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Critical circumferential wavelength 
of elastic buckling of longitudinal 
compressed thin‑walled cylindrical 
shells
Ming Ji 

The classical theory of elastic critical buckling stress works well for slender columns and thin flat 
plates under compression; however, the situation is different for longitudinally compressed thin‑
walled circular cylindrical shells, and the issue has plagued us despite considerable efforts over the 
last 100 years. We noticed that all such buckling analyses thus far, both linear and nonlinear, in terms 
of the main philosophy, inherited and were confined to Euler’s pioneering solution for the slender 
column model that focuses on the longitudinal buckling deformation mode and should be classified 
as the ‘longitudinal open‑loop’ eigenmode because the deformations of the two longitudinal ends 
are physically independent of each other. In view of this, for an ideal linear‑elastic buckling model 
of a thin‑walled perfectly circular cylindrical shell under uniform longitudinal compression on the 
foundation of the longitudinal open‑loop eigenmode solution, it is also necessary to consider a 
‘circumferential closed‑loop’ eigenmode simultaneously to physically avoid violating the reality of 
its ideal periodic deformation on the entire perimeter and to mathematically redefine the biunique 
and precise relationship for each distinct eigenmode by the critical circumferential wavelength. 
Originating from such a case study, the mathematical uniqueness issue hidden in the general 
solution of the Donnell equation is further discussed. The authenticity of the competing eigenmode 
characterized by the Koiter circle is also discussed. Furthermore, a preliminary attempt was conducted 
to interpret the discrepancy between theoretical and experimental buckling loads, mainly initiated by 
the characteristic type of longitudinally generated circumferential local inward displacement in initial 
geometric imperfections, using the insights herein.

The classical static, linear, small-deflection theory of elastic buckling of thin-walled perfectly circular cylindrical 
shells that is paved by Euler’s pioneering investigation way for the elastic stability of an initially straight slender 
 column1,2, became simple and clear with the clarification of mechanics concept of its physical model; the many 
ingenious analyses made by independent pioneers, including Rayleigh, Love, Lorenz, Southwell, von Mises, 
Flügge, Timoshenko, von Kármán, Donnell, Batdorf, and others, for a full count see Timoshenko and  Gere3. 
The mechanics framework with respect to the physical model for the static linear-elastic analysis of thin-walled 
perfectly circular cylindrical shells is based upon some idealized rational assumptions essentialized by: (a) the 
thickness of the shell is small compared with the radius of curvature of its mid-surface; (b) the straight lines 
in the cylinder wall, perpendicular to the undeformed mid-surface, remain straight and perpendicular to the 
deformed mid-surface and suffer no extension (Love–Kirchhoff hypothesis); (c) strains and displacements so 
that the quantities of second and higher order terms are neglected in comparison with the first order  terms4; (d) 
the stress components normal to mid-surface are small compared with other stress components and they can 
be neglected in the stretching and bending stress–strain relations of the homogeneous, isotropic linear-elastic 
plane-stress state based on generalized Hooke’s  law3; and (e) the displacements are so small that the static equi-
librium conditions for the deformed infinitesimal element of the cylindrical shell are the same as if the element 
were not deformed and the specification of Love’s so-called ‘first approximation’ of the mechanical properties 
can be applied to the element as if the element were  flat5–7.

Whether applying the energy method or differential equation method for the elastic buckling analysis of thin-
walled perfectly circular cylindrical shells under uniform longitudinal compression, both classical approaches 
generate an identical eigenvalue problem to find the lowest load for the loss of stability, termed elastic critical 
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buckling stress (ECBS). Simultaneously, as the turning point load of the bifurcation, buckling deflection will 
at least begin to appear, and the associated eigenmode is the buckling mode. In the early nineteenth century, 
the same form of the ECBS prediction formula corresponding to axisymmetric buckling and nonaxisymmetric 
periodic buckling modes was proposed, but it was soon clear that the observed experimental elastic buckling 
load of a real shell was significantly lower than the predicted  value3, and revealed  that8,9: (a) the experimental 
elastic buckling loads were often much lower than the predictions of the classical theory; (b) there was a wide 
scatter in the experimental elastic buckling loads for nominally identical specimens, that is, unpredictability; (c) 
the failures were often catastrophic, that is, unstable and dynamic. This significant and embarrassing discovery 
has been actively studied for about a century, and conventional wisdom has been made that the single dominant 
factor of initial geometric imperfections in spite of boundary conditions, small load eccentricities, etc., should 
be mainly responsible for the occurrence of lower-than-expected  ECBS10. Two different theoretical approaches 
for the highly unstable postbuckling behavior and imperfection-sensitive nature of longitudinally compressed 
thin-walled cylindrical shells with initial geometrical imperfections emerged by Kármán and  Tsien11–13 and 
 Koiter14, respectively, which can be referred to in a review by Hutchinson and  Koiter15.

It should be noted that all physical models for linear-elastic buckling and nonlinear postbuckling solutions 
of longitudinally compressed thin-walled cylindrical shells with perfect or imperfect geometry have, to a certain 
extent, been inherited and confined to Euler’s solution concept for the elastic slender column model; that is, these 
studies always focus on the solutions of the longitudinal buckling deformation mode. It is self-evident that such 
buckling models and solutions should be classified as the so-called longitudinal open-loop eigenmode gener-
ated on a straight or slightly flexural line because the deformations of the two longitudinal ends are physically 
independent of each other, similar to the noteworthy eigenmode on the compressed slender column. However, 
it is also necessary to consider the linear-elastic solution of the nonaxisymmetric periodic buckling deforma-
tion mode generated on the circumference. In other words, for a thin-walled perfectly circular cylindrical shell 
subjected to uniform longitudinal compression or other types of loads in the elastic state, on the foundation 
of the longitudinal open-loop eigenmode solution, a circumferential closed-loop eigenmode should be added 
simultaneously to satisfy the idealized continuous circumferential buckling deformation condition, which has 
a complete integer periodic waveform on its entire perimeter, so as not to violate the reality of circumferential 
periodicity.

Consequently, herein, still based on the classical static, linear, small-deflection theory of thin-walled perfectly 
circular cylindrical shells under uniform longitudinal compression, the elastic nonaxisymmetric periodic buck-
ling solution of the circumferential closed-loop eigenmode generated with complete integer periodic waveform 
on its whole perimeter is presented by utilizing the Donnell equation, in which the geometric concepts of the 
critical circumferential wavelength or integer wavenumber on whole perimeter and aspect ratio of wave pattern 
are included and clarified and the biunique and precise elastic critical buckling relationship for each distinct 
eigenmode is mathematically redefined. Furthermore, based on such a case study, the mathematical uniqueness 
issue hidden in the general solution of the Donnell equation is discussed, and the rational argument that adding 
only a circumferential closed-loop model can uniquely satisfy the physical features of elastic nonaxisymmetric 
periodic buckling of thin-walled perfectly circular cylindrical shells under uniform longitudinal compression 
is clarified. The authenticity of the competing eigenmode characterized by the Koiter circle is also discussed. 
Furthermore, in contrast to the previous conventional understanding, a preliminary attempt is made to interpret 
the discrepancy between theoretical and experimental buckling loads that is mainly initiated by the characteristic 
type of longitudinally generated circumferential local inward displacement of initial geometric imperfections 
using the insights herein.

Fundamental theory
For analytic convenience, with the aid of Donnell’s single simplified equation of eighth-order partial differ-
ential expression governing the elastic critical buckling state of a thin-walled perfectly circular cylindrical 
shell model under uniform longitudinal compression, as well as its definitions of coordinate and displacement 
 component16, and the idealized rational assumptions mentioned in the introduction, Donnell’s general equation 
can be expressed as follows:

where ∇2 is the Laplacian, and D is the flexural stiffness per unit length. The cylindrical shell model of length 
L, radius r, and uniform thickness t is made of a homogeneous, isotropic, linear-elastic material with Young’s 
modulus E and Poisson’s ratio ν, and is only subjected to a uniform longitudinal compressive load σs

x (stretch-
ing type), with mid-surface displacements u in the longitudinal direction (x-direction), v in the circumferential 
direction (y-direction), and w in the radial direction (r-direction).

Longitudinal open‑loop eigenmode buckling solutions for thin‑walled perfectly circular cylin‑
drical shells under uniform longitudinal compression
Currently, the known classical elastic critical buckling solutions of infinitely long or relatively long, not too short 
but finite length, thin-walled perfectly circular cylindrical shells under uniform longitudinal compression include 
axisymmetric form and nonaxisymmetric periodic form. Both such buckling solutions can be classified as longi-
tudinal open-loop eigenmodes because the deformations of the two longitudinal ends are physically independent 
of each other. The deflection solution w(x, y) of the longitudinal open-loop eigenmode of axisymmetric buckling, 
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which satisfies the boundary conditions of simply support, is a single sinusoidal eigenfunction only relevant to 
the longitudinal x-direction3, as follows:

where m denotes the longitudinal buckling wavenumber; w0 is the radial deflection coefficient of the point on 
the mid-surface; and the outward direction is positive.

However, the deflection solution w(x, y) of the longitudinal open-loop eigenmode of nonaxisymmetric peri-
odic buckling, which also satisfies the boundary conditions of simply support, is a doubly sinusoidal eigenfunc-
tion either along the longitudinal x-direction or around the circumferential y-direction3,17, as follows:

where bc = πr/n is the half-wavelength on the circumference and n denotes the circumferential periodic buckling 
wavenumber (n ≥ 4).

Upon substituting Eqs. (2) and (3) into Eq. (1), the axisymmetric ECBS and nonaxisymmetric periodic ECBS 
with the same form of σso

xcri can be derived  separately3,17,18, as follows:

Equation (4) implies that the ECBS is independent of the number and shape of buckling waves in both the lon-
gitudinal and circumferential directions. Nevertheless, in the National Aeronautics and Space Administration 
(NASA) Space Vehicle Design Criteria (SP-8007)19 and European Cooperation for Space Standardization (ECSS) 
Buckling Structures  Handbook20, Eq. (4) still plays a critical role in the preliminary analysis and design of thin-
walled shells after considering the buckling knockdown factors (KDFs), which were determined by establishing 
a lower bound to the available experimental data.

The nonaxisymmetric periodic buckling solution of the circumferential closed-loop eigenmode is discussed 
below, and is closely related to the number and shape of the circumferential periodic buckling wave. This implies 
that only the axisymmetric ECBS is theoretically true and invariant for both the longitudinal open-loop and 
circumferential closed-loop eigenmodes.

Circumferential closed‑loop eigenmode buckling solution of a thin‑walled perfectly circular 
cylindrical shell under uniform longitudinal compression
For the nonaxisymmetric deformation with an ideal whole perimeter complete integer periodic waveform, the 
deflection solution w(x, y) of the circumferential closed-loop eigenmode of nonaxisymmetric periodic buckling, 
which satisfies the boundary conditions of simply support, is also proposed as a doubly sinusoidal eigenfunction 
either along the longitudinal x-direction or around the circumferential y-direction as follows:

where λ = πr/m is the half-wavelength on the longitude and bc
n = πr/n is the half-wavelength on the circumference.

Upon substituting Eq. (5) into Eq. (1) yields the following equation:

The expressions within the braces in Eq. (6) must be zero; thus, the nonaxisymmetric periodic ECBS (σsc
xcri) is

Equation (7) is identical to Eq. (36), which was derived using the energy approach in the study by Kármán 
and  Tsien12, where bc

n/λ = m/n = μ is the ‘aspect ratio’ of the buckling wave pattern.
Herein, three values of the aspect ratio are used for exemplifying: μ = 1.0, μ = 0.5, or μ = 2.0, thereby
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Because bc
n = πr/n, Eqs. (8) and (9) can also be rewritten as:

Through Eqs. (4) and (10), we have

By introducing a dimensionless parameter χ:

Solve Eq. (12) to obtain

Similarly, through Eqs. (4) and (11) we have

Equations (14) and (15) mean that since on whole perimeter the circumferential periodic buckling wavenumber 
n should be an integer, for each n, the nonaxisymmetric periodic ECBS value of the circumferential closed-loop 
eigenmode is the same as that of the axisymmetric ECBS of the longitudinal open-loop eigenmode only at one 
proper corresponding point, i.e. σsc

xcri − σso
xcri = 0, as follows:

Otherwise, σsc
xcri − σso

xcri > 0. Consequently, as shown in Fig. 1, the corresponding critical circumferential half-
wavelength bc

ncri is:
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Figure 1.  Double-logarithmic plot of the power-law relationship between the critical circumferential 
wavelength and the product of the radius and thickness of the nonaxisymmetric periodic elastic buckling of a 
thin-walled perfectly circular cylindrical shell under uniform longitudinal compression. The white and black 
dots represent the three wave aspect ratios and indicate the biunique values relative to different circumferential 
periodic buckling integer wavenumbers, respectively.
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Here, the square of the positive and negative critical circumferential wavelengths can be understood as the 
corresponding clockwise or counterclockwise center angle, which has no substantive difference to the solution 
based on the whole perimeter.

Mathematical uniqueness of the Donnell equation solution
To further comprehend the different applicability of the longitudinal open-loop eigenmode and circumferential 
closed-loop eigenmode, it is necessary to retrospect the mathematical uniqueness and physical significance 
of the solution of the Donnell equation. Equations (2), (3), and (5) can be expressed in a more general doubly 
sinusoidal eigenfunction form as follows:

where α = mπ/L, β = 0 for the axisymmetric form; α = mπ/L, β = π/bc for the nonaxisymmetric periodic form of 
the longitudinal open-loop eigenmode; or α = π/λ, β = π/bc

n for the nonaxisymmetric periodic form of the cir-
cumferential closed-loop eigenmode, or any other pair of parameters α and β. Similarly, by substituting Eq. (18) 
into Eq. (1), the following equation is obtained:

Similar to Eq. (6), the expressions within the brackets in Eq. (19) must be zero, the general solution of ECBS 
(σs

xcri) is:

Furthermore, by introducing a parameter ψ = (α2 + β2)2/α2, Eq. (20) can be rewritten as

Taking the derivative dσs
xcri/dψ as zero, the minimization can be expressed as follows:

Therefore, the general solution of the ECBS (σs
xcri) of the Donnell equation is:

The derivation above indicates that the Donnell equation has a general solution if α and β satisfy the follow-
ing conditions:

Therefore, for the axisymmetric form of α = mπ/L and β = 0, although it is a longitudinal open-loop eigenmode, 
only a biunique relationship exists in Eq. (24) as follows:

However, for the current elastic nonaxisymmetric periodic form (α = mπ/L and β = π/bc) of the longitudinal 
open-loop eigenmode, Eqs. (4) and (23) are uniquely determined by the relationship in Eq. (24) and implies 
that relative to a single α or β, the solution is not unique. Nevertheless, by designing a circumferential closed-
loop eigenmode with the concept of a whole perimeter complete integer periodic waveform that can precisely 
satisfy the elastic buckling physical features of the ideal circumferential deformation of a thin-walled perfectly 
circular cylindrical shell under uniform longitudinal compression, that is, α = π/λ and β = π/bc

n, the solution of 
the Donnell equation can then be uniquely determined by the relationships in Eqs. (16) and (17), respectively.

Physical authenticity of the competing eigenmode of the Koiter circle
Furthermore, using Eqs. (21) and (23), we obtain:
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By introducing the parameter C = t‧r / √ [3(1 − ν2)] and inspecting Eq. (26), as follows:

Therefore, if the buckled form is not axisymmetric, then:

Equation (28) is identical to Eq. (3.17.59) in Koiter’s  book21 and Eq. (14.35) in Calladine’s  book22 and is the gen-
eral equation for the contour of C(α, β) in the α-β plane. The contour is known as the generalized Koiter circle, 
which means that one β value corresponds to two different α values.

Here, more generally using the concept of the aspect ratio of the buckling wave pattern, μ = α/β, Eq. (28) 
becomes:

As can be observed, the left-hand side of Eq. (29) reaches a minimum of 2 when μ = 1, and the value increases 
symmetrically when μ is greater than or less than 1. This also implies that, except for μ = 1, the same value on the 
left-hand side corresponds to two different values of the wave aspect ratio (μ > 1 vs. μ < 1), which can only appear 
one at a time, not at the same time, physically. Consequently, it can be further inferred that, corresponding to 
the initiation of elastic nonaxisymmetric periodic buckling of thin-walled perfectly circular cylindrical shells 
under uniform longitudinal compression, there is no so-called competing eigenmode embodied in the physical 
relation characterized by the Koiter circle.

Results and discussion
Although it is still based on the classical static, linear, small-deflection theory of elastic critical buckling of 
thin-walled perfectly circular cylindrical shells under uniform longitudinal compression, the nonaxisymmetric 
periodic buckling solution of the circumferential closed-loop eigenmode uniquely defines the critical circum-
ferential wavelength or wavenumber and wave aspect ratio that initially appear on the entire perimeter. In a 
broader sense, to grasp the essence of the physical phenomenon of elastic buckling, by rationally establishing 
the explicit geometric concept of the critical circumferential wavelength or wavenumber, the principal differ-
ences in the elastic critical buckling models of longitudinal compressed thin-walled structures can be clearly 
distinguished. Based on this perspective, it is understood that for a longitudinal compressed slender column 
model, there is no transverse wavelength or wavenumber that can be found; that is, they are all zero; and that for 
a uniform longitudinal compressed rectangular thin flat plate model, there is only a half transverse wave always 
adaptively occurring on the whole plate width, that is, its critical transverse half wavelength is always the plate 
width; and that for a uniform longitudinal compressed thin-walled perfectly circular cylindrical shell model, its 
axisymmetric buckling form has no circumferential wave, whereas its nonaxisymmetric periodic buckling form 
has the critical circumferential half wavelength determined by Eq. (17), and the corresponding circumferential 
periodic wavenumber determined using Eqs. (14) or (15).

In summary, even for the elastic buckling of uniform longitudinal compressed thin-walled perfectly circular 
cylindrical shells, the linear-elastic mathematical solution originating from Euler’s analytic approach can serve 
as an effective reference frame for workable engineering solutions.

Comparison of ECBS between axisymmetric buckling and nonaxisymmetric periodic buckling
It can be seen from Eq. (4) and Fig. 2, the axisymmetric ECBS is a monotonic continuous function of the radius/
thickness ratio, which is most likely to occur earliest because it is not physically constrained by circumferential 
wave deformation, in contrast to nonaxisymmetric periodic buckling. Nevertheless, for the elastic nonaxisymmet-
ric periodic buckling of the circumferential closed-loop eigenmode and for each of the circumferential periodic 
buckling wavenumbers n, the ECBS is identical to the axisymmetric ECBS at only one proper corresponding point 
(as dot a shown in Fig. 2) and closest to the axisymmetric ECBS within a very small corresponding range (as the 
r/t range between dots e and f shown in Fig. 2). In other words, the part whose ECBS is closest to the axisym-
metric ECBS is most likely to buckle; however, for different radius/thickness ratios with relatively large intervals, 
theoretically, their integer circumferential periodic buckling wavenumber n should be different to accommodate 
the biunique requirement of the most easily deformable continuous condition of the circumferential wave on 
the whole perimeter, such as dots a to c or d, as shown in Fig. 2. In addition, a comparison of Fig. 2A and B (also 
shown in Fig. 1) indicates that for the same circumferential periodic buckling wavenumber n, the necessary 
critical circumferential wavelength is the shortest when its wave aspect ratio is equal to 1 (μ = 1.0).

Consequently, for the elastic buckling solution of thin-walled perfectly circular cylindrical shells under uni-
form longitudinal compression studied herein, the fundamental understanding of its axisymmetric buckling is 
not different from the previous conventional solution; that is, all quantities continuously change according to 
the radius/thickness ratio. However, the fundamental understanding of its nonaxisymmetric periodic buckling 
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differs substantially; that is, the geometric concepts of the critical circumferential wavelength or integer wave-
number on the entire perimeter and the wave aspect ratio are newly defined and utilized. Obviously, the elastic 
eigenmodes of the nonaxisymmetric periodic buckling with different n values are sequentially ordered according 
to their radius/thickness ratio (Fig. 2), rather than the disordered multiple-repeated-competing eigenmodes, as 
previously understood, as well as qualitatively described by Koiter, that they can interact in a nonlinear fashion, 
both to reduce the load-carrying capacity and to provide highly unstable postbuckling  behavior14,21. This different 
understanding may evolve an approach that can truly interpret the discrepancy between theoretical predictions 
and experimental measurements and will be discussed next.

An attempt to interpret discrepancy between theoretical and experimental buckling loads
As we known that all current preliminary design methods of longitudinal compressed thin-walled cylindrical 
shells including NASA Space Vehicle Design Criteria (SP-8007)19 and ECSS Buckling Structures  Handbook20 

Figure 2.  Double-logarithmic plot of the theoretical relationship between ECBS normalized with respect to E 
(σsc

xcri/E or σso
xcri/E) and the radius/thickness ratio (r/t) of thin-walled perfectly circular cylindrical shells under 

uniform longitudinal compression. In both (A,B), (I) the green straight line represents the axisymmetric ECBS 
calculated using Eq. (4); (II) the black, blue, and brown segments represent the nonaxisymmetric periodic ECBS 
of the circumferential closed-loop eigenmode calculated using Eqs. (10) or (11), which are the closest values 
to axisymmetric buckling; (III) dot a represents the ECBS of n = 12 (or n = 9) of the elastic nonaxisymmetric 
periodic buckling, which is the same as that of axisymmetric buckling and is calculated using Eq. (16); (IV) 
dot b represents the ECBS of n = 12 (or n = 9) of the elastic nonaxisymmetric periodic buckling, which is quite 
different from that of axisymmetric buckling and calculated using Eqs. (10) or (11); (V) dot c has the same 
ECBS value as dot b (n = 12 or 9), is closest to the axisymmetric ECBS, and is obtained by n = 15 (or n = 12); 
(VI) dot d has the same radius/thickness ratio value as dot b (n = 12 or 9), is closest to the axisymmetric ECBS, 
and is obtained by n = 17 (or n = 15); thus, it can be understood theoretically that from dot b to dot c or d, the 
nonaxisymmetric periodic ECBS must correspond to different circumferential wavenumber n values with a 
biunique relationship; (VII) the variation range of the radius/thickness ratio between dots e and f represents 
the corresponding nonaxisymmetric periodic ECBS range of only one circumferential wavenumber, n = 13 (or 
n = 10); and (VIII) by comparing (A) and (B) (also shown in Fig. 1) shows that, for the same circumferential 
wavenumber n, the necessary critical circumferential wavelength is the shortest when its wave aspect ratio μ is 1.
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are based on the so-called ‘lower bound design philosophy’, by which they recommend the use of a KDF, which 
corresponds to the worst type of initial geometric imperfections, to multiply the classical buckling load to obtain 
a lower bound to all available experimental data to provide a safe buckling load prediction for the cases where the 
total weight and cost of the structure is of no concern. However, in cases where the design is weight-critical, one 
is usually forced to accept a smaller margin of safety; hence, a more refined method of structural optimization 
design and analysis is  requited23. The same situation can also be extended to the currently available large-scale and 
complex engineering numerical simulation design by using ‘perfect structure’ and KDF, although the magnitude 
of KDF is largely unknown, mainly due to initial geometric imperfections.

It is worth mentioning that in the early 1960s, an experimental measurement study supported by NASA con-
firmed the following  features24: (a) with proper care in manufacturing and testing, values of the buckling stresses 
can be obtained, which are much higher than those usually found; (b) for the displacement forms tested, small 
departures from the initial straightness lower the buckling stress and that the effect for inward displacements 
is greater than that for outward displacements; (c) if the outward displacements are increased, the value of the 
buckling stress again increases until it reaches essentially the same value as that of the initially straight cylinder; 
and (d) the constant curvature and sine wave shapes give essentially the same values of buckling stress for larger 
values of initial displacement.

On the other hand, in some recent  studies8,25, some skepticism was raised for assuming initial geometric 
imperfections as stress-free periodic geometric perturbations which have essentially classical buckling mode 
waveforms and play a striking role in reducing the shell failure load below classical prediction, and could be 
imparted to the shell as initial eigenmode forms during fabrication, that are open to question. In other words, 
it is reasonable to postulate a crooked but initially stress-free column; however, it is unreasonable to postulate 
a plate or shell, because in both cases, it is not possible to impose a double periodic deformation pattern on an 
initially flat or cylindrical sheet without incurring membrane stresses due to a change in the Gaussian curvature, 
or whether such hypothetical imperfections are representative of the observable initial geometric imperfections 
in real shells.

The initial geometric imperfections were considered to play a significant role in degrading the elastic buckling 
load. However, thus far, it is unclear what type and how it affects ECBS. Properly discriminating and identify-
ing the types and real functions of initial geometric imperfections will help to survey the following significant 
issues: (a) rationally interpret the discrepancy between theoretical and experimental buckling loads, (b) provide 
a reasonable and accurate analysis method for sorting out the experimental wide scatter results, and (c) provide 
appropriate modeling specifications for the initial geometric imperfections of the modern large-scale and com-
plex numerical simulation model in engineering practice.

After decades of painstaking investigation and collection work, the research team in Delft established an 
open databank (Initial Imperfection Data Bank) with realistic information to present the characteristics of the 
precisely measured surface distributions of initial geometric imperfections in detail, related to the different sizes 
and fabrication processes of the actual full-scale isotropic circular cylindrical shell with or without integral ring- 
and stringer-stiffeners26–31. From the three-dimensional plots of the actual measured surface distributions of 
the initial geometric imperfections, it can be seen that most of them exhibit geomorphic characteristics similar 
to the longitudinally generated continuous mountain ranges and river valleys. A schematic of the mid-surface 
distribution of the initial geometric imperfection in an actual isotropic circular cylindrical shell simplified 
according to the realistic precisely measured information collected in the Delft  databank26–31 is shown in Fig. 3.

From Fig. 2 and Eqs. (7)–(16), it can be seen that for the thin-walled circular cylindrical shell under uniform 
longitudinal compression, regardless of the elastic deformation influence during loading, the local initial circum-
ferential outward displacement corresponding to an increase in curvature compared to that of its nominal arc, 
as shown in Fig. 3, locally increases the nonaxisymmetric periodic ECBS of that portion relative to the nominal 
one. In contrast, in the same situation, the local initial circumferential inward displacement corresponding to 
a decrease in curvature compared to that of its nominal arc locally decreases the nonaxisymmetric periodic 
ECBS of that portion relative to that of the nominal one. Simultaneously, the requirement of the local critical 
circumferential wavelength should be satisfied.

Based on the above inferences, an attempt was made to physically interpret the discrepancy between the 
theoretical and experimental buckling loads of thin-walled circular cylindrical shells under uniform longitudinal 
compression, through the comparisons shown in Fig. 4. The interpretation is that: (a) it is reasonable to believe 
that the initial geometric imperfections of actual circular cylindrical shell are inevitably composed of their cir-
cumferential local outward and inward displacements generated longitudinally; (b) in where the circumferential 
local inward displacement corresponds to a decrease in curvature compared to that of its nominal arc; (c) the 
decrement of local curvature will locally decrease the nonaxisymmetric periodic ECBS of that portion relative 
to nominal one; (d) the locally decreased nonaxisymmetric periodic ECBS will trigger its corresponding nonax-
isymmetric periodic buckling mode with proper local critical circumferential wavelength defined by their unique 
circumferential wavenumber and wave aspect ratios; (e) thus, it is not difficult to infer that the wide scatter of 
elastic buckling load in the experimental results is mainly due to the scatter of the local curvature variation caused 
by the circumferential local inward displacement; (f) and from the average of the actual experimental  results25,32, 
it can be inferred that the local actual r/t variation caused by its circumferential local inward displacement will 
decrease by an average of 1.5 power relative to that of its nominal r/t.

The interpretation of the degradation of the experimental elastic buckling load presented herein also ena-
bles us to rationally deal with seemingly disorganized experimental results. In addition to the nominal radius/
thickness ratio, theoretical prediction, and experimentally obtainable elastic buckling loads, the following 
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observation and detection of the actual buckling phenomena of thin-walled circular cylindrical shells under 
uniform longitudinal compression in the period around the buckling occurrence must also be conducted. That 
is, (a) the axisymmetric buckling mode or the nonaxisymmetric periodic buckling mode, (b) the local critical 
circumferential wavelength or circumferential wavenumber, and (c) the wave aspect ratios. For the axisymmetric 
buckling mode, there are no more than the following two situations: one is for elastic axisymmetric buckling in 
thin-walled perfectly circular cylindrical shells or that with axisymmetric initial geometric imperfections; the 
other is for plastic axisymmetric buckling, where the material yield stress is much lower than the predicted and 
actual or experimental ECBSs. Otherwise, for the nonaxisymmetric periodic buckling mode, the corresponding 
local actual radius/thickness ratio of the geometric imperfections due to circumferential local inward displace-
ment will be speculated by the above-known factors measured in the period around buckling occurrence and 
the biunique relationship presented herein.

Complement discussion
Equation (8) is identical to Eq. (3) or Eq. (1) in Hilburger’s  reports33,34, which was derived for a uniform longitu-
dinal compressed infinitely long simply supported thin curved  plate17 and used to estimate the static buckling of 
the thin skin between stiffeners (local skin-pocket buckling) of an aluminum orthogrid stiffener pattern configu-
ration for NASA aerospace vehicle structures. An example of the variation in the ECBS with the corresponding 
central angle of the circumferential half wavelength calculated using this equation is shown in Fig. 4A of Ji’s 
 study35, which implies that the critical circumferential wavelength of elastic buckling is inevitably affected by 
the circumferential curvature, which should have been comprehended decades ago.

Conclusion
A detailed but simple linear-elastic mathematical solution for the elastic critical buckling of thin-walled perfectly 
circular cylindrical shells under uniform longitudinal compression is proposed, which is still based on the tra-
ditional longitudinal open-loop eigenmode solution originating from Euler’s approach, but additional consid-
eration of the circumferential closed-loop eigenmode solution of nonaxisymmetric periodic buckling to satisfy 
the continuous circumferential buckling deformation constrained by a complete integer periodic waveform on 
its whole perimeter. By providing the sequentially ordered eigenmode solutions of nonaxisymmetric periodic 
buckling, the precise and biunique geometric conditions of each distinct critical buckling mode can be identified, 
which enables the long-standing issue of the discrepancy between theoretical and experimental buckling loads 
to be reexamined from the perspective of the elastic buckling triggered by the longitudinally generated circum-
ferential local inward displacement in geometric imperfections. For the design cases of longitudinal compressed 
thin-walled cylindrical shells that are more critical for weight control, further precise consideration of the lower 
bound of the critical buckling load variation in the elastic state may serve as a useful design clue.

Figure 3.  The schematic of the mid-surface distribution of the initial geometric imperfection in an actual 
isotropic circular cylindrical shell was simplified according to the realistic precisely measured information 
collected in the Delft  databank26–31. (I) r and t are the nominal radius and thickness, respectively. (II) The 
geomorphic characteristics of a typical initial geometric imperfection can be simplified to longitudinally 
generated circumferential local outward displacements (longitudinal continuous mountain ranges) and inward 
displacements (longitudinal continuous river valleys). (III) The curvature (1/r’) of the circumferential local 
outward displacement corresponds to an increase compared to the curvature of its nominal arc (1/r < 1/r’). (IV) 
The curvature (1/r”) of the circumferential local inward displacement corresponds to a decrease compared with 
the curvature of its nominal arc (1/r > 1/r”).
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Figure 4.  Double-logarithmic plot comparing the experimental and theoretical relationships between the ECBS 
normalized with respect to E (σsc

xcri/E) and the radius/thickness ratio (r/t) of thin-walled circular cylindrical 
shells under uniform longitudinal compression. (I) The heavy straight line has a slope of − 1.5 is the best-fitting 
line of the mean experimental buckling stress data plotted by  Calladine25,32. (II) For convenience, the thickness 
t is considered constant (unit length of radius r). (III) Dot a (or d) on the heavy straight line is imagined 
experimental data corresponding to the nominal r/t indicated by dot a’’ (or d’’). (IV) The predicted ECBS of 
the nominal r/t of dot a’’ (or d’’) is indicated by dot b’ (or e’), which corresponds to dot b (or e) calculated using 
Eqs. (4) and (10) or (11), respectively. (V) The experimental measurement ECBS of the nominal r/t of dot a’’ 
(or d’’) is indicated by dot a’ (or d’), which corresponds to dot c (or f) and is calculated using Eqs. (10) or (11), 
where it should be derived from the local actual r/t indicated by dot c’’ (or f’’) for a nominally identical circular 
cylindrical shell, which may be produced because of the initial geometric imperfections of its circumferential 
local inward displacement or because of the similar geometric imperfections that appear and amplify during the 
loading process. (VI) Owing to, in general, the rare occurrence and consideration of unintentional axisymmetric 
initial geometric imperfections, such as that similar to corrugated pipe, the actual or experimental elastic critical 
buckling modes of thin-walled circular cylindrical shell under uniform longitudinal compression indicated by 
dot c (or f) will basically be the nonaxisymmetric periodic buckling mode that is corresponded to the increase in 
its local actual r/t (dot c’’ or f’’) relative to nominal r/t (dot a’’ or d’’) and its proper local critical circumferential 
wavelength defined by their unique circumferential wavenumber and wave aspect ratios, as shown in (A) 
and (B) respectively. (VII) The best-fitting line of the mean experimental buckling stress data with slope − 1.5 
implies that as the experimental nominal r/t increases (dot a’’ to d’’), the local actual r/t increment caused by 
its circumferential local inward displacement will increase by an average of 1.5 power relative to its nominal r/t 
increment, as shown by dot d’’ to f’’ relative to dot a’’ to c’’. (VIII) From the above viewpoint, it can be further 
inferred that except for the case of axisymmetric initial geometric imperfections, the axisymmetric buckling 
mode considered only occurs in the following two situations: elastic axisymmetric buckling in the thin-walled 
perfectly circular cylindrical shell and plastic axisymmetric buckling, where the material yield stress is much 
lower than the predicted and actual or experimental ECBSs.
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