth data. 
Additionally, Lz and Lx were realized using the maximum mean discrepancy (MMD) to quantify the disparity 
between the anticipated outputs and input values, thereby guaranteeing that the overall distribution of the outputs 
conforms to that of the actual values.

Loss assessment of the proposed INNs on the datasets for lenses V and H
In this work, the effectiveness of the proposed two INNs for lenses V and H was checked by taking advantage of 
four and two datasets, respectively. The construction of the four datasets pertaining to the lens V involved PC 
and HZF6 materials, under θin values of 20° and 25°. Similarly, the two datasets associated with the lens H were 
created based on the same materials. The four cases for the lens V are labelled as Lens V_PC_20°, Lens V_PC_25°, 
Lens V_HZF6_20°, and Lens V_HZF6_25°, while the two cases for the lens H are named as Lens H_PC and Lens 
H_HZF6. The runtime overheads for the six cases of model training are 2038, 1825, 1820, 1416, 1511, and 820 s, 
respectively. The disparity in runtime may be ascribed to the varying size of the datasets, which results from the 
exclusion of parameter combinations of lens structures that would yield bimodal non-Gaussian beam profiles 
in the vertical direction and excessively broad coverage range in the horizontal direction. It is noted larger data-
sets tend to incur longer runtime for the model training. Throughout the training phase, the MSE of lens per-
formance metrics and the MMD of lens structural parameters on both the training and testing sets were plotted 
for each epoch. MSE is a widely adopted metric in statistics and machine learning fields that quantifies the dif-
ference between predicted values and ground-truth data. It serves as a reliable tool for evaluating the prediction 
accuracy of a model. Specifically, the lower the MSE, the higher is the accuracy of the predictions of the model. 
The MSE is defined as follows: MSE

(
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the performance values computed in LT, and ŷi represents the performance requirements conveyed into the 
INNs. Additionally, MMD is popularly utilized to quantify the dissimilarities between the outputs produced by 
a network and those obtained from empirical observations, thereby gauging the similarity between the two kinds 
of data. The diminution of MMD signifies a heightened resemblance between the expected and factual values. 
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where X and X̂ correspond to the actual and predicted sets, respectively, and k corresponds to the Gaussian 
kernel function. The MSE values for each θ computed for the lens V on four datasets over 500 epochs are shown 

Figure 3.  (a) Forward and backward mappings between the lens structural parameters X, performance Y, and 
latent variables Z. (b) Structure of the proposed INNs based on the Glow coupling blocks. The numbers of block 
N in the models for lenses V and H are eight and ten, respectively.
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in Fig. 4a-i–a-iv, while those of Ψ and φ computed for the lens H on two datasets are plotted in Fig. 4b-i and b-ii, 
respectively. Additionally, the MMD values for lens parameters for both the training and test sets within 500 
epochs are plotted in the subgraphs of Fig. 4. In the cases of lens V, the initial MSE values for θ on both the train-
ing and testing sets began at approximately 0.36 and 0.06, respectively, as indicated in Fig. 4a. Similarly, the 
highest MMD values for the lens parameters on both the training and test sets initiated at around 0.15 and 0.1, 
respectively, as depicted in the subfigures of Fig. 4a. The MSE and MMD decreased with an increasing number 
of epochs and ultimately stabilized at the vicinity of 0.001 and 0.025, respectively. During the early phases of 
training, the MSE observed in the training set surpassed that of the testing set. This can be attributed to the inabil-
ity of the networks to comprehensively ascertain the underlying features of the data at the outset. Through 
training and optimization, the models acquired an understanding of the data characteristics, leading to a gradual 
decrease in the MSE of both the training and test sets. When the MSE of the training and test sets stabilized, the 
models effectively fitted the trained data, thereby allowing for the generalization to fresh data. An analogous 
trend can be discernible for the MSE and MMD of the lens H in Fig. 4b-i–b-ii. Both the MSE and MMD values 
declined from the values of 2 and 0.3 as the number of epochs increased, and ultimately plateaued at approxi-
mately 0.001 and 0.022, respectively. Both INNs assigned to the lenses V and H gave rise to a considerable level 
of precision, as evidenced by the significantly low MSE and MMD values achieved across the six datasets. Also, 
the proposed INNs have provided substantial versatility in accommodating diverse materials and light sources 

Figure 4.  MSE pertaining to the lens performance metrics and MMD related to the lens structural parameters 
computed for six datasets over 500 epochs on both the training and test sets. The MSE and MMD values of the 
lens V were obtained considering (a-i) PC and θin = 20°, (a-ii) PC and θin = 25°, (a-iii) HZF6 and θin = 20°, and 
(a-iv) HZF6 and θin = 25°. The MSE and MMD of lens H were obtained using (b-i) PC and (b-ii) HZF6.
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with distinct input beam divergences, thereby underpinning the extensive applicability of our INN-based 
approach.

Reliability verification of the lenses V and H deduced by the proposed INNs
The reliability of the proposed INNs has been particularly substantiated in terms of the MSE and MMD values. 
After training, the two INNs were applied to accurately forecast the specifications of lenses V and H satisfying 
the designated lens performance metrics. To validate the proposed INNs under practical scenarios, a series of 
randomly selected performance metrics, encompassing θ for lens V as well as Ψ and φ for lens H, were inputted 
into the INNs. The primary objective of fulfilling the random verifications (RVs) is to concretely underpin the 
precision of the trained INNs. The proposed models were tested by conducting RVs accordingly on the six data-
sets of lenses V and H. θ of lens V was randomly assigned to five values. Similarly, five sets of stochastic values 
were allocated to Ψ and φ of lens H. A comparison was conducted between the performance metrics specified in 
the INNs and those obtained from LT simulations based on the predicted lenses, as expounded in Tables 3 and 4. 
The minor divergence between the specified lens performance metrics and those obtained through LT simulations 
can indicate that the INNs possess dependability in predicting lens parameters. The values of θ, Ψ, and φ under 
the label of INN are the lens performance metrics specified for the proposed INNs. Once these performance 
values are fed into the trained INNs, the models can predict the corresponding lens structural parameters. The 
lens structural parameters deduced from the INNs are subsequently subjected to the testing in LT to assess their 
validity. The lens structural parameters are reflected in the LT simulations to yield corresponding outcomes for 
θ, Ψ, and φ, which are categorized under the tag of LT. Table 3 tabulates a comparative analysis of θ values input-
ted in the INN and those generated through LT simulations. The results imply that the differences between the 
two θ values fluctuate around 0.1°, with a maximum deviation of approximately 0.2°, which fall within the bias 
range and can be disregarded. Additionally, the comparison presented in Table 4 reveals that the values of Ψ and 
φ specified in the INNs and those obtained using LT match significantly, with deviations not exceeding 1° and 
0.03°, respectively. The overall contrast of the performance metrics inputted to the INNs and outcomes calculated 
by LT simulations is depicted Fig. 5a and b, which visually delineate the exceedingly minute gap between the two 
sets of results. The lens structural parameters deduced from the two proposed INNs are showcased in Tables 5 
and 6. Considering the lens parameters derived from the INNs are practically affordable from the perspective 
of manufacturing, the proposed INNs are confirmed to be efficacious in determining the lens structural param-
eters by tapping into the corresponding performance metrics. The proposed models effectively predicted the 
parameters of lenses V and H with a computational time below 0.2 s.

A statistical metric, known as the mean absolute percentage error (MAPE)28, was employed to offer a thorough 
and quantitative evaluation of the models’ reliability. This metric is defined as MAPE = 1

n

n
∑

1

∣

∣

∣

yi−ŷi
ŷi

∣

∣

∣
 , where n 

represents number of test data, ŷi denotes the lens performance metrics computed by LT, and yi is the perfor-
mance metrics inputted into the INNs. From the perspective of machine learning, the commonly adopted practice 
is to maintain a train-to-test data ratio of 8:2. The considerable amount of test data treated in this work may help 
demonstrate the precision of the proposed INNs for the V and H lenses. The performance metrics of the two 
lenses in the six test datasets were provided for the models so as to deduce the corresponding lens structural 

Table 3.  Comparison of values of θ inputted into the INNs and computed by LT under five RVs.

Cases

Lens V_PC_20° Lens V_PC_25°
Lens V_
HZF6_20°

Lens V_
HZF6_25°

θ

INN LT INN LT INN LT INN LT

RV1 1.83° 1.80° 2.30° 2.40° 1.55° 1.41° 4.22° 4.40°

RV2 4.21° 4.32° 5.57° 5.76° 3.03° 2.82° 8.53° 8.58°

RV3 8.60° 8.62° 9.25° 9.13° 7.43° 7.31° 10.66° 10.76°

RV4 12.40° 12.40° 11.66° 11.57° 10.22° 10.25° 14.16° 14.26°

RV5 15.00° 15.01° 17.05° 17.01° 16.50° 16.59° 18.33° 18.52°

Table 4.  Comparison of Ψ and φ inputted into the INNs and calculated by LT under five RVs.

Cases

Lens H_PC Lens H_HZF6

Ψ φ Ψ φ

INN LT INN LT INN LT INN LT

RV1 30.11° 30.59° 0.46° 0.45° 25.20° 24.13° 0.39° 0.37°

RV2 36.33° 35.60° 0.55° 0.52° 32.46° 33.39° 0.50° 0.51°

RV3 40.52° 40.65° 0.62° 0.60° 39.89° 40.34° 0.61° 0.61°

RV4 45.79° 45.74° 0.70° 0.69° 44.06° 44.12° 0.68° 0.66°

RV5 50.00° 50.28° 0.77° 0.77° 51.35° 52.08° 0.79° 0.82°
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parameters. These parameters were then calculated through LT to derive the simulated performance metrics. 
The MAPE values of θ for the lens V and Ψ and φ for the lens H were computed to be 0.0265, 0.0263, and 0.1073, 
respectively. The achieved small MAPE values can categorically prove the substantial congruity between the lens 
performance metrics obtained from the simulations and the designated performance metrics in the INNs. The 
low MAPE values confirm the robustness and reliability of the proposed INNs.

Discussion and outlook
The desired lens performance metrics can be directly inputted into the proposed INNs, which can automatically 
derive corresponding lens structural parameters and thereby eliminate the need for the conventional trial-and-
error process relating to the lens design. Furthermore, the predicted lens parameters have been tested using the 
commercial design tool, LT. It is discovered that the lens performance metrics obtained by the simulations uphold 
remarkable correlations between the specified performance values in the INNs. The MSE and MMD associated 
with the proposed INNs assume practically negligibly low values. Hence, from the perspective of convenience, 
efficiency, and accuracy of the proposed INNs, the current work is judged to be on a par with the expert-assisted 
design. The INN-based scheme can be extended to accommodate complex lens systems. In the context of a lens 

Figure 5.  Comparison between the lens performance metrics inputted into the INNs and the corresponding 
LT outcomes for lenses V and H under five different RV scenarios. (a) Disparities between the assigned θ and 
the values generated by LT for lens V. (b) Difference between the designated Ψ and φ and the simulation results 
obtained using LT for lens H.

Table 5.  Predicted lens structural parameters  [WDV (mm),  CTV (mm), CC, and  PRV (mm)] corresponding to 
the θ values inputted into the INNs of lens V under different RVs.

Cases Lens V_PC_20° Lens V_PC_25° Lens V_HZF6_20° Lens V_HZF6_25°

RV1 [5.81, 3.89, –0.44, 5.00] [5.43, 4.17, –0.46, 4.97] [5.03, 4.15, –0.63, 5.42] [4.42, 3.94, –0.42, 5.82]

RV2 [5.04, 3.98, –0.41, 5.38] [4.73, 4.20, –0.43, 5.39] [4.65, 4.22, –0.57, 5.84] [3.43, 4.01, –0.47, 6.26]

RV3 [3.85, 4.06, –0.51, 6.35] [4.17, 4.03, –0.42, 6.01] [3.52, 3.97, –0.50, 6.54] [2.96, 3.96, –0.48, 6.61]

RV4 [2.44, 3.85, –0.52, 7.33] [3.59, 3.97, –0.48, 6.45] [2.59, 3.88, –0.49, 7.07] [2.20, 3.84, –0.48, 7.47]

RV5 [1.44, 3.66, –0.46, 8.72] [1.97, 3.77, –0.49, 7.81] [0.31, 3.51, –0.60, 10.41] [1.23, 3.49, –0.60, 9.28]

Table 6.  Predicted lens structural parameters  [WDH (mm),  CTH (mm),  ARH (mm), and  PRH (mm)] 
corresponding to the Ψ and φ values inputted into the INNs of lens H under different RVs.

Cases Lens H_PC Lens H_HZF6

RV1 [18.61, 4.55, 8.26, 115.23] [16.09, 5.41, 10.34, 36.69]

RV2 [18.95, 4.59, 6.54, 129.66] [18.55, 4.70, 10.07, 202.83]

RV3 [21.96, 4.61, 6.16, 124.76] [21.21, 5.90, 8.50, 235.52]

RV4 [24.53, 4.53, 5.85, 120.76] [22.59, 5.95, 7.66, 204.93]

RV5 [26.16, 4.57, 5.54, 117.20] [25.17, 5.15, 6.45, 136.44]
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system, each lens component serves a distinct purpose, allowing for individual analysis and design. In this work, 
we are mainly focused on the design of lenses V and H, aiming to properly adjust the vertical and horizontal 
fields of view, respectively. The two INNs which are specifically constructed for the lenses V and H can operate 
independently. Thus, it is feasible to construct multiple INNs for lenses. The independent operating nature of 
each INN makes it possible to organize the INNs in a cascade fashion, facilitating the inverse design of a system 
incorporating multiple lenses. The training of the INNs for sophisticated lens systems can be fulfilled through 
the acquisition of datasets associated with each lens in the lens systems.

In this work, ReLU activation functions are utilized for the proposed INNs. Due to their inherent nonlin-
earity, ReLU functions can effectively cope with nonlinear mathematical  relationships29–31, thus facilitating the 
ability of the proposed INNs to learn and represent intricate functional relationships. In the domain of photonic 
device design, complex optical characteristics and nonlinear associations manifest frequently. The use of ReLU 
activation functions enables nonlinear transformation of the input features, thereby enhancing the feature fitting. 
In specific scenarios where the ReLU function fails to effectively capture the complex nonlinear relationships 
involved in the optical design, alternative activation functions such as Leaky  ReLU32,33 and exponential linear 
 units34,35 can be relied on to augment the fitting power of the models. Furthermore, the complex and nonlinear 
relationships can be readily fitted by tuning the hyperparameters of the INNs. It can be asserted that the nonlinear 
activation functions in conjunction with the hyperparameter tuning help address nonlinear problems, thereby 
enabling the models to perform precise predictions. Through appropriate training, the INNs hold the potential 
to expedite the development of a variety of photonic devices involving nonlinear properties, including cases that 
might have sharp resonant features.

Conclusion
In this study, we developed a Glow-based INN-driven deep learning technique for the inverse design of optical 
lenses to satisfy the needs of practical engineering scenarios. The proposed lenses V and H were devised with 
the objective of narrowing the vertical field of view and expanding the horizontal scanning range. The proposed 
INNs demonstrated the capability to directly derive lens structures from the specified lens performance metrics. 
The MSE of the lens performance metrics and MMD of the lens structural parameters obtained through the 
proposed INNs are approximately 0.001 and 0.025, respectively. The MSE and MMD values in the vicinity of 
zero serve as evidence of the high accuracy of the proposed INNs. Additionally, the proposed models exhibited 
high efficiency by delivering lens parameters within 200 ms. Hence, the proposed Glow-assisted INN strategy 
can simplify and accelerate the inverse design of lenses. Furthermore, our approach is anticipated to enhance 
the future development of diverse photonic devices, such as waveguide gratings, modulators, and couplers.

Data availability
Data is available from the corresponding author upon reasonable request.
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