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Alternative approach 
to the buckling phenomenon 
by means of a second order 
incremental analysis
Faustino N. Gimena *, Mikel Goñi , Pedro Gonzaga  & José‑Vicente Valdenebro 

This article addresses the problem of determining the solicitation and deformation of beams with 
geometric imperfection, also called real beams under a compression action. This calculation is 
performed by applying the Finite Transfer Method numerical procedure under first‑order effects 
with the entire compression action applied instantaneously and applying the action gradually under 
second‑order effects. The results obtained by this procedure for real sinusoidal or parabolic beams 
are presented and compared. To verify the potential of the numerical procedure, the first and second‑
order effects of a beam with variable section are presented. New analytical formulations of the 
bending moment and the transverse deformation in the beam with sinusoidal imperfection subjected 
to compression are also obtained, under first and second‑order analysis. The maximum failure load of 
the beams is determined based on their initial deformation. The results of solicitation and deformation 
of the real beam under compression are compared, applying the analytical expressions obtained 
and the numerical procedure cited. The beams under study are profiles with different geometric 
characteristics, which shows that it is possible to obtain maximum failure load results by varying 
the relationships between lengths, areas and slenderness. The increase in second‑order bending 
moments causes the failure that originates in the beam, making it clear that this approach reproduces 
the buckling phenomenon. The article demonstrates that through the Finite Transfer Method the 
calculation of first and second‑order effects can be addressed in beams of any type of directrix and of 
constant or variable section.

Elastic instability is the set of structural situations of geometric non-linearity that manifests itself in that the dis-
placements in a resistant member are not proportional to the acting  forces1. Buckling is a phenomenon of elastic 
instability that can occur in slender structural members subjected to  compression2–4. Slenderness is a mechanical 
characteristic of structural beams that relates the cross-sectional stiffness of a beam to its overall  length5.

In the buckling phenomenon, significant displacements are produced perpendicular to the direction of com-
pression. This phenomenon appears mainly in pillars and columns. It translates into an additional moment in 
the pillar when it is subjected to the action of significant axial compression  loads6.

In structural engineering, elastic instability, of both resistant compressed members and of the structures 
made up of them, is one of the most complex problems and one of the greatest practical importance. Naturally, 
the analysis and reflection on the unstable elastic behaviour of beams have attracted the attention of so many 
researchers over  time7–15. Despite all the contributions after Euler, the approach to the buckling problem has 
not  changed16–19.

As a starting premise, we can define an ideal beam as a resistant member with a straight directrix. To this end, 
it must be manufactured without initial stresses or heterogeneities, and without any geometric imperfection. 
When an ideal beam is subjected to simple compression, the displacement of each point of the directrix has only 
a longitudinal component. But in every real beam there are heterogeneities and initial manufacturing stresses, 
and its directrix is not perfectly rectilinear. In the real beam, the directrix has a deviation from the straight line at 
each point. The compression load generates normal force and bending. The displacements produced in this case 
have longitudinal and transverse components. This combination of effects is often called first-order solicitation. 
On the other hand, the combination of effects that adds the bending generated by the transverse displacements 
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to the previous one is called second-order  solicitation2. If the compression load increases linearly, the increase 
in first-order solicitation is also linear. The same does not happen with the solicitation of the second-order. If 
the bending generated by transverse displacements is considered, as the load increases, the effects increase more 
 rapidly20,21.

When checking the compressed beam using first-order analysis, there is no elastic instability. In the second-
order analysis, the bending effect produced by the transverse displacement during the application of the com-
pression load is variable and increasing. This makes the superposition principle invalid. Therefore, an elastic 
instability is generated.

The imperfection of the directrix shape can be dealt with by assimilating the actual beam to a curved beam. 
By applying the first-order analysis on the curved beam, all kinds of effects are obtained, both compression and 
bending solicitations, as well as longitudinal and transverse displacements.

This article deals with the calculation of the real beam assimilated to the curved beam under second-order 
conditions. To do this, the load is divided into increments first. Each load increment is applied, and the solicita-
tions and deformations are obtained. Then, the shape of the directrix is modified by adding the displacements 
obtained, and the next load increment is applied again. It is a successive process of iterations until exhausting 
the load increments to be applied. For this iterative calculation, a numerical procedure of boundary conditions 
has been  used22–26.

By solving the differential equation of the elastica posed by Euler, a sinusoidal  function27 is obtained, from 
which the critical load is deduced. Under this approach, by assimilating the calculation of a compressed beam 
to that of a curved beam with a sinusoidal directrix, under second-order conditions, it has been verified that 
there is no elastic instability.

An alternative approach is presented to address this same problem, which reinterprets the theory that is usu-
ally used in the study of elastic instability due to buckling.

Unlike Euler’s formulation, in which the deformation generates solicitation, we start from a differential 
equation of the elastica with sinusoidal strain. That is, the bending moment is generated solely by the initial 
imperfection. This is intended to introduce the real directrix of the beam into the behaviour model.

The loads are applied incrementally, choosing increments so small that we can assume a linear behaviour in 
each increase in load.

The deformed configuration obtained for each load increase is added to the starting geometry for the next 
calculation iteration.

The second-order analysis is applied by solving a succession of first-order analysis of a beam whose geometry 
changes with each load increment with respect to the previous ones.

This alternative approach is specified in a final analytical expression of the deformed directrix of the beam, 
under the effect of second-order, once the application of the entire load after the iterations is exhausted.

The results obtained by means of this analytical expression derived from the revision of Euler’s approach are 
compared with those obtained numerically by calculating the real beam assimilated to the curved beam under 
second-order conditions.

With the aim of highlighting the research presented, as a practical case, the structural behaviour of a variable 
section beam is analysed.

Analysis of the beam by means of the finite transfer method under second‑order 
effects
In this section the imperfect beam is analysed under a compression load (see Fig. 1), assimilating it to a curved 
beam. Together with the geometric imperfection of the directrix, it is considered that the beam has no initial 
manufacturing stresses, that its material is homogeneous and isotropic, and that the section is constant.

To carry out the structural calculation, the numerical procedure called Finite Transfer  Method28 is used. This 
procedure solves a system of linear ordinary differential equations with boundary conditions and can address the 
wide casuistry of the structural problem of the  beam29–31. Finite Transfer Method uses a repetition strategy on 
the discretised directrix that allows relating the solicitation and deformation values of the ends of the structural 
beam through an algebraic system. The dimension of said system is always constant and independent of the inter-
vals obtained by the discretisation. It uses a fourth-order scheme to obtain a suitable numerical approximation.

To carry out the first-order analysis, a computer program that applies the Finite Transfer Method is used on 
the initial directrix of the beam to be calculated, with the entire compression load. To obtain second-order solici-
tation and deformation values, the load has been divided into equal parts (10,000 parts). Firstly, the numerical 
program has been executed with the first portion of load on the initial position of the directrix. With the results 
obtained, the new form of the directrix has been calculated and the numerical procedure has been executed on 
it for the second time. This process has been repeated until the application of the entire load has been completed. 
With this, a second-order analysis has been carried out on the real beam.

Two cases of steel beam types and different hollow circular section with the same area have been chosen. As 
shown in Fig. 1, these beams are supported by a hinge at the lower end I, and linear support at the upper end II.

Table 1 shows the characteristics in terms of shape and material of the two study type beams: hollow circular 
profile φ200.8 and φ100.19 . In the structural analysis carried out, the shear coefficients are considered null.

The load that intervenes in the calculation represents the maximum load that these beams can support with-
out imperfections (ideal beam) and without using safety factors to determine the resistance of the material. The 
value of this load is P0 = fyA = 1713 kN.

To assimilate the beam with geometric imperfection to a curved beam, two cases are analysed: sinusoidal 
directrix and parabolic directrix. In both examples, the maximum initial strain in fm is 4 mm.
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Sinusoidal directrix beam
In this first analysis, the real beam is identified with a curved beam whose directrix has a sinusoidal shape whose 
equation is:

Table 2 shows the solicitation and deformation values of the beam profile φ200.8 under both first-order and 
second-order effects. These solicitation and strain values are presented at eight points uniformly distributed on 
the directrix of the beam (0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5 and 4 m).

The solicitation is made up of the normal N = Vt and shear forces Vn , and the bending moment Mb = My 
in the intrinsic axes. The deformation is composed of the gyration θy , and the transverse δx and longitudinal δz 
displacements, under the general reference system.

Analysing the results, the values of normal stress and shear stress are not comparable. Therefore, it is consid-
ered sufficiently approximate to determine the normal stress and ignore the tangential stress.

Comparing in the centre the effects of second-order with those of first-order, an increase of 36.54% is observed 
in the bending moment and in the transverse displacement. Regarding the longitudinal displacement, the increase 
is only 0.16%.

Table 3 shows the solicitation and deformation of the sinusoidal beam with a hollow circular profile φ100.19.
Logically, the solicitation values under first-order effects of the two curved beams with sinusoidal directrix 

are the same.
In the second order analysis the relationship between the maximum shear force and the maximum normal 

force is 7.42%. In relation to the bending moment and the transverse displacement in the centre, an increase 
of 615% is observed between the second and first-order values. Regarding the longitudinal displacement, the 
increase is only 80%.
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Figure 1.  Bi-articulated real beam.

Table 1.  Formal characteristics and materials of the beams.

Beam

l (m) fm (mm) Steel E (kN/mm2) G (kN/mm2)

4 4 S355 210 81

Circular hollow sections de (mm) di (mm) A  (cm2) It  (cm4) I = In = Ib  (cm4)

ϕ200.8 200 184 48.25 4454.89 2227.44

ϕ100.19 100 62.10 48.25 835.77 417.89
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Under second-order effects, the relationship between the bending moment in the centre of the beams with 
profile φ200.8 and φ100.19 is 534%. The relationship between transverse displacements in the centre of the beams 
type φ200.8 and φ100.19 is 2797%.

The relationship between the first-order transverse displacement in the centre and the length of the real beam 
is 0.32%. Under second order analysis, this relationship is 2.26%.

Parabolic directrix beam
In this section, the calculation of the imperfect beam is identified with that of a curved beam with a parabolic 
directrix whose equation is:

Table 4 shows, in a similar way to the values presented in Table 2, the solicitation and deformation values are 
shown under effects of both first-order and second-order in the beam profile φ200.8.

Comparing the second-order effects with the first-order ones in the centre, an increase of 37.59% is observed 
in relation to the bending moment and 36.66% in relation to the transverse displacement. In the longitudinal 
displacement the increase is only 0.17%.

Table 5 shows the solicitation and strain in the parabolic beam with a hollow circular profile φ100 · 19.
Under second-order effects, the relationship between the maximum shear force and the maximum normal 

force is 7.66%. In relation to the bending moment in the centre, an increase of 635% is observed between second 
and first-order values. The relationship between the bending moment in the centre of the beams with profile 
φ200.8 and φ100.19 is 534%.

In the centre there is a 617% increase in second-order transverse displacement compared to first order. 
Regarding the longitudinal displacement, the increase is only 85%. The relationship between transverse displace-
ments in the centre of the beams type φ200.8 and φ100.19 is 2803% under the second-order analysis.

The relationship between the first-order transverse displacement in the centre and the length of the real beam 
is 0.33%. This relationship under the second-order analysis is 2.33%.

(2)f (z) =
4fm

l2
(l − z)z.

Table 2.  Sinusoidal beam profile φ200.8 : first and second-order solicitations and deformations. Significant 
values are in bold.

z (m)

Solicitations and strains

First-order Second-order

N = Vt (kN) Vn (kN) Mb = My (kN.m) θy  (10–3 rad) δx (mm) δz (mm) N = Vt (kN) Vn (kN) Mb = My (kN.m) θy  (10–3 rad) δx (mm) δz (mm)

0  − 1713.04 5.382 0.000 1.865 0.000 0.000  − 1713.02 9.744 0.000 2.547 0.000 0.000

0.5  − 1713.04 4.972  − 2.622 1.723 0.906  − 0.848  − 1713.02 9.002  − 3.580 2.353 1.237  − 0.851

1  − 1713.04 3.805  − 4.845 1.319 1.674  − 1.695  − 1713.03 6.890  − 6.616 1.801 2.286  − 1.700

1.5  − 1713.05 2.059  − 6.331 0.714 2.188  − 2.541  − 1713.04 3.729  − 8.644 0.975 2.987  − 2.547

2  − 1713.05 0.000  − 6.852 0.000 2.368  − 3.387  − 1713.05 0.000  − 9.356 0.000 3.233  − 3.392

2.5  − 1713.05  − 2.059  − 6.331  − 0.714 2.188  − 4.232  − 1713.04  − 3.729  − 8.644  − 0.975 2.987  − 4.238

3  − 1713.04  − 3.805  − 4.845  − 1.319 1.674  − 5.078  − 1713.03  − 6.890  − 6.616  − 1.801 2.286  − 5.085

3.5  − 1713.04  − 4.972  − 2.622  − 1.723 0.906  − 5.926  − 1713.02  − 9.002  − 3.580  − 2.353 1.237  − 5.934

4  − 1713.04  − 5.382 0.000  − 1.865 0.000  − 6.774  − 1713.02  − 9.744 0.000  − 2.547 0.000  − 6.784

Table 3.  Sinusoidal beam profile φ100.19 : first and second-order solicitations and strains. Significant values 
are in bold.

z (m)

Solicitations and strains

First-order Second-order

N = Vt (kN) Vn (kN) Mb = My (kN.m) θy  (10–3 rad) δx (mm) δz (mm) N = Vt (kN) Vn (kN) Mb = My (kN.m) θy  (10–3 rad) δx (mm) δz (mm)

0  − 1713.04 5.382 0.000 9.939 0.000 0.000  − 1708.33 127.055 0.000 71.119 0.000 0.000

0.5  − 1713.04 4.972  − 2.622 9.182 4.840  − 0.859  − 1709.02 117.400  − 18.762 65.706 34.603  − 2.151

1  − 1713.04 3.805  − 4.845 7.028 8.944  − 1.714  − 1710.69 89.884  − 34.669 50.290 63.945  − 3.939

1.5  − 1713.05 2.059  − 6.331 3.804 11.685  − 2.564  − 1712.36 48.661  − 45.300 27.217 83.558  − 5.214

2  − 1713.05 0.000  − 6.852 0.000 12.648  − 3.409  − 1713.05 0.000  − 49.033 0.000 90.447  − 6.127

2.5  − 1713.05  − 2.059  − 6.331  − 3.804 11.685  − 4.254  − 1712.36  − 48.661  − 45.300  − 27.217 83.558  − 7.040

3  − 1713.04  − 3.805  − 4.845  − 7.028 8.944  − 5.104  − 1710.69  − 89.884  − 34.669  − 50.290 63.945  − 8.316

3.5  − 1713.04  − 4.972  − 2.622  − 9.182 4.840  − 5.959  − 1709.02  − 117.400  − 18.762  − 65.706 34.603  − 10.104

4  − 1713.04  − 5.382 0.000  − 9.939 0.000  − 6.818  − 1708.33  − 127.055 0.000  − 71.119 0.000  − 12.255
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Results comparison
Figure 2 shows the values of transverse strain of the beams with sinusoidal and parabolic directrix under the 
compression load, whose numerical values are written in Tables 2, 3, 4 and 5. The bending moment graphs have 
not been presented because this is proportional to the transverse displacement.

Both first-order effects (red dashed line) and second-order effects (solid line) have been represented. The 
second-order transverse displacement functions associated with different proportions of load have also been 
graphed. The percentage of second-order effects is greater when the load portion is greater.

Figure 2 shows that under second-order effects, greater strain is experienced than under first-order effects. 
The beams with the lowest moment of inertia suffer greater deformation. The differences between assimilating 
the imperfect beam to a beam with a sinusoidal or parabolic directrix are negligible. In the second order analysis 
of the beam profile φ200.8 , the difference between bending moments is 0.77% and between transverse displace-
ments is 2.66%. In the beam profile φ100.19 , these differences slightly increase, being these percentages 2.91% 
in the case of calculating bending moments and 3.13% in the case of transverse displacements.

Sinusoidal directrix beam with variable section
In this section the calculation of the real beam is identified with that of a curved piece with a sinusoidal directrix 
Eq. (1). The variable circular section beam is studied. This section varies linearly along the directrix, from the 
initial end φ100 to the final end φ78.

Table 6 shows the stress and deformation values under both first-order and second-order effects.
The solicitation values under first-order effects of the three curved beams with sinusoidal directrix are equal.
Comparing the second-order effects with the first-order effects in the span, an increase of 1670.19% is 

observed in relation to the bending moment and 1676.82% in relation to the transversal displacement.
Figure 3 shows that since the beam has a variable section, symmetry is not maintained with respect to the 

span of the solicitations, deformations and stresses.
Under second-order effects the maximum values are: for the bending moment 122 kN at 2.13 m from the 

initial end, for the tangential displacement 309 mm at 2.14 m from the initial end.
The maximum normal stress of failure or collapse of the beam occurs with 52% of the applied load and 2.52 m 

from the initial end.

Table 4.  Parabolic beam profile φ200.8 : first and second-order solicitations and deformations. Significant 
values are in bold.

z (m)

Solicitations and strains

First-order Second-order

N = Vt (kN) Vn (kN) Mb = My (kN.m) θy  (10–3 rad) δx (mm) δz (mm) N = Vt (kN) Vn (kN) Mb = My (kN.m) θy  (10–3 rad) δx (mm) δz (mm)

0  − 1713.03 6.852 0.000 1.953 0.000 0.000  − 1713.02 9.933 0.000 2.657 0.000 0.000

0.5  − 1713.04 5.139  − 2.998 1.785 0.945  − 0.849  − 1713.02 8.844  − 3.995 2.435 1.287  − 0.851

1  − 1713.04 3.426  − 5.139 1.343 1.734  − 1.696  − 1713.03 7.044  − 6.972 1.840 2.366  − 1.701

1.5  − 1713.05 1.713  − 6.424 0.717 2.254  − 2.542  − 1713.05 0.131  − 8.808 0.986 3.079  − 2.547

2  − 1713.05 0.000  − 6.852 0.000 2.435  − 3.387  − 1713.05 0.000  − 9.428 0.000 3.327  − 3.393

2.5  − 1713.05  − 1.713  − 6.424  − 0.717 2.254  − 4.233  − 1713.05  − 0.131  − 8.808  − 0.986 3.079  − 4.238

3  − 1713.04  − 3.426  − 5.139  − 1.343 1.734  − 5.079  − 1713.03  − 7.044  − 6.972  − 1.840 2.366  − 5.085

3.5  − 1713.04  − 5.139  − 2.998  − 1.785 0.945  − 5.926  − 1713.02  − 8.844  − 3.995  − 2.435 1.287  − 5.934

4  − 1713.03  − 6.852 0.000  − 1.953 0.000  − 6.774  − 1713.02  − 9.933 0.000  − 2.657 0.000  − 6.786

Table 5.  Parabolic beam profile φ100.19 : first and second-order solicitations and strains. Significant values are 
in bold.

z (m)

Solicitations and strains

First-order Second-order

N = Vt (kN) Vn (kN) Mb = My (kN.m) θy  (10–3 rad) δx (mm) δz (mm) N = Vt (kN) Vn (kN) Mb = My (kN.m) θy  (10–3 rad) δx (mm) δz (mm)

0  − 1713.03 6.852 0.000 10.408 0.000 0.000  − 1707.90 132.712 0.000 73.573 0.000 0.000

0.5  − 1713.04 5.139  − 2.998 9.514 5.049  − 0.862  − 1708.75 121.239  − 19.706 67.856 35.771  − 2.253

1  − 1713.04 3.426  − 5.139 7.156 9.265  − 1.717  − 1710.57 92.061  − 35.952 51.784 66.030  − 4.096

1.5  − 1713.05 1.713  − 6.424 3.822 12.038  − 2.566  − 1712.33 49.591  − 46.620 27.963 86.204  − 5.391

2  − 1713.05 0.000  − 6.852 0.000 13.003  − 3.411  − 1713.05 0.000  − 50.335 0.000 93.278  − 6.306

2.5  − 1713.05  − 1.713  − 6.424  − 3.822 12.038  − 4.256  − 1712.33  − 49.591  − 46.620  − 27.963 86.204  − 7.222

3  − 1713.04  − 3.426  − 5.139  − 7.156 9.265  − 5.105  − 1710.57  − 92.061  − 35.952  − 51.784 66.030  − 8.517

3.5  − 1713.04  − 5.139  − 2.998  − 9.514 5.049  − 5.960  − 1708.75  − 121.239  − 19.706  − 67.856 35.771  − 10.360

4  − 1713.03  − 6.852 0.000  − 10.408 0.000  − 6.822  − 1707.90  − 132.712 0.000  − 73.573 0.000  − 12.613
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Figure 2.  Transverse strains of sinusoidal and parabolic beams.

Table 6.  Variable section sinusoidal beam: first and second-order solicitations and deformations. Significant 
values are in bold.

z (m)

Solicitations and deformations

First-order Second-order

N = Vt (kN) Vn (kN) Mb = My (kN.m) θy  (10–3 rad) δx (mm) δz (mm) N = Vt (kN) Vn (kN) Mb = My (kN.m) θy  (10–3 rad) δx (mm) δz (mm)

0  − 1713.04 5.382 0.000 12.487 0.000 0.000  − 1671.30 375.906 0.000 218.190 0.000 0.000

0.5  − 1713.04 4.972  − 2.622 11.794 6.128  − 0.553  − 1675.46 356.869  − 42.331 207.048 106.383  − 12.319

1  − 1713.04 3.805  − 4.845 9.616 11.542  − 1.131  − 1687.29 295.942  − 79.967 171.481 201.444  − 22.283

1.5  − 1713.05 2.059  − 6.331 5.972 15.495  − 1.735  − 1702.41 190.612  − 107.881 110.346 272.660  − 28.184

2  − 1713.05 0.000  − 6.852 1.145 17.314  − 2.370  − 1712.45 45.353  − 121.296 26.488 307.640  − 30.216

2.5  − 1713.05  − 2.059  − 6.331  − 4.295 16.537  − 3.044  − 1708.49  − 124.845  − 116.628  − 71.775 296.671  − 31.223

3  − 1713.04  − 3.805  − 4.845  − 9.510 13.057  − 3.767  − 1687.82  − 292.882  − 92.641  − 169.671 236.101  − 35.935

3.5  − 1713.04  − 4.972  − 2.622  − 13.461 7.241  − 4.547  − 1660.18  − 422.284  − 51.589  − 246.286 131.596  − 48.151

4  − 1713.04  − 5.382 0.000  − 15.020 0.000  − 5.386  − 1646.25  − 473.694 0.000  − 277.154 0.000  − 67.039

Figure 3.  Bending moments, transversal deformations and stresses in the sinusoidal beam with variable 
section.
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Analysis of the beam through an analytical procedure
Due to imperfection, the directrix of the beam has a deviation from the straight line. According to Euler’s 
approach, an ideal beam subjected to a compression load can be in stable or unstable equilibrium, elastically.

Figure 4 shows the starting expressions of the bending moments, under different approaches for the ideal 
beam and for the real beam. The expressions of the tangential displacements that are obtained by Euler’s approach 
and by the analytical procedure that is proposed are also shown.

Beam under Euler’s approach
It is usual to derive the critical Euler load from the bi-hinged beam compressed by a point load P . The directrix 
has only transverse strain u(z) . It is considered that the section of the beam is constant and made of the same 
material. No other type of load takes place. The weight of the beam itself is considered negligible.

The differential expression of the deformed directrix can be written as:

The analytical solution of transverse displacement is obtained by solving this differential equation. Its expres-
sion can be noted  as32:

where C1, C2 are the two constants of integration.
From the application of the support conditions u(0) = 0; u(l) = 0; it can be derived that C2 = 0 and that 

sin

(
√

P
/

EIl
)

= 0 . If it were not so, the directrix would be a straight line and there would be no transverse 
deformation. For this last support condition to be met, the value that the load must acquire is PK = π2EI

/

l2 . 
This value is the Euler critical load.

In the real bi-articulated beam, the effect of the imperfections is considered equivalent, with sufficient approxi-
mation, to the one produced if its directrix instead of being initially straight is a sinusoid. The analytical notation 
of the directrix is expressed in Eq. (1). Under Euler’s approach and in the real beam, the differential expression 
of the deformed directrix  is6:

The analytical solution of this differential equation, applying the support condition of the real bi-hinged 
beam is:

(3)
d2u(z)

dz2
= −

P

EI
u(z).

(4)u(z) = C1 sin

(

√

P
/

EIz

)

+ C2 cos

(

√

P
/

EIz

)

,

(5)
d2δ(z)

dz2
= −

P

EI

[

fm sin
(

πz
/

l
)

+ u(z)
]

.

(6)δ(z) =
P

PK − P
fm sin

(

πz
/

l
)

.

Figure 4.  Structural approaches on the ideal and real beam.
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This function represents the transverse displacement suffered by the real beam in compression. When the 
load P is equal to the critical load PK , a discontinuity in the function is produced, and therefore the real beam 
is in a state of elastic instability.

The bending moment M(z) produced by the load at each point of the directrix of the beam is:

The bending moment remains finite while P<PK, and becomes infinite, however small is fm, when P = PK. 
Therefore PK is the upper limit of the load that can be applied to a double-hinged beam. In the theoretical case 
of an ideal beam with fm = 1, there is a stable equilibrium if P<PK, but it becomes unstable with P = PK.

Beam under second‑order effects
Remembering that an ideal beam is a resistant member with a straight directrix manufactured without initial 
stresses or heterogeneities, and without any geometric imperfection, when it is subjected to a compression load, 
the displacement of each point of the directrix has only a longitudinal component. In this case, there is neither 
transverse displacement nor bending moment. The maximum load that the ideal beam can withstand is obtained 
by multiplying the resistance of the material by the area of the section.

As previously commented, in the real beam the effect of the imperfections is equivalent to considering its 
directrix sinusoidal instead of straight. Under this approach, the differential expression of the deformed directrix 
can be noted as:

The solution of this equation for the beam with biarticulated support is:

where PK is the Euler critical load expressed in Eq. (5).
In this case, the entire load P has been applied to the bi-hinged beam instantaneously. This way the first order 

strain δ1(z) is obtained.
To determine the second order deformation δ(z) = δ2(z) , the load P must be applied gradually. To do this, it 

is divided into n equal parts, and the calculation is carried out applying its first increase. From this calculation, 
the deformation produced is deduced and a new directrix is generated. By repeating this calculation i times, the 
deformation is:

By gradually applying the entire load, taking this division to the limit, the second order deformation and 
expressed as:

The first-order deformation expressions Eq. (9) and second-order Eq. (11) are continuous functions.
In first-order deformation, if the value of the force action is Euler’s critical load, the displacement obtained 

coincides with the initial sinusoidal directrix of the beam. In second-order deformation, if the action is the criti-
cal load, the directrix of the beam is e–1 ≃ 1.718 times its initial position.

The second-order bending moment can be noted as:

Like what is detected in the deformation equation under second-order analysis, there is no discontinuity in 
the bending moment formulation.

The maximum normal stress of the beam occurs in the centre section and at the furthest point from the 
barycentre. Its value is:

Being W the resistant module.
To exhaust a beam at its maximum stress, the function that relates the initial imperfection in the centre fm 

and the compression load P can be noted as:

(7)M(z) =
PPK
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fm sin
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.
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P

EI
fm sin

(

πz
/
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/

l
)

,

(10)δi(z) =

[

(

1+
P

nPK

)i

− 1

]

fm sin
(

πz
/

l
)

.
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/
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.
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As it happens in the first order strain expressions Eq. (9) and second order Eq. (11), in Eq. (14) there is no 
discontinuity.

Results and relationships between second‑order effects
As previously noted, the differences in both first-order and second-order effects between the sinusoidal and 
parabolic directrix beam are negligible. It has also been verified that the first-order effects are not close to the 
reality of the structural problem posed. From this point on, the formulations associated with the sinusoidal 
directrix beam will be used, presenting only second-order effects.

Table 7 compares the results obtained using the Finite Transfer Method numerical procedure with those 
obtained by applying the analytical formulas associated with Eqs. (11) and (12).

Any difference between the values obtained by the two procedures is less than 0.30%. There are practically 
no differences between the values of bending moments and transverse displacements obtained by numerical or 
analytical methods. When using the numerical procedure for the calculation, in addition to bending moments 
and transverse displacements, the other values of the effect are obtained: normal stresses, shear stresses, gyrations 
and longitudinal displacements. As previously noted, the effects that produce tangential stresses are negligible.

From the analysis of the results expressed in Table 7, it can be deduced that, at the level of structural verifica-
tion, it is considered sufficiently approximate to determine the values of the second-order effect by the analytical 
procedure that has been developed.

Table 8 shows the values of the maximum compression load that can be supported by different profiles of 
the same length and area.

The beams analysed are the profile types studied in Table 1. ( φ200.8 and φ100.19 ), to which hollow circu-
lar profiles φ175.9 , φ158.10 , φ125.14 are added, and the circular solid profile φ78 , for a length of 4 m. These 
beams are analysed under different initial imperfections fm : ideal beam without deformation, and beams whose 
deflection-span ratio is 1/1000, 1/500, 1/250 and 1/100.

It is observed that the maximum load for the beams without initial imperfection is the same: P0 = 1713 kN . 
The same does not happen with the critical load PK , since all the analysed profiles have different moments of 
inertia. In the cases studied, it is seen that the maximum load depends on both the initial imperfections and the 
section of the beams. As the outer diameter of the beam decreases, the maximum compression load decreases. 
When the initial imperfection of the beam increases, this maximum load supported by the profile also decreases.

Table 9 shows the values of the maximum compression load that can be supported by steel profiles taken 
from commercial standard series.

Beams of the same length (4 m) and with the profiles φ200.8 , φ200.6 , φ200.5 , φ100.6 and φ100.5 have been 
chosen for this analysis. These beams are also analysed under the same initial imperfections as in the previous 
study.

Table 7.  Sinusoidal beams of profiles φ200.8 and φ100.19 : second-order effects.

Mb = My (kN.m) f200.8 f100.19 δx (mm) f200.8 f100.19

z (m)
Sinusoidal 
numerical

Sinusoidal 
analytical

Sinusoidal 
numerical

Sinusoidal 
analytical z (m)

Sinusoidal 
numerical

Sinusoidal 
analytical

Sinusoidal 
numerical

Sinusoidal 
analytical

0 0.000 0.000 0.000 0.000 0 0.000 0.000 0.000 0.000

0.5  − 3.580  − 3.581  − 18.762  − 18.792 0.5 1.237 1.241 34.603 34.714

1  − 6.616  − 6.616  − 34.669  − 34.722 1 2.286 2.293 63.945 64.143

1.5  − 8.644  − 8.644  − 45.300  − 45.367 1.5 2.987 2.996 83.558 83.807

2  − 9.356  − 9.356  − 49.033  − 49.105 2 3.233 3.243 90.447 90.712

2.5  − 8.644  − 8.644  − 45.300  − 45.367 2.5 2.987 2.996 83.558 83.807

3  − 6.616  − 6.616  − 34.669  − 34.722 3 2.286 2.293 63.945 64.143

3.5  − 3.580  − 3.581  − 18.762  − 18.792 3.5 1.237 1.241 34.603 34.714

4 0.000 0.000 0.000 0.000 4 0.000 0.000 0.000 0.000

Table 8.  Maximum compression load for different profiles of equal area.

l = 4 m

Section

ϕ200.8 ϕ175.9 ϕ158.10 ϕ125.14 ϕ100.19 ϕ78

PK (kN) → 2885 2153 1713 981 541 240

P0 (kN) → 1713 1713 1713 1713 1713 1713

fm

l/1000 1537 1494 1450 1288 1018 603

l/500 1401 1337 1276 1083 822 477

l/250 1198 1118 1047 850 625 359

l/100 853 771 706 547 391 222
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The maximum load that these beams support without initial imperfection is the product of the resistance of 
the material fy = 355N

/

mm2 by the area of the profile used. The resulting critical loads PK are different because 
the moments of inertia of the profiles are different. Similarly, to the case studies presented in Table 8, in these 
examples the maximum load also depends on both the initial imperfections and the sections of the profiles. If 
the area of the profile decreases and the initial imperfection of the beam increases, the maximum load decreases.

Table 10 shows the values of the maximum load that the same profile can support under different lengths.
The standard profile φ200.8 has been chosen for this analysis, with lengths of 3 m, 4 m, 5 m and 6 m. The 

initial imperfections considered are the same as in Tables 7 and 8.
In these cases, when using the same profile, the maximum load for ideal beams or beams without initial 

imperfection is the same P0 = 1713 kN . It is observed that the critical loads PK are different because the lengths 
of the beams are different. If the length of the beam increases and the initial imperfection increases, the maxi-
mum load decreases.

Table 11 shows the values of the maximum load that can be supported by different profiles with the same 
area and the same slenderness.

The beams analysed are the profiles studied in Table 8. The slenderness chosen is associated with the 4 m long 
beam and profile φ100.19 , whose value is � = l

/
√

I
/

A = 136 . With this value the length of each beam is 
determined. Again, the initial imperfections fm are without deformation, and with a deflection-span ratio of 
1/1000, 1/500, 1/250 and 1/100.

Also, in these cases, when using profiles with the same area, the maximum load for beams without initial 
imperfection is P0 = 1713 kN . The critical load PK = 541kN is maintained in the beams studied. If the initial 
imperfection increases, the maximum compression load decreases.

Table 12 shows the values of the maximum load that profile beams with the same length and the same slen-
derness can support.

Table 9.  Maximum compression load for different standard profiles.

l = 4 m

Section

ϕ200.8 ϕ200.6 ϕ200.5 ϕ100.6 ϕ100.5

PK (kN) → 2885 2231 1887 255 219

P0 (kN) → 1713 1298 1087 629 530

fm

l/1000 1537 1168 979 428 364

l/500 1401 1066 895 353 301

l/250 1198 914 768 274 234

l/100 853 653 550 175 150

Table 10.  Maximum compression load for the same profile and different lengths.

ϕ200.8

l (m)

3 4 5 6

PK (kN) → 5130 2885 1847 1282

P0 (kN) → 1713 1713 1713 1713

fm

l/1000 1592 1537 1470 1388

l/500 1489 1401 1303 1198

l/250 1321 1198 1078 965

l/100 997 853 735 638

Table 11.  Maximum compression load for different profiles of equal area and slenderness.

PK = 541kN, λ = 136

Section

ϕ200.8 ϕ175.9 ϕ158.10 ϕ125.14 ϕ100.19 ϕ78

l (m) → 9.235 7.977 7.116 5.384 4 2.664

P0 (kN) → 1713 1713 1713 1713 1713 1713

fm

l/1000 1057 1054 1051 1039 1018 973

l/500 863 859 856 843 822 775

l/250 665 662 658 646 625 581

l/100 424 421 418 408 391 354
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In the cases studied the chosen slenderness is associated with the beam profile φ100.19 . The analysed beams 
have the following hollow circular profiles: φ110.34 , φ105.26 , φ100.19 , φ95.13 , φ90.7 and φ85.2 . These beams 
are analysed under the same initial imperfections fm as in the previous cases.

It is observed that both the critical loads and the maximum loads are different in all the study cases. Whether 
the initial imperfection increases or the outer diameter of the profile decreases, the maximum compression load 
decreases.

Conclusions
From the traditional study of the real beam with initial sinusoidal imperfection, the analytical formulations of 
the transverse deformation Eq. (11) and the bending moment Eq. (12) have been deduced. These expressions are 
associated with second-order effects and represent continuous functions at all points. Therefore, from this conti-
nuity condition, it is deduced that the collapse of the structure does not occur under any specific critical load. This 
collapse is due to the failure that originates in the beam due to the increase in second-order bending moments.

Under this alternative approach to the analysis of the buckling phenomenon, it is clear that to accurately 
determine the bending moment under the second-order analysis it is necessary to know or establish an initial 
deformation of the beam. For each material, the maximum failure load of the beam under compression depends 
on the initial imperfection, and other properties such as the length and geometric characteristics of the section.

To determine the maximum failure load or solicitation and deformation values under second-order effects, 
in beams and/or pieces with any initial imperfection or any type of section, constant or variable, the numerical 
procedure Finite Transfer Method can be applied using the repetition strategy developed in this work.

Data availability
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