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Alternative approach

to the buckling phenomenon
by means of a second order
incremental analysis

Faustino N. Gimena™, Mikel Gofii, Pedro Gonzaga & José-Vicente Valdenebro

This article addresses the problem of determining the solicitation and deformation of beams with
geometric imperfection, also called real beams under a compression action. This calculation is
performed by applying the Finite Transfer Method numerical procedure under first-order effects

with the entire compression action applied instantaneously and applying the action gradually under
second-order effects. The results obtained by this procedure for real sinusoidal or parabolic beams

are presented and compared. To verify the potential of the numerical procedure, the first and second-
order effects of a beam with variable section are presented. New analytical formulations of the
bending moment and the transverse deformation in the beam with sinusoidal imperfection subjected
to compression are also obtained, under first and second-order analysis. The maximum failure load of
the beams is determined based on their initial deformation. The results of solicitation and deformation
of the real beam under compression are compared, applying the analytical expressions obtained

and the numerical procedure cited. The beams under study are profiles with different geometric
characteristics, which shows that it is possible to obtain maximum failure load results by varying

the relationships between lengths, areas and slenderness. The increase in second-order bending
moments causes the failure that originates in the beam, making it clear that this approach reproduces
the buckling phenomenon. The article demonstrates that through the Finite Transfer Method the
calculation of first and second-order effects can be addressed in beams of any type of directrix and of
constant or variable section.

Elastic instability is the set of structural situations of geometric non-linearity that manifests itself in that the dis-
placements in a resistant member are not proportional to the acting forces'. Buckling is a phenomenon of elastic
instability that can occur in slender structural members subjected to compression®. Slenderness is a mechanical
characteristic of structural beams that relates the cross-sectional stiffness of a beam to its overall length®.

In the buckling phenomenon, significant displacements are produced perpendicular to the direction of com-
pression. This phenomenon appears mainly in pillars and columns. It translates into an additional moment in
the pillar when it is subjected to the action of significant axial compression loads®.

In structural engineering, elastic instability, of both resistant compressed members and of the structures
made up of them, is one of the most complex problems and one of the greatest practical importance. Naturally,
the analysis and reflection on the unstable elastic behaviour of beams have attracted the attention of so many
researchers over time’~'*. Despite all the contributions after Euler, the approach to the buckling problem has
not changed'®"°.

As a starting premise, we can define an ideal beam as a resistant member with a straight directrix. To this end,
it must be manufactured without initial stresses or heterogeneities, and without any geometric imperfection.
When an ideal beam is subjected to simple compression, the displacement of each point of the directrix has only
a longitudinal component. But in every real beam there are heterogeneities and initial manufacturing stresses,
and its directrix is not perfectly rectilinear. In the real beam, the directrix has a deviation from the straight line at
each point. The compression load generates normal force and bending. The displacements produced in this case
have longitudinal and transverse components. This combination of effects is often called first-order solicitation.
On the other hand, the combination of effects that adds the bending generated by the transverse displacements
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to the previous one is called second-order solicitation® If the compression load increases linearly, the increase
in first-order solicitation is also linear. The same does not happen with the solicitation of the second-order. If
the bending generated by transverse displacements is considered, as the load increases, the effects increase more
rapidly®®?!.

When checking the compressed beam using first-order analysis, there is no elastic instability. In the second-
order analysis, the bending effect produced by the transverse displacement during the application of the com-
pression load is variable and increasing. This makes the superposition principle invalid. Therefore, an elastic
instability is generated.

The imperfection of the directrix shape can be dealt with by assimilating the actual beam to a curved beam.
By applying the first-order analysis on the curved beam, all kinds of effects are obtained, both compression and
bending solicitations, as well as longitudinal and transverse displacements.

This article deals with the calculation of the real beam assimilated to the curved beam under second-order
conditions. To do this, the load is divided into increments first. Each load increment is applied, and the solicita-
tions and deformations are obtained. Then, the shape of the directrix is modified by adding the displacements
obtained, and the next load increment is applied again. It is a successive process of iterations until exhausting
the load increments to be applied. For this iterative calculation, a numerical procedure of boundary conditions
has been used** .

By solving the differential equation of the elastica posed by Euler, a sinusoidal function®” is obtained, from
which the critical load is deduced. Under this approach, by assimilating the calculation of a compressed beam
to that of a curved beam with a sinusoidal directrix, under second-order conditions, it has been verified that
there is no elastic instability.

An alternative approach is presented to address this same problem, which reinterprets the theory that is usu-
ally used in the study of elastic instability due to buckling.

Unlike Euler’s formulation, in which the deformation generates solicitation, we start from a differential
equation of the elastica with sinusoidal strain. That is, the bending moment is generated solely by the initial
imperfection. This is intended to introduce the real directrix of the beam into the behaviour model.

The loads are applied incrementally, choosing increments so small that we can assume a linear behaviour in
each increase in load.

The deformed configuration obtained for each load increase is added to the starting geometry for the next
calculation iteration.

The second-order analysis is applied by solving a succession of first-order analysis of a beam whose geometry
changes with each load increment with respect to the previous ones.

This alternative approach is specified in a final analytical expression of the deformed directrix of the beam,
under the effect of second-order, once the application of the entire load after the iterations is exhausted.

The results obtained by means of this analytical expression derived from the revision of Euler’s approach are
compared with those obtained numerically by calculating the real beam assimilated to the curved beam under
second-order conditions.

With the aim of highlighting the research presented, as a practical case, the structural behaviour of a variable
section beam is analysed.

Analysis of the beam by means of the finite transfer method under second-order
effects

In this section the imperfect beam is analysed under a compression load (see Fig. 1), assimilating it to a curved
beam. Together with the geometric imperfection of the directrix, it is considered that the beam has no initial
manufacturing stresses, that its material is homogeneous and isotropic, and that the section is constant.

To carry out the structural calculation, the numerical procedure called Finite Transfer Method?® is used. This
procedure solves a system of linear ordinary differential equations with boundary conditions and can address the
wide casuistry of the structural problem of the beam*>'. Finite Transfer Method uses a repetition strategy on
the discretised directrix that allows relating the solicitation and deformation values of the ends of the structural
beam through an algebraic system. The dimension of said system is always constant and independent of the inter-
vals obtained by the discretisation. It uses a fourth-order scheme to obtain a suitable numerical approximation.

To carry out the first-order analysis, a computer program that applies the Finite Transfer Method is used on
the initial directrix of the beam to be calculated, with the entire compression load. To obtain second-order solici-
tation and deformation values, the load has been divided into equal parts (10,000 parts). Firstly, the numerical
program has been executed with the first portion of load on the initial position of the directrix. With the results
obtained, the new form of the directrix has been calculated and the numerical procedure has been executed on
it for the second time. This process has been repeated until the application of the entire load has been completed.
With this, a second-order analysis has been carried out on the real beam.

Two cases of steel beam types and different hollow circular section with the same area have been chosen. As
shown in Fig. 1, these beams are supported by a hinge at the lower end I, and linear support at the upper end II.

Table 1 shows the characteristics in terms of shape and material of the two study type beams: hollow circular
profile ¢200.8 and ¢100.19. In the structural analysis carried out, the shear coefficients are considered null.

The load that intervenes in the calculation represents the maximum load that these beams can support with-
out imperfections (ideal beam) and without using safety factors to determine the resistance of the material. The
value of this load is Py = f,A = 1713 kN.

To assimilate the beam with geometric imperfection to a curved beam, two cases are analysed: sinusoidal
directrix and parabolic directrix. In both examples, the maximum initial strain in f,, is 4 mm.
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Figure 1. Bi-articulated real beam.

1(m) fin (mm) | Steel E (kN/mm?) | G (kN/mm?)
Beam 4 4 $355 210 81
Circular hollow sections | d, (mm) |d;(mm) |A (cm?) |I,(cm?) I=1,=1, (cm*)
$200.8 200 184 48.25 4454.89 2227.44
$100.19 100 62.10 48.25 835.77 417.89

Table 1. Formal characteristics and materials of the beams.

Sinusoidal directrix beam
In this first analysis, the real beam is identified with a curved beam whose directrix has a sinusoidal shape whose
equation is:

f(z) = finsin (nz/l). 6))

Table 2 shows the solicitation and deformation values of the beam profile ¢$200.8 under both first-order and
second-order effects. These solicitation and strain values are presented at eight points uniformly distributed on
the directrix of the beam (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 m).

The solicitation is made up of the normal N = V, and shear forces V,,, and the bending moment M, = M,
in the intrinsic axes. The deformation is composed of the gyration ), and the transverse &, and longitudinal &,
displacements, under the general reference system.

Analysing the results, the values of normal stress and shear stress are not comparable. Therefore, it is consid-
ered sufficiently approximate to determine the normal stress and ignore the tangential stress.

Comparing in the centre the effects of second-order with those of first-order, an increase of 36.54% is observed
in the bending moment and in the transverse displacement. Regarding the longitudinal displacement, the increase
is only 0.16%.

Table 3 shows the solicitation and deformation of the sinusoidal beam with a hollow circular profile ¢100.19.

Logically, the solicitation values under first-order effects of the two curved beams with sinusoidal directrix
are the same.

In the second order analysis the relationship between the maximum shear force and the maximum normal
force is 7.42%. In relation to the bending moment and the transverse displacement in the centre, an increase
of 615% is observed between the second and first-order values. Regarding the longitudinal displacement, the
increase is only 80%.
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Solicitations and strains

First-order Second-order
z(m) |[N=V,(kN) |V, (kN) |M,=M,(kN.m) |6,(10°rad) |&,(mm) |J (mm) |N=V,(kN) |V, (kN) |M,=M,(kN.m) |6, (107rad) |&,(mm) |4, (mm)
0 -1713.04 5.382 0.000 1.865 0.000 0.000 -1713.02 9.744 0.000 2.547 0.000 0.000
0.5 -1713.04 4.972 -2.622 1.723 0.906 —-0.848 -1713.02 9.002 —-3.580 2.353 1.237 —-0.851
1 -1713.04 3.805 —4.845 1.319 1.674 -1.695 -1713.03 6.890 -6.616 1.801 2.286 -1.700
1.5 -1713.05 2.059 -6.331 0.714 2.188 —2.541 -1713.04 3.729 —-8.644 0.975 2.987 —2.547
2 -1713.05 0.000 —6.852 0.000 2.368 —-3.387 -1713.05 0.000 -9.356 0.000 3.233 -3.392
25 -1713.05 —-2.059 -6.331 -0.714 2.188 —4.232 -1713.04 -3.729 —-8.644 -0.975 2.987 —4.238
3 —1713.04 —3.805 —4.845 -1.319 1.674 —-5.078 -1713.03 —6.890 -6.616 -1.801 2.286 —-5.085
3.5 -1713.04 -4.972 -2.622 -1.723 0.906 -5.926 -1713.02 -9.002 —-3.580 —2.353 1.237 -5.934
4 -1713.04 —5.382 0.000 -1.865 0.000 -6.774 -1713.02 -9.744 0.000 —2.547 0.000 —6.784

Table 2. Sinusoidal beam profile $200.8: first and second-order solicitations and deformations. Significant
values are in bold.

Solicitations and strains

First-order Second-order
z (m) N=V,(kN) |V, (kN) |M,=M,(kN.m) |6, (103rad) |4, (mm) |§,(mm) |N=V,(kN) |V, (kN) M,=M, (kN.m) |90, (103 rad) |94, (mm) | §,(mm)
0 -1713.04 5.382 0.000 9.939 0.000 0.000 —1708.33 127.055 0.000 71.119 0.000 0.000
0.5 -1713.04 4.972 -2.622 9.182 4.840 -0.859 —1709.02 117.400 -18.762 65.706 34.603 —-2.151
1 -1713.04 3.805 —4.845 7.028 8.944 -1.714 -1710.69 89.884 —34.669 50.290 63.945 -3.939
1.5 -1713.05 2.059 -6.331 3.804 11.685 —2.564 -1712.36 48.661 —45.300 27.217 83.558 -5.214
2 -1713.05 0.000 -6.852 0.000 12.648 —3.409 -1713.05 0.000 —49.033 0.000 90.447 -6.127
2.5 -1713.05 -2.059 -6.331 -3.804 11.685 —4.254 -1712.36 —48.661 —-45.300 -27.217 83.558 —-7.040
3 -1713.04 -3.805 —4.845 -7.028 8.944 —5.104 -1710.69 —-89.884 —34.669 —-50.290 63.945 -8.316
3.5 -1713.04 -4.972 -2.622 -9.182 4.840 -5.959 —1709.02 -117.400 | —18.762 —65.706 34.603 —10.104
4 -1713.04 -5.382 0.000 -9.939 0.000 —-6.818 -1708.33 -127.055 0.000 -71.119 0.000 -12.255

Table 3. Sinusoidal beam profile ¢100.19: first and second-order solicitations and strains. Significant values
are in bold.

Under second-order effects, the relationship between the bending moment in the centre of the beams with
profile $200.8 and ¢100.19 is 534%. The relationship between transverse displacements in the centre of the beams
type ¢200.8 and ¢100.19 is 2797%.

The relationship between the first-order transverse displacement in the centre and the length of the real beam
is 0.32%. Under second order analysis, this relationship is 2.26%.

Parabolic directrix beam
In this section, the calculation of the imperfect beam is identified with that of a curved beam with a parabolic
directrix whose equation is:

4
f@) = %(l —2)z. )

Table 4 shows, in a similar way to the values presented in Table 2, the solicitation and deformation values are
shown under effects of both first-order and second-order in the beam profile ¢$200.8.

Comparing the second-order effects with the first-order ones in the centre, an increase of 37.59% is observed
in relation to the bending moment and 36.66% in relation to the transverse displacement. In the longitudinal
displacement the increase is only 0.17%.

Table 5 shows the solicitation and strain in the parabolic beam with a hollow circular profile ¢100 - 19.

Under second-order effects, the relationship between the maximum shear force and the maximum normal
force is 7.66%. In relation to the bending moment in the centre, an increase of 635% is observed between second
and first-order values. The relationship between the bending moment in the centre of the beams with profile
©$200.8 and ¢100.19 is 534%.

In the centre there is a 617% increase in second-order transverse displacement compared to first order.
Regarding the longitudinal displacement, the increase is only 85%. The relationship between transverse displace-
ments in the centre of the beams type ¢200.8 and ¢100.19 is 2803% under the second-order analysis.

The relationship between the first-order transverse displacement in the centre and the length of the real beam
is 0.33%. This relationship under the second-order analysis is 2.33%.
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Solicitations and strains

First-order Second-order
z(m) |[N=V,(kN) |V, (kN) |M,=M,(kN.m) |6,(10°rad) |&,(mm) |§ (mm) |N=V,(kN) |V, (kN) |M,=M,(kN.m) |6, (107rad) |&,(mm) |4, (mm)
0 -1713.03 6.852 0.000 1.953 0.000 0.000 -1713.02 9.933 0.000 2.657 0.000 0.000
0.5 -1713.04 5.139 —-2.998 1.785 0.945 —-0.849 -1713.02 8.844 -3.995 2435 1.287 -0.851
1 -1713.04 3.426 -5.139 1.343 1.734 -1.696 -1713.03 7.044 -6.972 1.840 2.366 -1.701
1.5 -1713.05 1.713 —6.424 0.717 2.254 —2.542 -1713.05 0.131 —-8.808 0.986 3.079 —2.547
2 -1713.05 0.000 —6.852 0.000 2.435 -3.387 —-1713.05 0.000 -9.428 0.000 3.327 -3.393
2.5 -1713.05 -1.713 —6.424 -0.717 2.254 —4.233 -1713.05 -0.131 -8.808 —-0.986 3.079 -4.238
3 —1713.04 —3.426 -5.139 —1.343 1.734 -5.079 -1713.03 —-7.044 -6.972 —1.840 2.366 —-5.085
35 -1713.04 -5.139 -2.998 -1.785 0.945 -5.926 -1713.02 —-8.844 -3.995 —2.435 1.287 -5.934
4 -1713.03 —6.852 0.000 -1.953 0.000 -6.774 -1713.02 -9.933 0.000 —-2.657 0.000 —6.786

Table 4. Parabolic beam profile ¢200.8: first and second-order solicitations and deformations. Significant
values are in bold.

Solicitations and strains

First-order Second-order
z (m) N=V,(kN) |V, (kN) |M,=M,(kN.m) |6, (103rad) |4, (mm) |§,(mm) |N=V,(kN) |V, (kN) M,=M, (kN.m) |90, (103 rad) |94, (mm) | §,(mm)
0 -1713.03 6.852 0.000 10.408 0.000 0.000 -1707.90 132.712 0.000 73.573 0.000 0.000
0.5 -1713.04 5.139 —2.998 9.514 5.049 —-0.862 —1708.75 121.239 -19.706 67.856 35.771 —2.253
1 -1713.04 3.426 —-5.139 7.156 9.265 -1.717 -1710.57 92.061 —35.952 51.784 66.030 —4.096
1.5 -1713.05 1.713 -6.424 3.822 12.038 —2.566 -1712.33 49.591 —46.620 27.963 86.204 -5.391
2 -1713.05 0.000 -6.852 0.000 13.003 -3411 -1713.05 0.000 -50.335 0.000 93.278 -6.306
2.5 -1713.05 -1.713 —6.424 -3.822 12.038 -4.256 -1712.33 —49.591 —-46.620 —27.963 86.204 —7.222
3 -1713.04 —3.426 —-5.139 -7.156 9.265 —-5.105 -1710.57 -92.061 —35.952 -51.784 66.030 -8.517
3.5 -1713.04 -5.139 —2.998 -9.514 5.049 —-5.960 —1708.75 -121.239 | -19.706 —67.856 35.771 -10.360
4 -1713.03 —6.852 0.000 —-10.408 0.000 —6.822 -1707.90 -132.712 0.000 -73.573 0.000 -12.613

Table 5. Parabolic beam profile ¢100.19: first and second-order solicitations and strains. Significant values are
in bold.

Results comparison

Figure 2 shows the values of transverse strain of the beams with sinusoidal and parabolic directrix under the
compression load, whose numerical values are written in Tables 2, 3, 4 and 5. The bending moment graphs have
not been presented because this is proportional to the transverse displacement.

Both first-order effects (red dashed line) and second-order effects (solid line) have been represented. The
second-order transverse displacement functions associated with different proportions of load have also been
graphed. The percentage of second-order effects is greater when the load portion is greater.

Figure 2 shows that under second-order effects, greater strain is experienced than under first-order effects.
The beams with the lowest moment of inertia suffer greater deformation. The differences between assimilating
the imperfect beam to a beam with a sinusoidal or parabolic directrix are negligible. In the second order analysis
of the beam profile ¢200.8, the difference between bending moments is 0.77% and between transverse displace-
ments is 2.66%. In the beam profile ¢100.19, these differences slightly increase, being these percentages 2.91%
in the case of calculating bending moments and 3.13% in the case of transverse displacements.

Sinusoidal directrix beam with variable section
In this section the calculation of the real beam is identified with that of a curved piece with a sinusoidal directrix
Eq. (1). The variable circular section beam is studied. This section varies linearly along the directrix, from the
initial end ¢ 100 to the final end ¢78.

Table 6 shows the stress and deformation values under both first-order and second-order effects.

The solicitation values under first-order effects of the three curved beams with sinusoidal directrix are equal.

Comparing the second-order effects with the first-order effects in the span, an increase of 1670.19% is
observed in relation to the bending moment and 1676.82% in relation to the transversal displacement.

Figure 3 shows that since the beam has a variable section, symmetry is not maintained with respect to the
span of the solicitations, deformations and stresses.

Under second-order effects the maximum values are: for the bending moment 122 kN at 2.13 m from the
initial end, for the tangential displacement 309 mm at 2.14 m from the initial end.

The maximum normal stress of failure or collapse of the beam occurs with 52% of the applied load and 2.52 m
from the initial end.
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Figure 2. Transverse strains of sinusoidal and parabolic beams.
Solicitations and deformations
First-order Second-order
z(m) |N=V,(N) |V,(N) | M,=M,(kN.m) | 6,(10°rad) |3, (mm) |6, (mm) | N=V,(N) |V, (kN) |M,=M,(kN.m) |6,(10°rad) |3, (mm) |9, (mm)
0 -1713.04 5.382 0.000 12.487 0.000 0.000 -1671.30 375.906 0.000 218.190 0.000 0.000
0.5 -1713.04 4.972 -2.622 11.794 6.128 -0.553 —-1675.46 356.869 -42.331 207.048 106.383 -12.319
1 —~1713.04 3.805 | —4.845 9.616 11.542 —~1.131 | —1687.29 295942 | —79.967 171.481 201.444 | —22.283
1.5 -1713.05 2.059 -6.331 5.972 15.495 -1.735 -1702.41 190.612 —107.881 110.346 272.660 —28.184
2 -1713.05 0.000 -6.852 1.145 17.314 -2.370 -1712.45 45.353 -121.296 26.488 307.640 -30.216
2.5 -1713.05 -2.059 -6.331 —4.295 16.537 —3.044 —-1708.49 —124.845 -116.628 -71.775 296.671 -31.223
3 -1713.04 —3.805 —4.845 -9.510 13.057 -3.767 —1687.82 —292.882 -92.641 -169.671 236.101 —-35.935
35 -1713.04 —-4.972 -2.622 -13.461 7.241 —4.547 —1660.18 —422.284 -51.589 —246.286 131.596 —48.151
4 -1713.04 -5.382 0.000 —-15.020 0.000 —5.386 —1646.25 —473.694 0.000 —277.154 0.000 -67.039

Table 6. Variable section sinusoidal beam:

values are in bold.

Effects under the second-order analysis when applying between 5% and 95% of the load

Effects under the second-order analysis when applying 100% of the load
Effects under the first-order analysis when applying 100% of the load

first and second-order solicitations and deformations. Significant

Maximum permissible tension of the material (355 N/mm?)
Situation of the point of maximum effect under second-order analysis

Situation of the point of maximum effect under first-order analysis
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Figure 3. Bending moments, transversal deformations and stresses in the sinusoidal beam with variable

section.
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Analysis of the beam through an analytical procedure

Due to imperfection, the directrix of the beam has a deviation from the straight line. According to Euler’s

approach, an ideal beam subjected to a compression load can be in stable or unstable equilibrium, elastically.
Figure 4 shows the starting expressions of the bending moments, under different approaches for the ideal

beam and for the real beam. The expressions of the tangential displacements that are obtained by Euler’s approach

and by the analytical procedure that is proposed are also shown.

Beam under Euler’s approach
It is usual to derive the critical Euler load from the bi-hinged beam compressed by a point load P. The directrix
has only transverse strain u(z). It is considered that the section of the beam is constant and made of the same
material. No other type of load takes place. The weight of the beam itself is considered negligible.

The differential expression of the deformed directrix can be written as:

d? p
9 = ), ®

The analytical solution of transverse displacement is obtained by solving this differential equation. Its expres-

sion can be noted as®:
u(z) = Cy sin (\/P/EIZ) + Cy cos <\/P/EIZ>, (4)

where C;, C, are the two constants of integration.

From the application of the support conditions #(0) = 0; u(I) = 0; it can be derived that C, = 0 and that
sin (, /P/EIl) = 0. If it were not so, the directrix would be a straight line and there would be no transverse
deformation. For this last support condition to be met, the value that the load must acquire is Px = 72EI / I.
This value is the Euler critical load.

In the real bi-articulated beam, the effect of the imperfections is considered equivalent, with sufficient approxi-
mation, to the one produced if its directrix instead of being initially straight is a sinusoid. The analytical notation
of the directrix is expressed in Eq. (1). Under Euler’s approach and in the real beam, the differential expression
of the deformed directrix is:

d28(z) _
dz2

—g [fmsin (7z/1) + u(z)]. (5)

The analytical solution of this differential equation, applying the support condition of the real bi-hinged
beam is:

8(z) = PKP— Pf sin (wz/1). (6)

I l

ideal beam
real beam

Euler’s
approach

_____ Csin(zz/l)

R
=
=

P(u(z)+ £, sin(zz/1)) Iinm sin(7z/)

P

K

0 e 0

alternative E> Pf, sin(zz[l) - Pif'" sin(7zz/1)

approach

K

P

po(z) ~[second-order |5 (o _1j sin(zz/1)

| bending moment | | deformation |

Figure 4. Structural approaches on the ideal and real beam.
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This function represents the transverse displacement suffered by the real beam in compression. When the
load P is equal to the critical load Pk, a discontinuity in the function is produced, and therefore the real beam
is in a state of elastic instability.

The bending moment M (z) produced by the load at each point of the directrix of the beam is:

M(z) =

pp,

By _Kme sin (z/1). (7)
The bending moment remains finite while P<Py, and becomes infinite, however small is f,,, when P = Py.

Therefore Py is the upper limit of the load that can be applied to a double-hinged beam. In the theoretical case

of an ideal beam with f,, = 1, there is a stable equilibrium if P<Py, but it becomes unstable with P = Py.

Beam under second-order effects
Remembering that an ideal beam is a resistant member with a straight directrix manufactured without initial
stresses or heterogeneities, and without any geometric imperfection, when it is subjected to a compression load,
the displacement of each point of the directrix has only a longitudinal component. In this case, there is neither
transverse displacement nor bending moment. The maximum load that the ideal beam can withstand is obtained
by multiplying the resistance of the material by the area of the section.

As previously commented, in the real beam the effect of the imperfections is equivalent to considering its
directrix sinusoidal instead of straight. Under this approach, the differential expression of the deformed directrix
can be noted as:

d28,(z)
dz?

The solution of this equation for the beam with biarticulated support is:

P P
= — (@) = ——fusin (vz/). ®)

P
81(z) = gfm sin (nz/ l), 9)

where Py is the Euler critical load expressed in Eq. (5).

In this case, the entire load P has been applied to the bi-hinged beam instantaneously. This way the first order
strain 81 (z) is obtained.

To determine the second order deformation §(z) = §,(z), the load P must be applied gradually. To do this, it
is divided into n equal parts, and the calculation is carried out applying its first increase. From this calculation,
the deformation produced is deduced and a new directrix is generated. By repeating this calculation i times, the
deformation is:

3i(z) =

(1 + %) - 1}fm sin (z/1). (10)

By gradually applying the entire load, taking this division to the limit, the second order deformation and
expressed as:

5(2) = [e™ — 1]f,ssin (nz/1). an

The first-order deformation expressions Eq. (9) and second-order Eq. (11) are continuous functions.

In first-order deformation, if the value of the force action is Euler’s critical load, the displacement obtained
coincides with the initial sinusoidal directrix of the beam. In second-order deformation, if the action is the criti-
cal load, the directrix of the beam is e-1 ~ 1.718 times its initial position.

The second-order bending moment can be noted as:

d?8(z)

= PK[ei — 1fmsin (7z/1). (12)

M(z) = —EI
Like what is detected in the deformation equation under second-order analysis, there is no discontinuity in
the bending moment formulation.
The maximum normal stress of the beam occurs in the centre section and at the furthest point from the
barycentre. Its value is:

A

Pl B
o = — — e —
A p w

(13)
Being W the resistant module.
To exhaust a beam at its maximum stress, the function that relates the initial imperfection in the centre f,,
and the compression load P can be noted as:

A-P W
fm=fy7*- (14)

P
PylePc —11 4
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As it happens in the first order strain expressions Eq. (9) and second order Eq. (11), in Eq. (14) there is no
discontinuity.

Results and relationships between second-order effects

As previously noted, the differences in both first-order and second-order effects between the sinusoidal and
parabolic directrix beam are negligible. It has also been verified that the first-order effects are not close to the
reality of the structural problem posed. From this point on, the formulations associated with the sinusoidal
directrix beam will be used, presenting only second-order effects.

Table 7 compares the results obtained using the Finite Transfer Method numerical procedure with those
obtained by applying the analytical formulas associated with Egs. (11) and (12).

Any difference between the values obtained by the two procedures is less than 0.30%. There are practically
no differences between the values of bending moments and transverse displacements obtained by numerical or
analytical methods. When using the numerical procedure for the calculation, in addition to bending moments
and transverse displacements, the other values of the effect are obtained: normal stresses, shear stresses, gyrations
and longitudinal displacements. As previously noted, the effects that produce tangential stresses are negligible.

From the analysis of the results expressed in Table 7, it can be deduced that, at the level of structural verifica-
tion, it is considered sufficiently approximate to determine the values of the second-order effect by the analytical
procedure that has been developed.

Table 8 shows the values of the maximum compression load that can be supported by different profiles of
the same length and area.

The beams analysed are the profile types studied in Table 1. (¢200.8 and ¢100.19), to which hollow circu-
lar profiles ¢175.9, ¢158.10, ¢125.14 are added, and the circular solid profile ¢78, for a length of 4 m. These
beams are analysed under different initial imperfections f,,: ideal beam without deformation, and beams whose
deflection-span ratio is 1/1000, 1/500, 1/250 and 1/100.

It is observed that the maximum load for the beams without initial imperfection is the same: Py = 1713 kN.
The same does not happen with the critical load P, since all the analysed profiles have different moments of
inertia. In the cases studied, it is seen that the maximum load depends on both the initial imperfections and the
section of the beams. As the outer diameter of the beam decreases, the maximum compression load decreases.
When the initial imperfection of the beam increases, this maximum load supported by the profile also decreases.

Table 9 shows the values of the maximum compression load that can be supported by steel profiles taken
from commercial standard series.

Beams of the same length (4 m) and with the profiles ¢200.8, ¢$200.6, ¢$200.5, ¢100.6 and ¢100.5 have been
chosen for this analysis. These beams are also analysed under the same initial imperfections as in the previous
study.

M,=M, (kN.m) | f200.8 £100.19 8, (mm) |£200.8 £100.19
Si idal Si idal Sinusoidal Sinusoidal Sin idal Sin idal Sinusoidal Sinusoidal

z(m) numerical analytical numerical analytical z (m) numerical analytical numerical analytical
0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000

0.5 -3.580 —-3.581 —-18.762 —-18.792 0.5 1.237 1.241 34.603 34.714

1 -6.616 -6.616 —34.669 —34.722 1 2.286 2.293 63.945 64.143

1.5 —-8.644 —-8.644 —45.300 —45.367 1.5 2.987 2.996 83.558 83.807

2 -9.356 -9.356 —49.033 —49.105 2 3.233 3.243 90.447 90.712

2.5 -8.644 —-8.644 —45.300 —45.367 2.5 2.987 2.996 83.558 83.807

3 -6.616 —-6.616 —34.669 —34.722 3 2.286 2.293 63.945 64.143

3.5 —-3.580 —-3.581 -18.762 -18.792 3.5 1.237 1.241 34.603 34.714

4 0.000 0.000 0.000 0.000 4 0.000 0.000 0.000 0.000

Table 7. Sinusoidal beams of profiles ¢p200.8 and ¢100.19: second-order effects.

Section
I=4m $200.8 | $175.9 | $158.10 | ¢125.14 | $100.19 | ¢78
Py (kN) — 2885 2153 1713 981 541 240
Py (kN) — 1713 1713 1713 1713 1713 1713
/1000 | 1537 1494 1450 1288 1018 603
1/500 1401 1337 1276 1083 822 477
Jo 17250 1198 1118 1047 850 625 359
/100 | 853 771 706 547 391 222

Table 8. Maximum compression load for different profiles of equal area.
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Section

I=4m $200.8 | $200.6 | $200.5 | ¢$100.6 | $100.5

Py (kN) — 2885 2231 1887 255 219

Py (kN) — 1713 1298 1087 629 530
/1000 | 1537 1168 979 428 364
1/500 1401 1066 895 353 301

Jo 17250 1198 914 768 274 234
/100 | 853 653 550 175 150

Table 9. Maximum compression load for different standard profiles.

The maximum load that these beams support without initial imperfection is the product of the resistance of
the material f, = 355 N/ mm? by the area of the profile used. The resulting critical loads P are different because
the moments of inertia of the profiles are different. Similarly, to the case studies presented in Table 8, in these
examples the maximum load also depends on both the initial imperfections and the sections of the profiles. If
the area of the profile decreases and the initial imperfection of the beam increases, the maximum load decreases.

Table 10 shows the values of the maximum load that the same profile can support under different lengths.

The standard profile $200.8 has been chosen for this analysis, with lengths of 3 m, 4 m, 5 m and 6 m. The
initial imperfections considered are the same as in Tables 7 and 8.

In these cases, when using the same profile, the maximum load for ideal beams or beams without initial
imperfection is the same Py = 1713 kN. It is observed that the critical loads Pk are different because the lengths
of the beams are different. If the length of the beam increases and the initial imperfection increases, the maxi-
mum load decreases.

Table 11 shows the values of the maximum load that can be supported by different profiles with the same
area and the same slenderness.

The beams analysed are the profiles studied in Table 8. The slenderness chosen is associated with the 4 m long
beam and profile ¢100.19, whose value is 2 =1/ y/I/ A = 136. With this value the length of each beam is
determined. Again, the initial imperfections f,, are without deformation, and with a deflection-span ratio of
1/1000, 1/500, 1/250 and 1/100.

Also, in these cases, when using profiles with the same area, the maximum load for beams without initial
imperfection is Py = 1713 kN. The critical load Px = 541kN is maintained in the beams studied. If the initial
imperfection increases, the maximum compression load decreases.

Table 12 shows the values of the maximum load that profile beams with the same length and the same slen-
derness can support.

1(m)
$200.8 3 4 5 6
Py (kN) — 5130 |2885 | 1847 | 1282
P, (kKN)— 1713 1713 1713 | 1713

/1000 | 1592 | 1537 | 1470 | 1388
1/500 1489 | 1401 | 1303 | 1198
1/250 1321 | 1198 | 1078 | 965
17100 997 853 735 638

Jo

Table 10. Maximum compression load for the same profile and different lengths.

Section
Py=541kN, 1=136 $200.8 | ¢$175.9 | $158.10 | ¢125.14 | $100.19 | ¢78
I(m)— 9.235 7.977 7.116 5.384 4 2.664
Py (kN) — 1713 1713 1713 1713 1713 1713
1/1000 | 1057 1054 1051 1039 1018 973
/500 | 863 859 856 843 822 775
Jo /250 | 665 662 658 646 625 581
1/100 424 421 418 408 391 354

Table 11. Maximum compression load for different profiles of equal area and slenderness.
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Section

I=4m,1=136 $110.34 | $105.26 | $100.19 | $95.13 | $90.7 | ¢85.2

Py (kN) — 911 722 541 370 207 52

Py (kN) — 2884 2285 1713 1169 654 166
/1000 | 1670 1340 1018 705 399 103
1/500 1338 1077 822 571 325 84

Jo 1/250 1009 816 625 437 250 65
/100 | 621 506 391 275 158 41

Table 12. Maximum compression load for different profiles of equal slenderness and length.

In the cases studied the chosen slenderness is associated with the beam profile ¢100.19. The analysed beams
have the following hollow circular profiles: ¢110.34, ¢$105.26, $100.19, ¢95.13, $90.7 and ¢85.2. These beams
are analysed under the same initial imperfections f,, as in the previous cases.

It is observed that both the critical loads and the maximum loads are different in all the study cases. Whether
the initial imperfection increases or the outer diameter of the profile decreases, the maximum compression load
decreases.

Conclusions
From the traditional study of the real beam with initial sinusoidal imperfection, the analytical formulations of
the transverse deformation Eq. (11) and the bending moment Eq. (12) have been deduced. These expressions are
associated with second-order effects and represent continuous functions at all points. Therefore, from this conti-
nuity condition, it is deduced that the collapse of the structure does not occur under any specific critical load. This
collapse is due to the failure that originates in the beam due to the increase in second-order bending moments.
Under this alternative approach to the analysis of the buckling phenomenon, it is clear that to accurately
determine the bending moment under the second-order analysis it is necessary to know or establish an initial
deformation of the beam. For each material, the maximum failure load of the beam under compression depends
on the initial imperfection, and other properties such as the length and geometric characteristics of the section.
To determine the maximum failure load or solicitation and deformation values under second-order effects,
in beams and/or pieces with any initial imperfection or any type of section, constant or variable, the numerical
procedure Finite Transfer Method can be applied using the repetition strategy developed in this work.
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