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OPEN A fixed 20:1 combination

of cafedrine/theodrenaline
increases cytosolic Ca?*
concentration in human tracheal
epithelial cells via ryanodine
receptor-mediated Ca?* release

Gotz Schmidt'™, Gerrit Rienas?, Sabrina Miller?, Katrin Richter?, Michael Sander?,
Christian Koch'* & Michael Henrich3*

Mucociliary clearance is a pivotal physiological mechanism that protects the lung by cleaning the
airways from pollution and colonization, thereby preventing infection. Ciliary function is influenced
by various signal transduction cascades, and Ca* represents a key second messenger. A fixed 20:1
combination of cafedrine and theodrenaline has been widely used to treat perioperative hypotension
and emergency hypotensive states since the 1960s; however, its effect on the intracellular Ca?*
concentration ([Ca%*];) of respiratory epithelium remains unknown. Therefore, human tracheal
epithelial cells were exposed to the clinically applied 20:1 mixture of cafedrine/theodrenaline

and the individual substances separately. [Ca%*]; was assessed by FURA-2 340/380 fluorescence

ratio. Pharmacological inhibitors were applied to elucidate relevant signal transduction cascades,
and reverse transcription polymerase chain reaction (RT-PCR) was performed on murine tracheal
epithelium to analyze ryanodine receptor (RyR) subtype expression. All three pharmacological
preparations instantaneously induced a steep increase in [Ca?*]; that quickly returned to its baseline
value despite the persistence of each substance. Peak [Ca?*]; following the administration of 20:1
cafedrine/theodrenaline, cafedrine alone, and theodrenaline alone increased in a dose-dependent
manner, with median effective concentrations of 0.35 mM (7.32 mM cafedrine and 0.35 mM
theodrenaline), 3.14 mM, and 3.45 mM, respectively. When extracellular Ca?* influx was inhibited
using a Ca%*-free buffer solution, the peak [Ca?*]; following the administration of cafedrine alone and
theodrenaline alone were reduced but not abolished. No alteration in [Ca%*]; compared with baseline
[Ca?*], was observed during B-adrenergic receptor inhibition. Depletion of caffeine-sensitive stores
and inhibition of RyR, but not IP; receptors, completely abolished any increase in [Ca2*];. However,
[Ca?]; still increased following the depletion of mitochondrial Ca?* stores using 2,4-dinitrophenol.
RT-PCR revealed RyR-2 and RyR-3 expression on murine tracheal epithelium. Although our
experiments showed that cafedrine/theodrenaline, cafedrine alone, or theodrenaline alone release
Ca?* from intracellular stores through mechanisms that are exclusively triggered by B-adrenergic
receptor stimulation, which most probably lead to RyR activation, clinical plasma concentrations are
considerably lower than those used in our experiments to elicit an increase in [Ca2*];; therefore, further
studies are needed to evaluate the ability of cafedrine/theodrenaline to alter mucociliary clearance in
clinical practice.
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Abbreviations
2-APB  2-Aminoethoxydiphenylborane
[Ca*]; Intracellular Ca?* concentration

cAMP Cyclic adenosine monophosphate
cGMP Cyclic guanosine monophosphate
DMSO  Dimethyl sulfoxide

DNP 2,4-Dinitrophenol

ECs Median effective concentration

ER Endoplasmic reticulum

HEPES  4-(2-Hydroxyethyl)-1-piperazineethanesulfonic acid
1P, Inositol trisphosphate

KCl Potassium chloride

mRNA  Messenger ribonucleic acid

PDE Phosphodiesterases

RT-PCR  Reverse transcription polymerase chain reaction
RyR Ryanodine receptor

SERCA  Sarcoplasmic/endoplasmic reticulum calcium ATPase
SOCE Store-operated Ca** entry

Mucociliary clearance of the lower airways is a pivotal physiological mechanism that protects the lung by clear-
ing the airways of pollution and colonization by pathogens, thereby preventing infection. Together with basal,
suprabasal, and goblet cells, multiciliated epithelial cells constitute the complex mucociliary clearance function
of the respiratory tract’. Ciliary cells prevent the accumulation of debris and colonization by microbial pathogens
via an outward-directed transportation processes'. Cilia are hair-like protrusions located on the apical side of
the respiratory epithelium along the airways; they are composed of unique structural proteins, including motor
proteins, like the ATP-dependent dynein®®. Due to their continuous synchronized and orally directed motion,
inhaled particles and complex compositions of mucus, electrolytes, and endogenous defensive substances are
removed from the lower airways and are subsequently coughed up under normal physiological conditions'*.
While the ciliary apparatus continuously beats without external stimulation, various events can provoke an
increase in ciliary beating frequency, when necessary"*. Exogenous, endogenous, and paracrine effects moderate
ciliary activity, and Ca?* functions as a central second messenger. Therefore, intracellular Ca?* concentration
([Ca?*];) represents a keystone regulating ciliary activity because most signal transduction cascades, which
contribute to the ciliary beating frequency, induce at least a temporary increase in [Ca?*];"**. Intracellular Ca®*
is foremost stored in the endoplasmic reticulum (ER) and is released following inositol trisphosphate (IP;) or
ryanodine receptor (RyR) activation®. Furthermore, the ER regulates [Ca?*]; via the sarcoplasmic/endoplasmic
reticulum calcium ATPase (SERCA), which pumps cytosolic Ca®* ions to its internal stores, maintaining the
balance of [Ca?*],*’. Mitochondria also contribute to intracellular Ca** homeostasis by buffering Ca®* ions
when [Ca?*]; exceeds a threshold of 500 nM®’. In addition, other cell organelles contribute to intracellular Ca**
homeostasis, such as lysosomes, which contain Ca®* but can also regulate mitochondrial Ca** dynamics, and
peroxisomes; however, their individual influence on [Ca®']; in ciliary cells and mucociliary clearance remains
unknown®!®!1, [Ca?*]; is not only increased by Ca** release from intracellular stores; extracellular Ca** can enter
the cell via plasma membrane-bound Ca?* channels. Although voltage-gated calcium channels and transient
receptor potential channels are located at the plasma membrane together, the predominant method of extracel-
lular Ca?* entry into non-excitable cells occurs via store-operated Ca®* entry (SOCE)'>"3. SOCE is triggered
by an increase in [Ca®']; that is predominantly caused by the liberation of Ca®* from internal stores'2. Stromal
interaction molecule proteins are located at the ER membrane, and they activate SOCE when Ca?" is released'>">.
Therefore, changes in [Ca**]; produce fundamental metabolic and functional alterations in ciliary cells and can
be influenced by different drugs administered in various settings.

In Germany, intraoperative hypotension and emergency hypotensive states have been treated with a combina-
tion of cafedrine and theodrenaline (Akrinor®, Ratiopharm GmbH, Ulm, Germany) since the 1960s'*-1¢. Cova-
lently linked theophylline and norephedrine compose cafedrine, and theodrenaline is formed from theophylline
and noradrenaline in the same manner'*". Both compounds are administered in a fixed 20:1 combination of
cafedrine and theodrenaline as an intravenous bolus in adults, and they restore mean arterial blood pressure by
increasing preload, cardiac stroke volume, and cardiac output'*'>!8, The clinical effects of cafedrine/theodrena-
line are mediated through ,-adrenoreceptor and a-adrenoreceptor stimulation, and nonspecific inhibition of
phosphodiesterases (PDEs) is believed to enhance their response!*!”. In contrast with synthetic vasopressors
(e.g., ephedrine, phenylephrine), systemic vascular resistance and heart rate remain mostly unaffected, which
makes cafedrine/theodrenaline especially appealing in obstetric surgery'*!'?. Although cafedrine/theodrenaline
has been widely used for decades, little is known about its pharmacodynamics or pharmacokinetics in specific
end organs'*!. This is surprising as the unique combination of three single drugs (theophylline, norephedrine,
noradrenaline) in a 20:1 mixture might produce different effects in vivo as recently shown in human atrial myo-
cardium and internal mammary arteries'”. However, the influence of cafedrine/theodrenaline on the [Ca®']; of
human respiratory cilia cells has not yet been investigated. The aim of this study was to evaluate the influence
of cafedrine/theodrenaline on the [Ca*']; of human tracheal epithelial cells. Cells were exposed to the clinically
used 20:1 mixture of cafedrine/theodrenaline and the individual substances alone. Our experiments elucidated
the effects of the individual components and identified the relevant pharmacological signaling cascades leading
to alterations in [Ca*"];. Therefore, we applied specific inhibitory substances inhibiting distinct signal transduc-
tion cascades, and we evaluated the origin of the released Ca?*. Furthermore, we used reverse transcription
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polymerase chain reaction (RT-PCR) to detect the messenger ribonucleic acid (mRNA) expression of key recep-
tor subtypes influencing [Ca?*]; following the administration of cafedrine/theodrenaline, cafedrine alone, and
theodrenaline alone.

Methods

Drugs and buffer solutions

The historically established 20:1 ratio of cafedrine/theodrenaline refers to mass, not molarity. Therefore, due to
the different molar masses of cafedrine (357.41 g/mol) and theodrenaline (375.38 g/mol), a 1 M solution of cafe-
drine/theodrenaline 20:1 with a molar mass of 7,882.98 g/mol consists of 1 M theodrenaline and approximately
21 M of cafedrine. Experiments were performed in HEPES solution consisting of 10 mM HEPES, 2.6 mM KCl,
2.5 mM CaCl,, 10 mM glucose, 125 mM NaCl, 1.2 mM KH,PO,, and 1.2 mM MgSO,. NaOH was used to adjust
the pH to 7.4 at 30 °C. To realize experiments in Ca?*-free solutions, CaCl, was substituted with 1 mM ethylene
glycol tetraacetic acid. The following drugs were applied during the experiments: 2-aminoethoxydiphenylborane
(2-APB, 40 uM diluted in 4 pl dimethyl sulfoxide [DMSO], TOCRIS Bioscience, Bristol, UK), 2,4-dinitrophenol
(DNP, 25 uM diluted in 10 ul DMSO, Sigma-Aldrich, St. Louis, USA), cafedrine (3.14 mM diluted in 50 ul H,O,
Arevipharma, Radebeul, Germany), cafedrine/theodrenaline 20:1 (0.38 mM diluted in 50 pl H,O, Akrinor®,
Ratiopharm, Ulm, Germany), caffeine (30 mM, Roth, Karlsruhe, Germany), FURA-2 AM (2.5 uM diluted in
5 ul H,O, Biotium, Fremont, USA), ICI-118,551 (100 uM diluted in 10 ul H,O, TOCRIS Bioscience, Bristol, UK),
KCl (200 mM diluted in 66.6 ul H,0), ryanodine (40 uM diluted in 16 ul DMSO, TOCRIS Bioscience, Bristol,
UK), and theodrenaline (3.45 mM diluted in 50 ul H,O, Arevipharma, Radebeul, Germany). The stated drug
concentrations were achieved during the experiments after applying the stock solution to the buffer solution in
the recording chamber. In control experiments, the buffer solution or the solvent alone was applied to rule out
any contribution of the buffer, the solvent, or the mechanical application process to the Ca** signals.

Calcium imaging in isolated human tracheal epithelial cells

Human tracheal epithelial cells (HTEpC, C12644, PromoCell, Heidelberg, Germany) were cultured with the
Airway Epithelial Growth Medium Kit (C-21160) containing the Airway Epithelial Growth Medium Supplement
Pack (C-39160, both PromoCell, Heidelberg, Germany) in a humidified chamber at 37 °C with air containing
5% CO,. Cells from passage one to three were seeded onto laminin-coated coverslips for [Ca?*]; measurements
in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer. Dye loading was performed in the dark
with 2.5 pM FURA-2 AM for 45 min at 37 °C. The cell-containing coverslip was then rinsed in fresh HEPES buffer
and subsequently transferred to the recording chamber of an upright fluorescence microscope equipped with a
20 x immersion lens (BX50 WI, Olympus, Hamburg, Germany), where the coverslip was placed into a Delta T
culture dish (Bioptechs, Butler, USA) containing 2 ml of fresh HEPES buffer. Excitation light was provided by a 50
W xenon lamp, and the microscope was equipped with a dichroic excitation longpass mirror at 400 nm. FURA-2
AM was excited at 340 nm and 380 nm while equipped with bandpass excitation filters. The emitted fluorescence
was directed through a dichroic shortpass filter of 560 nm to a bandpass filter of 510 nm and was recorded with
a scientific camera (SMX-150, Sumix, Oceanside, USA). Measurements of the FURA-2 AM 340/380 ratio were
performed every second for 1,000 s using an automated protocol of the TiLLvisION Imaging software program
(Till Photonics, Grifeling, Germany). Cafedrine, theodrenaline, or 20:1 cafedrine/theodrenaline were added
following a 100-s resting period to ensure adequate baseline calibration. After 800 s, 200 mM potassium chloride
(KCI) was added to the buffer solution to completely invert the membrane potential, leading to massive influx of
Ca?* indicating the integrity of the analyzed cells up to the end of the respective experiment.

RNA extraction from murine tissues

Male C57BL6] mice (n=5) weighing 25-35 g (aged 12-15 weeks) were purchased from Charles River (Sulzfeld,
Germany) to characterize the expression of RyR in the respiratory epithelium. All procedures involving animals
were conducted in compliance with the European legislation for the protection of animals used for scientific
purposes, the ARRIVE guidelines and the standards for animal experiments according to the German animal
welfare law and were approved by the local committee for animal care of the regional council of Giessen, Ger-
many (Permit number 813_M, Regional Council of Giessen, Germany). After deep narcosis using 5% isoflu-
rane (Baxter, Unterschleissheim, Germany), animals were sacrificed by cervical dislocation. Tracheae, tracheal
epithelium, diaphragm, cardiac muscle, and skeletal muscle were subsequently collected. To obtain isolated
tracheal epithelium, the epithelial layer was gently scrubbed from the opened trachea using a hygienic swab.
All tissues were stored in RNA stabilization lotion (Invitrogen™ RNAlater™, Thermo Fisher Scientific, Waltham,
USA) at —20 °C until further processing. Tissue probes were then lysed in 350 ul RNeasy Lysis Buffer (Qiagen,
Hilden, Germany) containing 3.5 ul 8-mercaptoethanol and they were subsequently homogenized in a tissue
homogenizer (Precellys Evolution homogenizer, Bertin Technologies, Montigny-le-Bretonneux, France). RNA
was extracted using the RNeasy Micro Kit, and DNA removal was performed using the RNase-Free DNase set
(both Qiagen, Hilden, Germany).

RT-PCR

cDNA synthesis was performed using the QuantiTect Reverse Transcription Kit (Qiagen, Hilden, Germany)
according to the manufacturer’s protocol and stored at — 20 °C until further use. RyR-1, RyR-2, and RyR-3 expres-
sion in whole trachea and in the respiratory epithelium alone (each n=5) was analyzed using specific primers at
temperatures shown in Table 1. Primers were selected using the NCBI Primer designing tool (https://www.ncbi.
nlm.nih.gov/tools/primer-blast, National Institutes of Health, Bethesda, MD, USA). Skeletal muscle (RyR-1), car-
diac muscle (RyR-2), and diaphragm (RyR-3) served as positive controls, and H,O was used as negative control.
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Target | Gene | Sequence Product length (bp) | Annealing temperature (°C)

Forward: 5-CGCTCCCACTTCATCCCTAC-3’
RyR1 | Ryrl 385 55
Reverse: 5-CTCCTGCCTTGGCCATTTTG-3’

Forward: 5-ACCTACTCCGAAGGCTGGTGTT-3’
RyR 2 Ryr2 148 55
Reverse: 5-TTCTTCCGAGGCAGCACCAAAG-3’

Forward: 5-GACAGGACCAGGAACGGAAG-3’
RyR3 | Ryr3 315 58
Reverse: 5-GCTCCACCGTCTTTTCTGGA-3’

Table 1. List of murine ryanodine receptor (RyR) primers used for RT-PCR and their specific annealing
temperatures.

Primer concentration was set at 0.2 M and reactions were performed in a Mastercycler gradient (Eppendorf,
Hamburg, Germany). TAQ polymerase (Qiagen, Hilden, Germany) was activated at 95° for 3 min, followed by
40 cycles consisting of a 1-min denaturation step at 95 °C, a 45-s annealing step at a primer-specific temperature
(Table 1), and a 3-min extension step at 72 °C. PCR products were visualized using GelRed (Biotium, Fremont,
CA, USA) with a digital imaging system (Vilber Lourmat, Eberhardzell, Germany) in agarose gel (1% TAE buffer)
after electrophoresis at 100 V for 80 min. GeneRuler 100 bp (Thermo Fisher Scientific, Waltham, USA) was used
to verify the proper size of the PCR products.

Statistical analysis

FURA-2 340/380 ratio was recorded from at least 30 cells per experimental setup. These 30 cells were collected
from at least three different coverslips each evaluating 10 cells taken from cell passages one to three. Measure-
ments were only included in the statistical analyses when clear response of the FURA-2-fluorescence ratio
(doubling of the ratio) was detected after the application of KCl at the end of the experiments. Median effective
concentrations (ECs,) were calculated using the Hill equation. The Mann-Whitney U test was used to compare
the peak measurement points from different experiments, while the Wilcoxon rank sum test was used to compare
paired variables. In general, two-tailed values of p <0.05 were considered statistically significant, while multi-
ple comparison problems were counteracted by adjusting the a-level according to the Bonferrroni correction.
GraphPad PRISM (Version 9.5.0, GraphPad Software, La Jolla, CA, USA) was used for statistical analysis and
figure creation.

Ethical approval
Permit number 813_M, Regional Council of Giessen, Germany.

Results

20:1 cafedrine/theodrenaline, cafedrine, and theodrenaline induce a transient rise in [Ca*];
Under resting conditions, FURA-2 340/380 ratio remained constant during the whole observation period
(FURA-2 340/380 ratio: 0.98 +0.02, Fig. 1). [Ca?*];, indicated by FURA-2 340/380 ratio, sharply increased when
KCl was applied at the end of the experiments, indicating the vitality of the human tracheal epithelial cells. This
is demonstrated for all the experiments by an example in Fig. 1. Application of 20:1 cafedrine/theodrenaline,
cafedrine alone, and theodrenaline increased [Ca?']; in a dose-dependent manner following the Hill equation
(Fig. 2A,C,E). ECs calculated for 20:1 cafedrine/theodrenaline, cafedrine, and theodrenaline were 0.35 mM
(2.75 mg/ml consisting of 2.62 mg/ml [7.32 mM] cafedrine and 0.13 mg/ml [0.35 mM] theodrenaline), 3.14 mM
(1.12 mg/ml), and 3.45 mM (1.30 mg/ml), respectively. All three substances provoked a sharp increase in [Ca®*];
that was observed immediately, within 5 s after application (FURA-2 340/380 ratios of cafedrine/theodrenaline:
1.76+£0.06, cafedrine: 4.06 +0.24, theodrenaline: 4.38 £0.31; each p <0.001; Fig. 2B,D,F). [Ca?]; subsequently
returned to its baseline value despite the ongoing presence of the applied substances, and the steepest decrease
was observed after the administration of cafedrine (Fig. 2D). The following experiments aimed to evaluate the
proportion of extracellular Ca** entry contributing to the transient rise in [Ca®']..

The increase in [Ca%*]; depends on extracellular Ca?* entry

[Ca**]; of HTEpC assessed in Ca**-free buffer solution remained constant under resting conditions (FURA-2
340/380 ratio: 1.00+0.01). Application of 20:1 cafedrine/theodrenaline, cafedrine alone, and theodrenaline alone
provoked a significant increase in [Ca?*]; (FURA-2 340/380 ratio cafedrine/theodrenaline: 1.76 +0.06, cafedrine:
1.78 +0.24, theodrenaline: 2.68 +0.22; each p<0.001; Fig. 3A,C,E). However, compared with Ca**-containing
buffer, peak [Ca®*]; was significantly lower following the administration of cafedrine and theodrenaline alone
(each p<0.001, Fig. 3D,F), while peak [Ca?*]; of 20:1 cafedrine/theodrenaline was comparable (p=0.350, Fig. 3B).
Interestingly, the theodrenaline-induced transient increase in [Ca?*]; remained elevated and did not reach base-
line during the rest of the observation period (Fig. 3E). 3-adrenergic receptor stimulation leading to the transient
increase in [Ca**]; was evaluated in subsequent experiments. Because the relevant influence of extracellular Ca**
entry could not be ruled out following these experiments, all the subsequent experiments were performed in a
Ca?*-free buffer solution.
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Figure 1. Intracellular Ca’* measurements were performed on Human tracheal epithelial cells (HTEpC).
Intracellular Ca** concentrations ([Ca**];) were recorded as Fura-2/AM (Fura-2) fluorescence intensity

ratio of 340:380 nm excitation. (A) When FURA-2 340/380 ratio was normalized after a 100-s resting

period, fluorescence ratio remained constant under resting conditions during the 800-s observation period,
demonstrating no changes in [Ca?];. Arrows indicate different timepoints of the FURA-2 340/380 ratio, which
are illustrated in (B1-B3) after conversion into false colors. Potassium chloride (K*, 200 mM) completely
inverted the membrane potential, leading to a strong increase in FURA-2 340/380 fluorescence of human
tracheal epithelial cells.

Adrenergic receptor stimulation is responsible for the rise in [Ca®*];

When the non-selective blocker of B-adrenergic receptors, ICI-118,551 (100 uM), was applied, baseline [Ca?];
remained unaltered compared to the Ca**-free controls (Fig. 4). However, 20:1 cafedrine/theodrenaline, cafedrine
alone, and theodrenaline did not provoke any significant alteration in [Ca**]; in the presence of ICI-118,551
(cafedrine/theodrenaline: 1.05+0.04, p=0.416, Fig. 4A,B; cafedrine: 0.99 £0.01, p=0.043 did not reach the
adjusted a-level of 0.013, Fig. 4C,D; theodrenaline: 1.07 +£0.10, p=0.919, Fig. 4E,F). Because clinically relevant
effects of other receptors or PDE could not be assumed from these data, further experiments elucidating these
mechanisms were waived.

Ca” is liberated from ER but not the mitochondria

Because our experiments indicated intracellular Ca?* release, further experiments were conducted to evaluate
the origin of the intracellular Ca?*. First, mitochondrial Ca?* stores were depleted using DNP (25 uM, Fig. 5). A
small increase in [Ca?*]; was observed following the administration of DNP, which quickly returned to its base-
line; however, 20:1 cafedrine/theodrenaline, cafedrine alone, and theodrenaline alone still provoked a significant
increase in [Ca**]; (cafedrine/theodrenaline: 1.17+0.05, p<0.001, Fig. 5A,B; cafedrine: 1.24+0.16, p <0.001,
Fig. 5C,D; theodrenaline: 2.71+0.27, p<0.001, Fig. 5E,F). While peak values of [Ca®*]; were comparable after
the administration of theodrenaline (p=0.994), 20:1 cafedrine/theodrenaline, and cafedrine alone, [Ca®*]; peaks
were significantly higher in the presence of DNP compared with the [Ca?*]; peaks without depletion of mito-
chondrial Ca?* stores (both p<0.001). [Ca?*]; did not reach baseline following the administration of cafedrine
alone or theodrenaline alone. Furthermore, caffeine-sensitive Ca?* stores, which are mainly represented by
the ER, were depleted using caffeine (30 mM, Fig. 6). After caffeine was applied, a significant reduction in
baseline [Ca®*]; was observed, indicating Ca** store depletion (cafedrine/theodrenaline: 0.88 +0.01; cafedrine:
0.91£0.01; theodrenaline: 0.90£0.01; each p <0.001). Subsequent application of 20:1 cafedrine/theodrenaline,
cafedrine alone, or theodrenaline alone did not increase [Ca®']; (cafedrine/theodrenaline: 0.88 +0.01, p=0.034
did not reach the adjusted a-level of 0.013, Fig. 6A,B; cafedrine: 0.91+0.01, p=0.114, Fig. 6C,D; theodrenaline:
0.93+0.02; p=0.299, Fig. 6E,F). Because the ER is a crucial caffeine-sensitive Ca?* store, further experiments
were conducted to evaluate the signal cascades triggering Ca?* release from these stores.

Increase in [Ca%*]; is induced by RyR but not IP; receptor activation

IP; receptors were inhibited using 2-APB (40 pM, Fig. 7). While 2-APB did not alter baseline [Ca?*],, applica-
tion of 20:1 cafedrine/theodrenaline, cafedrine alone, or theodrenaline alone increased [Ca?*]; to values at least
equivalent to [Ca?*]; without IP; receptor inhibition (cafedrine/theodrenaline: 1.75+0.08, p=0.042 did not reach
the adjusted a-level of 0.013, Fig. 7A,B; cafedrine: 2.58 +0.29, p <0.001, Fig. 7C,D; theodrenaline: 2.39+0.29,
p=0.173, Fig. 7E,F). In contrast, when RyR were inhibited using ryanodine (40 uM, Fig. 8), the increase in [Ca*];
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Figure 2. [Ca?]; is increased by cafedrine/theodrenaline, cafedrine alone, and theodrenaline alone. Dose-
response relationships of (A) 20:1 cafedrine/theodrenaline, (C) cafedrine alone, and € theodrenaline are
described by the Hill equation. (B) Cafedrine/theodrenaline (0.38 mM), (D) cafedrine alone (3.14 mM), and
(F) theodrenaline alone (3.45 mM) induced a steep increase in [Ca?];; however, [Ca?]; rapidly returned to its
baseline value despite the continued presence of the applied substances. Application of potassium chloride
(200 mM) confirmed the vitality of the included cells (not shown). FURA-2 340/380 ratio was normalized
after a 100-s resting period, and each group consists of 30 cells from at least three different coverslips, ensuring
independent measurements. Scale bar width represents 100 s. L SEM.

following the application of cafedrine/theodrenaline, cafedrine alone, or theodrenaline alone vanished (cafed-
rine/theodrenaline: 1.02+0.03, p=0.416, Fig. 8A,B; cafedrine: 1.00+0.01, p=0.516, Fig. 8C,D; theodrenaline:
1.02+0.01, p=0.349, Fig. 8E,F). Because RyR activation was shown to be the crucial mechanism leading to Ca**
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Figure 3. Increase in [Ca’]; depends on extracellular Ca** influx following the application of cafedrine alone

or theodrenaline alone. When experiments were performed in Ca?-free buffer, the maximum [Ca?]; provoked
by (A, B) 20:1 cafedrine/theodrenaline was comparable to the peak [Ca?]; seen in Ca®*-containing buffer;
however, peak [Ca?]; observed after the application of (C, D) cafedrine alone and (E, F) theodrenaline alone was
significantly reduced. When theodrenaline was applied, [Ca?]; did not return to its baseline value during the
whole observation period. Subsequent application of potassium chloride (200 mM) confirmed the vitality of the
included cells (not shown). The control group is represented by the same 30 cells in each chart. FURA-2 340/380
ratio was normalized after a 100-s resting period, and each group consists of 30 cells from at least three different
coverslips, ensuring independent measurements. Scale bar width represents 100 s. n=number of individual
cells, **p <0.001, ns: not significant, Mann-Whitney U test, adjusted a-level=0.013. L SEM, box and whisker
plots indicate median, interquartile range (box), minimum and maximum (whiskers).
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Figure 4. Ca®" release is completely dependent on adrenergic receptor activation. When B-adrenergic receptors
were blocked by high concentrations of the non-selective inhibitor ICI-118,551 (100 uM), no relevant peak
[Ca?]; was observed after the application of (A, B) 20:1 cafedrine/theodrenaline, (C, D) cafedrine alone, or (E,
F) theodrenaline alone. The Ca?*-free control group is represented by the same 30 cells in each chart. FURA-2
340/380 ratio was normalized after a 100-s resting period, and each group consists of 30 cells from at least

three different coverslips, ensuring independent measurements. Scale bar width represents 100 s. n=number of
individual cells, ***p <0.001, ns: not significant, Wilcoxon rank sum test was used to assess ICI-118,551 alone vs.
drug preparation during inhibition, otherwise Mann-Whitney U test, adjusted a-level=0.013. L SEM, box and
whisker plots indicate median, interquartile range (box), minimum and maximum (whiskers).
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Figure 5. Ca®" release occurs independently from mitochondrial Ca?* stores. When mitochondrial stores

were depleted by 2,4-dinitrophenol (DNP, 25 uM), [Ca?*]; sharply increased following the application of (A,

B) 20:1 cafedrine/theodrenaline, (C, D) cafedrine alone, and (E, F) theodrenaline alone. [Ca?*]; did not return
to its baseline value within the observation period. The Ca**-free control group was represented by the same

30 cells in each chart. FURA-2 340/380 ratio was normalized after a 100-s resting period, and each group
consists of 30 cells from at least three different coverslips, ensuring independent measurements. Scale bar width
represents 100 s. n=number of individual cells, ***p <0.001, ns: not significant, Mann-Whitney U test, adjusted
a-level =0.017. L SEM, box and whisker plots indicate median, interquartile range (box), minimum and
maximum (whiskers).
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Figure 6. Ca®" is released from intracellular caffeine-sensitive stores. When caffeine-sensitive stores were
depleted by caffeine (30 mM), a subsequent decline in [Ca?]; was observed, and no increase in [Ca?]; was
provoked by (A, B) 20:1 cafedrine/theodrenaline, (C, D) cafedrine alone, or (E, F) theodrenaline alone.

The Ca®*-free control group was represented by the same 30 cells in each chart. FURA-2 340/380 ratio was
normalized after a 100-s resting period, and each group consists of 30 cells from at least three different
coverslips, ensuring independent measurements. Scale bar width represents 100 s. n=number of individual
cells, **p <0.001, ns: not significant, Wilcoxon rank sum test was used to test caffeine alone vs. drug preparation
during inhibition, otherwise Mann-Whitney U test, adjusted a-level=0.013. L SEM, box and whisker plots
indicate median, interquartile range (box), minimum and maximum (whiskers).
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Figure 7. Ca*" release from intracellular stores occurs independently from IP; receptor activation. When IP;
receptors were inhibited using 2-APB (40 pM), maximum [Ca?); increased equally after the application of (A,
B) 20:1 cafedrine/theodrenaline, (C, D) cafedrine alone, and (E, F) theodrenaline alone. The Ca**-free control
group was represented by the same 30 cells in each chart. FURA-2 340/380 ratio was normalized after a 100-s
resting period, and each group consists of 30 cells from at least three different coverslips, ensuring independent
measurements. Scale bar width represents 100 s. n=number of individual cells, ***p <0.001, ns: not significant,
Wilcoxon rank sum test was used to test 2-APB alone vs. drug preparation during inhibition, otherwise Mann-
Whitney U test, adjusted a-level =0.013. L SEM, box and whisker plots indicate median, interquartile range
(box), minimum and maximum (whiskers).
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Figure 8. Ca*" release from intracellular stores depends on ryanodine receptor activation. When ryanodine
receptors were inhibited with ryanodine (40 uM), [Ca**]; remained unaltered after the application of (A, B)
20:1 cafedrine/theodrenaline, (C, D) cafedrine alone, and (E, F) theodrenaline alone. The Ca?*-free control
group was represented by the same 30 cells in each chart. FURA-2 340/380 ratio was normalized after a 100-s
resting period, and each group consists of 30 cells from at least three different coverslips, ensuring independent
measurements. Scale bar width represents 100 s. n=number of individual cells, ***p <0.001, ns: not significant,
Wilcoxon rank sum test was used to test ryanodine alone vs. drug preparation during inhibition, otherwise
Mann-Whitney U test, adjusted a-level =0.013. L SEM, box and whisker plots indicate median, interquartile
range (box), minimum and maximum (whiskers).
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release, RT-PCR was performed to identify the different RyR subtypes. Therefore, murine tracheae were used to
ensure the availability of positive controls, ensuring accurate internal validity of the measurements.

Expression of RyR in murine tracheae

RyR-2 and RyR-3 mRNA expression in both whole murine trachea and isolated tracheal epithelium (each n=5)
were identified by RT-PCR. RyR-1 mRNA was not detected in the whole trachea or tracheal epithelium. An
overview of the RT-PCR results, including the controls, is presented in Table 2, while Supplementary Fig. 1
illustrates the native PCR bands.

Discussion
Our experiments revealed that 20:1 cafedrine/theodrenaline, cafedrine alone, or theodrenaline alone increased
[Ca?*];, when applied to human tracheal epithelial cells. We observed sharp, transient peaks in the FURA-2
340/380 ratio, which followed a dose-response relationship and were described by the Hill equation. Herein,
it should be noted that the effect curves of 20:1 cafedrine/theodrenaline and cafedrine alone showed a profile
where the increase from 0 to 100% is already achieved within one log unit, which would be classically attributed
to ion channel activation. In contrast, only the dose-response curve of theodrenaline clearly indicated receptor-
mediated effects because the increase from 0 to 100% required two log units. However, although the formal
criteria for receptor-mediated Ca** release were only barely met in our dose-response curves following the
application of 20:1 cafedrine/theodrenaline and cafedrine alone, our following experiments clearly proved adr-
energic and ryanodine receptor-mediated Ca?* release following the application of all three substances analyzed
in our experiments. Interestingly, the ECy, of cafedrine alone and theodrenaline alone were within comparable
ranges; however, when applied as the clinically used 20:1 mixture, much more cafedrine was required to achieve
a significant effect on [Ca**];, and the applied concentration of theodrenaline seemed almost negligible in the
light of the calculated ECs, of theodrenaline alone. Moreover, [Ca®*]; peaks observed after the application of
20:1 cafedrine/theodrenaline were consistently lower than those observed following applications of the indi-
vidual substances alone. Interestingly, clinically irrelevant high concentrations of 20:1 cafedrine/theodrenaline
ultimately led to cell lysis, which was also observed following the administration of high concentrations of
cafedrine or theodrenaline alone; however we never observed a higher FURA-2 340/380 ratio than that shown
in our dose-response curves. Although the pharmacokinetics of cafedrine and theodrenaline remain largely
unknown, the immediate response in blood pressure was attributed to theodrenaline, while the effects of cafed-
rine were observed after a 20-min delay'”?. Therefore, it has been hypothesized that cafedrine may not provoke
any sympathomimetic actions alone; it may be metabolized into active metabolites that exert its clinical effects!”.
In our experiments, the effect observed after the application of 20:1 cafedrine/theodrenaline could only be attrib-
uted to theodrenaline alone if strong synergistic effects would apply in the presence of cafedrine. Because the
concentration of theodrenaline alone in the 20:1 mixture was insufficient to provoke any significant changes in
[Ca?*];, we conclude that the foremost effect on changing [Ca®*"]; in our experiments was induced by cafedrine.
This assumption is supported by the observation that very high concentrations of cafedrine were applied using
the 20:1 combination compared with the dose-response relationship of cafedrine alone. However, our model
cannot represent the effects of potential drug metabolites, as we used isolated cells, and the drugs were directly
applied to the buffer solution. Furthermore, clinical data reported a plasma concentration of 6 pg/ml after the
intravenous application of one ampoule of 2 ml cafedrine/theodrenaline; therefore, all concentrations used in our
experiments were significantly higher than clinically used concentrations®. However, the transient intravascular
and intraepithelial concentrations immediately after injection are unknown and might be much higher than those
observed after distribution to the body compartments; therefore, our data should be interpreted with caution,
and further studies are necessary to evaluate the transferability of the concentrations used in our experiments.
After the transient peak, during which Ca** directly increases ciliary beat frequency and calmodulin-bound
Ca?* activated cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP)-depend-
ent pathways, [Ca?']; rapidly returned to its baseline®. The rapid restoration of baseline [Ca®']; is primarily
explained by SERCA activity, which pumps Ca?* into the ER after cytosolic Ca®* release, or by mitochondrial
Ca?* buffering?"*>. However, almost every other small cell organelle contributes to the rapid restoration of
baseline [Ca?*];, and prolonged alteration of ciliary beat frequency is induced by transient changes in [Ca®'];.
Immediately after purinergic or cholinergic stimulation, tracheal epithelial cells exhibited a transient increase
in [Ca%']; however, ciliary beat frequency remained consistently increased?>?*, Therefore, we conclude that

Ryrl | Ryr2 |Ryr3
Skeletal muscle + - +
Cardiac muscle - + _
Diaphragm + - +
Whole trachea - + +
Tracheal epithelium - + +
Negative control (H,0) - - -

Table 2. RT-PCR identified ryanodine receptor (RyR)-2 and RyR-3 in murine whole trachea and tracheal
epithelium.
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analogous mechanisms are mediated after the stimulation of B-adrenergic receptors, which were the pivotal
receptors involved in [Ca?*]; alterations in our experiments. The increase in [Ca?*]; completely vanished after 20:1
cafedrine/theodrenaline, cafedrine alone, or theodrenaline alone were added during non-selective adrenergic
receptor inhibition. These results are in line with the clinical effect of cafedrine/theodrenaline, which increases
cardiac stroke volume via B,-adrenergic receptor activation'*. In-vitro studies using human atrial myocardium
and coronary arteries also elucidated P,-adrenergic receptor activation as a pivotal mechanism; however, effects
on a-adrenergic receptors were observed in arteries after p-adrenergic receptor inhibition!”?. Although these
effects were attributed to theodrenaline alone, we did not observe similar effects in human tracheal epithelial
cells. These observations are in line with the data reported by Weiterer et al., who reported the exclusive presence
of the alD-adrenergic receptor subtype in murine tracheal epithelium?. However, murine particle transport
velocity was independent from a-adrenergic receptor activation. Therefore, we conclude that a-receptor activa-
tion might occur in human tracheal epithelial cells following the administration of cafedrine/theodrenaline,
but no influence on [Ca?*]; or mucociliary clearance could be detected in light of the available in-vitro data®.
The theophylline component of cafedrine and theodrenaline is believed to inhibit PDE, which should lead to
the persistence of second messengers, such as cGMP and cAMP, improving cardiac inotropy'*. However, only
high, clinically irrelevant concentrations of cafedrine/theodrenaline were able to provoke significant inhibition
of PDE in human atrial myocardium'. Although we used high concentrations of cafedrine/theodrenaline, cafe-
drine alone, and theodrenaline alone, we were only able to detect f-adrenergic receptor stimulation because the
increase in [Ca*"]; completely vanished in the presence of B-adrenergic receptor inhibition. When other signal
transduction cascades were involved, we should have detected a persistent increase in [Ca**];. This finding is
underlined by the knowledge that PDE inhibition might not influence ciliary beat frequency or mucociliary
clearance to a clinically relevant degree, because data remain controversial regarding the alteration of mucocili-
ary clearance following treatment with theophylline”%.

When we used Ca**-free buffer solution, [Ca?*]; increased to a significantly lesser degree following administra-
tion of cafedrine alone and theodrenaline alone than the increase observed in Ca**-containing buffer solution.
Therefore, extracellular Ca** influx contributes to the rise in [Ca®*];, which is foremost realized through SOCE in
non-excitable cells following Ca?* release from internal stores''3. ORAI proteins, which are mediated by stromal
interaction molecule proteins, are the most important mediators of SOCE'. Therefore, further experiments
elucidating receptor expression and distinct signal transduction pathways should be performed, although their
specific inhibition is complicated due to their diverse interactions and multiple targets located on the plasma
membrane’®. However, because the [Ca®*]; peak in the Ca**-free buffer solution was comparable to the peak
observed in Ca?*-containing buffer solution following the administration of 20:1 cafedrine/theodrenaline, the
clinical relevance of SOCE following the administration of cafedrine/theodrenaline in human tracheal epithe-
lial cells remains questionable. Internal stores were depleted to detect the intracellular stores, which released
Ca?* following the administration of cafedrine/theodrenaline. When mitochondrial Ca?* stores were depleted,
[Ca?*]; continued to increase following the administration of 20:1 cafedrine/theodrenaline, cafedrine alone, or
theodrenaline alone. Therefore, we conclude that cafedrine/theodrenaline does not depolarize mitochondrial
membrane potential, which would lead to Ca®* release from these stores. However, [Ca®*]; peaks following the
administration of 20:1 cafedrine/theodrenaline and cafedrine alone were significantly higher than those observed
without prior mitochondrial store depletion. This observation confirms the mitochondrial ability to buffer Ca**
ions via the mitochondrial Ca®* uniporter when [Ca®*]; exceeds 500 nM™. Interestingly, [Ca®*]; remained higher
for the rest of the observation time. Because DNP administration decouples oxidative phosphorylation without
altering cytosolic pH, less ATP supplying the ATP-dependent SERCA might be available in these experiments,
leading to the observation of persistent [Ca?*]; baseline shift. However, SERCA was still able to handle the tran-
sient peak [Ca?*]; by altering [Ca?*]; close to its former baseline value. This finding underlines our conclusion
that the elevated peak in [Ca?*]; is foremost triggered by the inhibited mitochondrial Ca** capacity and not by a
lack of ATP, which might impair SERCA activity.

Because the increase in [Ca**]; completely vanished following the administration of 20:1 cafedrine/theodrena-
line, cafedrine alone, or theodrenaline alone, when RyR were inhibited, we conclude that cafedrine/theodrenaline
releases Ca** from the ER exclusively by RyR activation. In general, Ca?* release from the ER is achieved via IP,
receptor or RyR activation®.. However, our experiments revealed equal peaks of [Ca?*]; when IP; receptors were
inhibited, and the increase in [Ca*']; completely vanished after RyR inhibition. Therefore, we conclude that Ca**
release following B-adrenergic receptor activation depends solely on RyR activation, and IP; receptor-associated
Ca?* release does not occur in human tracheal epithelial cells following cafedrine/theodrenaline administration.

Consequently, RyR-2 and RyR-3 expression was revealed using RT-PCR in murine tracheal epithelium. While
RyR-3 is co-expressed with RyR-1 or RyR-2 in many tissues, RyR 2 has mainly been studied in cardiac muscle
cells; however, RyR-2 expression has been demonstrated in smooth muscle cells and non-excitable cells, such
as pancreatic acinar cells and kidney epithelial cells*>-**. Therefore, RyR-2 expression in the tracheal epithelium
is in line with its expression in other non-excitable cells. While RyR activation is achieved following various
signal transduction cascades, the best-known mechanism is the Ca**-induced Ca®*-release, whereby RyR-2
activation is triggered by a local increase of [Ca?*];*. Local increase in [Ca**]; can be realized through nearby
RyR activation, or IP; receptor activation; however, our data indicate that RyR activation was independent from
IP, receptor activation following cafedrine/theodrenaline administration®”. Therefore, alternative RyR activa-
tion following B-adrenergic receptor stimulation must be considered in tracheal epithelial cells. f-adrenergic
stimulation has been shown to increase RyR-2 activity in cardiac muscle cells via intracellular-mediated Ca**
and Mg*" regulation, and receptor phosphorylation®. Furthermore, protein kinase A and cAMP, which are both
pivotal messengers following the B,-signal transduction cascade, have been shown to induce Ca?* release via
RyR-2 in cardiac muscles and non-excitable cells, respectively’>*. In addition, adrenergic receptor signaling
increases nicotinic acid adenine dinucleotide phosphate and cyclic adenosine diphosphate-ribose levels, which
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both activate RyR-2-associated Ca** release®**!. Because RyR-3 is more readily activated by an increase in local
[Ca?*]; compared with RyR-2, its activation in tracheal epithelial cells following the administration of cafedrine/
theodrenaline can be achieved following RyR 2-associated Ca?* efflux*2. However, as discrepancies in receptor
expression between mammals could not be excluded, further studies in human tissues should be conducted to
confirm RyR expression. Local distribution, and the RyR-2-to-RyR-3 ratio in tracheal epithelial cells could be
evaluated using immunohistochemistry.

Several limitations of our experiments must be acknowledged. First, we used isolated tracheal epithelial cells;
therefore, the physiological integrity of a respiratory tract was not preserved, including a lack of basal tissues and
cell-cell junctions. Therefore, physiological drug administration via capillary vessels could not be replicated,
and atypical entrance (e.g. from the apical or lateral side of the cells) of our tested drugs was preserved. Second,
we used high concentrations of cafedrine/theodrenaline, cafedrine, and theodrenaline to achieve alterations
in [Ca%*]; and clinically administered concentrations are much lower; therefore, it is possible that we observed
[Ca*"]; kinetics that do not occur when lower concentrations are used in vivo. Third, some concentrations applied
to achieve the specific dose-response curves were higher than was warranted by the integrity of the observed
cells; therefore, a maximum FURA-2 340/380 ratio following substance administration was set at the last valid
observed value. However, concentrations applied to assess the distinct signal transduction cascades did prove
the validity of the calculated dose-response curves in our experimental setting. Fourth, our measurement of
[Ca?]; using the FURA-2 340/380 ratio was not calibrated; therefore, we can only report relative alterations in
[Ca?*],, and no absolute concentrations were measured.

In conclusion, we provide evidence that cafedrine/theodrenaline, cafedrine alone, or theodrenaline alone
induce the release of Ca®* from caffeine-sensitive internal stores that is exclusively triggered by p-adrenergic
receptor stimulation, resulting in RyR activation. RT-PCR revealed the presence of RyR-2 and RyR-3 in mam-
malian cells, and the relevant influence of extracellular Ca?* influx was only observed after the application of
cafedrine alone or theodrenaline alone. However, clinical plasma concentrations are considerably lower than
those used in our experiments to trigger a significant increase in [Ca?*];; therefore, further studies are needed to
alter the ability of cafedrine/theodrenaline to change mucociliary clearance in clinical practice.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on
reasonable request.
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