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Estimation of cumulative 
amplitude distributions 
of miniature postsynaptic 
currents allows characterising 
their multimodality, quantal size 
and variability
Susanna Gordleeva 1,4*, Yulia Dembitskaya 2, Victor Kazantsev 1,4 & Eugene B. Postnikov 3

A miniature postsynaptic current (mPSC) is a small, rare, and highly variable spontaneous synaptic 
event that is generally caused by the spontaneous release of single vesicles. The amplitude and 
variability of mPSCs are key measures of the postsynaptic processes and are taken as the main 
characteristics of an elementary unit (quantal size) in traditional quantal analysis of synaptic 
transmission. Due to different sources of biological and measurement noise, recordings of mPSCs 
exhibit high trial-to-trial heterogeneity, and experimental measurements of mPSCs are usually noisy 
and scarce, making their analysis demanding. Here, we present a sequential procedure for precise 
analysis of mPSC amplitude distributions for the range of small currents. To illustrate the developed 
approach, we chose previously obtained experimental data on the effect of the extracellular matrix 
on synaptic plasticity. The proposed statistical technique allowed us to identify previously unnoticed 
additional modality in the mPSC amplitude distributions, indicating the formation of new immature 
synapses upon ECM attenuation. We show that our approach can reliably detect multimodality in the 
distributions of mPSC amplitude, allowing for accurate determination of the size and variability of the 
quantal synaptic response. Thus, the proposed method can significantly expand the informativeness 
of both existing and newly obtained experimental data. We also demonstrated that mPSC amplitudes 
around the threshold of microcurrent excitation follow the Gumbel distribution rather than the 
binomial statistics traditionally used for a wide range of currents, either for a single synapse or 
when taking into consideration small influences of the adjacent synapses. Such behaviour is argued 
to originate from the theory of extreme processes. Specifically, recorded mPSCs represent instant 
random current fluctuations, among which there are relatively larger spikes (extreme events). They 
required more level of coherence that can be provided by different mechanisms of network or system 
level activation including neuron circuit signalling and extrasynaptic processes.

Short-term synaptic plasticity is a key mechanism for information processing in the CNS, while learning and 
memory can be formed through long-term synaptic modifications. One of the basic neurophysiological methods 
used to investigate the alterations in synaptic transmission is analyzing the dynamics of inward postsynaptic 
membrane currents (PSCs). Proper analysis of the postsynaptic response amplitude fluctuations can quantify 
functional synaptic characteristics, reveal the locus of expression of synaptic modulation (pre- or postsynaptic 
site) and identify the mechanism that produces that modulation. However, this has proven difficult in practice 
due to the high trial-to-trial variability of experimental PSC recordings, which arise not only from instrumental 
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noise but also from specific statistical features characterising underlying microscopic biophysical processes and 
details of their experimental registration.

Quantal theory of transmitter release was developed from the observation of compliance between the incre-
mental amplitude of synaptic response fluctuations and the amplitude of spontaneous miniature synaptic events. 
Quantal synaptic theory has been widely used to study the functions of synaptic transmission and plasticity. A 
conventional model describing stochastic quantal transmission in synapses is called the binomial model1. This 
model assumes that the presynapse contains N potential sites for vesicle release with identical probability of 
release p. After presynaptic spike, the postsynapse receives neurotransmitter from number of vesicles k discharg-
ing following a binomial distribution:

where 
(

N
k

)

 is the binomial coefficient representing the number of combinations in which N sites can emit k 

quanta. Each vesicle release induces generation of a quantal current q. A general observed PSC is equal to 
c = qk + ε , where the transmission is considered as affected by the noise ε normally distributed with the variance 
σ 2 . Thus, the distribution of PSCs is given by:

Therefore, in theory, the amplitude of the PSCs varies by an integer multiple of an elementary quantal unit. 
Quantal size q corresponds to the distance between the narrow peaks in the amplitude histogram of the PSC 
and can be measured directly by the average amplitude of the miniature PSC (mPSC)—a uniquantal synaptic 
event caused by spontaneous vesicle release2,3. Respectively, the mPSC represents a key measure of postsynaptic 
processes in convectional quantal analysis, while noise simply plays the role of disturbances “blurring” the peaks 
registered in practical measurements.

Thus, three functional parameters N, p and q describe the synaptic transmission and define the synapse 
strength. Wherein, p and q represent presynaptic and postsynaptic efficacy, respectively. Synaptic plasticity will 
modulate these parameters. And the mechanism underlying an alteration of synaptic transmission can therefore 
be studied by monitoring changes in these parameters. These three synaptic parameters can be extracted from 
the distribution of PSC amplitudes. Many techniques have been developed for an analysis of the fluctuations 
in the evoked synaptic response. Among the most widely used methods are those based on deconvolution4,5 
or convolution6 approaches, fluctuation analysis4, and variance-mean analysis7 (for review, see8). But they all 
require accurate estimation of quantal size and its variability from a histogram of mPSC amplitude data and fail 
when quantal response is small relative to the recording noise. In practice, it has been challenging to extract the 
size of a quantal response from mEPSC amplitude distributions due to strong quantal-size variability and the 
measurement noise.

Consideration based on the traditional quantal theory, as described above, is adequate for the evoked PSCs 
that cover a significantly wide range of current amplitudes, up to hundreds of pA when multiple quantal peaks are 
clearly exhibited. On the contrary, the consideration of spontaneous microcurrents of a few dozen of pA, when 
one operates in the vicinity of one quantum range reveals a drastically different picture: the respective distribu-
tion is practically reduced to a single skewed bell-shaped curve that contradicts the conventional approach to 
the representation of the p.d.f. as a combination of a point-wise supported single bar-like discrete components 
dispersed by the convolution with the Gaussian function3,9–14.

An experimentally realistic picture of mPSCs recordings resulting in a practically continuous asymmetric 
distribution due to a combination of a high variability of the quantal response (biological noise) and the meas-
urement noise15. Such a distribution can be formed by a single quantum released by one studied synapse with 
the size about 17.4 pA and from neighbouring synapses with quantal sizes of 7–12 pA16. The main origins of 
mPSC amplitude variability are vesicle size, neurotransmitter content, multivesicular release, neurotransmitter 
release mode, electronic distance from recording site, saturation of postsynaptic receptors and intrasynaptic 
variation in receptor density3,17.

As mEPSCs for an ensemble of single events are quantal responses, their distributions should be unimodal 
with the mode corresponding to the typical quantum. However in some cases, high mEPSC variability arises 
due to the presence of obscure multimodality in mEPSC amplitude distributions. Multimodal mEPSC amplitude 
distributions result from the near-synchronous release of variable number of vesicles and have been demonstrated 
at central excitatory and inhibitory synapses10,16,18–20. Multimodal mEPSC amplitude distributions may occa-
sionally arise from cells at some stages during regeneration or development. In such cases, small subminiature 
potentials may correspond to the developing junctions. The subminiature PSCs do not seem to be related to the 
unit of evoked release (this cannot be used in the determination of quantal response); which can be described 
by the major mode of larger spontaneous mEPSCs. However, clear observing two or more peaks on the mEPSC 
amplitude histograms is quite rare due to the strict requirements for accurate measurements. More often, the 
amplitude distributions of miniature events become smeared by cable effects. The facts described above motivate 
the development of statistical techniques for robust rigorous determination of quantal response through precise 
analysis of mPSCs data and adequate interpretation of the obtained results21.

Despite several, rather unordered trials to use different skewed unimodal functions for approximation of the 
mPSCs amplitude distributions, such as Gamma distribution11,22–24, the Weibull distribution11,25,26, the Gumbel 
function27, there has been no sequential, convenient, and robust statistical model for precise description of the 

(1)PBin(k,N , p) =
(

N
k

)

pk(1− p)N−k ,

(2)P(c) =
N
∑

k=0

P(c|k)P(k).
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shape of mPSC distributions based on the specificity of processes occurring around the threshold of microcur-
rent excitation amidst the fluctuating environment of the comparable noise range3,14,21,27.

Thus, we can stress the need for more precise statistical analysis of mPSCs distributions when microcurrents’ 
magnitudes are comparable with the typical range of magnitudes of spontaneous noisy contributions, which 
prevents a deconvolution of both processes and requires building a model for the fluctuating process considered 
as a whole.

Here, we present a sequential procedure for precise analysis of mEPSC amplitude distributions. To illustrate 
the developed approach, we chose previously obtained experimental data of mEPSCs amplitudes on the effect of 
the extracellular matrix on synaptic plasticity28. Proposed statistical treatment allowed us to identify previously 
unnoticed additional modality in the mEPSC amplitude distribution, indicating the formation of new immature 
synapses upon ECM attenuation. We show that our technique can reliably detect multimodality in the distribu-
tion of mEPSC amplitude, allowing for accurate determination of the size and variability of the quantal synaptic 
response. Thus, the proposed approach can significantly expand the informativeness of both existing and newly 
obtained experimental data.

Theory and results
To illustrate the proposed approach, we use whole-cell patch-clamp recordings of mEPSCs which were obtained 
from CA1 pyramidal neurons of young mice (4–6 weeks old)28. This study28 examined the role of brain extracel-
lular matrix in synaptic plasticity. Hippocampal slices were treated with either chondroitinase ABC (ChABC), 
which induces enzymatic attenuation of ECM, or a sham solution and were used for mEPSCs recordings. To 
reveal NMDA receptor mediated current component mEPSCs were recorded in Mg2+ free extracellular solution 
in the presents of AMPA receptor blocker NBQX. NMDA receptor-mediated mEPSCs were measured for both 
cases: sham solution and ChABC-containing solution. mEPSCs were measured after blocking action potentials 
with tetrodotoxin to insure that there is no release due to spontaneous action potentials.

Accordingly, for analysis we use four mEPSCs datasets recorded under different conditions: (1) sham extracel-
lular solution (SHAM), (2) Mg2+ free sham solution (SHAM 0 Mg), (3) solution containing ChABC (ChABC), 
(4) ChABC-containing Mg2+ free solution (ChABC 0 Mg). The recording data represent average amplitudes 
within 30 s equal subsequent time intervals. Each combined dataset includes data recorded from 6 individual 
cells, and their resulting lengths are 120, 120, 245, and 254 data points respectively.

To reveal the type of a probability distributions corresponding to all data samples, the standard robust sta-
tistical approach29, operating with the empiric cumulative distribution function, was applied. The empirical 
cumulative distribution functions were built as follows: the amplitudes An (N in total)were sorted in ascending 
order and the discrete values of the cumulative distribution function equispaced varying from 1/N to 1 were 
assigned as ordinates corresponding to An’s, see Fig. 1.

Evidently, three out of four cases (i.e. except for SHAM (0 Mg)) represent two-stage probabilistic processes 
characterised by a plateau at intermediate values of mEPSC amplitudes followed by the final achievement of 
a plateau at large amplitudes. This implies that there exists a type of bimodal probability distribution density 
P(A) = d(c.d.f )/dA.

Focusing on a general procedure rather than testing a set of arbitrary chosen distributions, we consider the 
following representation

which resembles the approach known in the populations dynamics as the Richards equation30—a very flexible 
tool for the approximation of sigmoidal curves; it also takes into account that P(A) = d(c.d.f (A))/dA . Equa-
tion (3) also satisfies two exact statistical conditions: when c.d.f .(A) = 0 , the probability density P(a) = 0 , and 
when the cumulative distribution function tends to the saturation (we left K = 1 in Eq. (3) for the sake of con-
venience of the experimental data processing. Here c.d.f . = 1 asymptotically taking into account weak second 
component localised at large amplitudes, i.e. this K  = 1 corresponds to the asymptotics of one principal studied 

(3)P(A) = r · c.d.f .(A)
(

1−
c.d.f .(A)

K

)n

,

Figure 1.   Empiric cumulative probability functions (c.d.f.) for the studied mEPSCs datasets.
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component). The power-law index n allows reproducing significant variability in asymmetry of the c.d.f. and, 
respectively, skewness of the P(A).

Note also the similarity of Eq. (3) and the probability density function of the particular case of the binomial 
distribution Eq. (1) for K = 1 (but it can be easily rescaled for p → p/K ). Although its clear that the binomial 
distribution is not applicable to mPSC in contrast to PSC, the formal form representing a product of the current 
value (i.e. the discharge process) and its complementary (i.e. an absence of the discharge process) is quite gen-
eral for characterising random processes with alternative with alternative outcomes. As noted above, operations 
with mPSCs involve one quantal size, i.e. k = 1 ; n = N − 1 . Therefore, by using Eq. (3) we consider not a fixed 
p (that is the case of conventional approach to studying large quantized PSC), but a fluctuating ones reflected 
in the registered mPSCs.

This approach does not require hypothetical judgement and does not depend on whether a squared devia-
tion from a set of trial curves or level of some probability-comparing statistical criterion is enough. To test this 
approach according to the illustrative criterion, we use the method based on the generalised Fisher–Pry trans-
formation, which provides linearization of solutions to Eq. (3) via the following non-linear variable alteration

for a sequential set of the values of the parameter n. Note that we consider the general Richard’s case when n can 
be non-integer too. From the statistical point of view, the binomial distribution goes to the Beta-distribution 
and, in the limiting case of n → 0 , to the Gumbel distribution.

Figure 2 illustrates our approach by the case study of the (SHAM 0 Mg) data, which does not show a clearly 
exhibited bi-component structure, i.e. we can operate with the whole data sequence. Integer values of n do not 
lead to linearized plots completely. This means that we can not consider the analysed process as a successful 
release of a quantum among several total trials occurring with different probability. Diminishing n (as fractional 
indices) leads to more and more straightened point distributions, which achieve the acceptable linearization in 
the asymptotic case n → 0 , i.e. the Gumbel distribution.

Next, we reveal two components in p.d.f. for SHAM, ChABC 0 Mg, ChABC experimental conditions and 
illustrate applicability of the Gumbel statistics to considered mEPSC datasets. For this, we use an approach 
called Loglet decomposition, which was developed31 for modelling growth processes comprised of two or more 
subprocesses of the same nature. This online tool is available at !https://logletlab.com/! and as of recently allows 
operating with main principal sigmoidal growth models including general Richard’s and Gompertz’s models. The 
key idea behind this approach is attempting to fit such a growth curve by a successive sequence of components 
and to achieve the best approximation by minimising some objective functions supplied with a set of represen-
tations of the components as linear functions. These functions can be obtained by an appropriate co-ordinate 
transformations.

Although the Loglet approach was initially developed for the data-based parameter estimation of dynamical 
systems describing growth with saturation, it can be naturally transferred to the problem of the identification and 
decomposition of the statistical properties of a given distribution of mEPSC amplitudes. This transferability is 
based on the following similarity: (1) the cumulative distribution function represents the monotonously growing 
saturation value equal to unity, which makes it a mathematical equivalent to the growth functions used within the 
frames of Loglet approach; (2) the mEPSC amplitudes A are strictly positive quantities, and the exact c.d.f . → 1 
when A → ∞ that mimics the time variables for dynamical systems growing with saturation.

Thus, the desired cumulative distribution function was searched in the form

(4)FP(A) ≡ − ln

[

1

n

(

K

A

)n−1
]

= rA+ Am

Figure 2.   Recorded in Mg2+ free sham solution (SHAM 0 Mg) experimental data points of mEPSCs sorted in 
the ascending order and plotted in the generalised Fisher–Pry form (4) with different values of the parameter n 
(same as in Fig. 3D–F). The grey dash-dotted straight line highlights the fitted linearization as in Fig. 3F.
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with the components consisting of Gompertz functions, which are formally equivalent to Gumbel’s c.d.f ’s

where Kj , rj , and Amj are the maximal value, the growth rate, and the amplitude corresponding to the inflection 
point, respectively.

The respective probability density components are

Note that Eq. (7) coincides with the Gumbel distribution widely applied in the statistical theory of extreme 
events32. Factors Kj define the normalisation to the value of partial total probability in such a way that only their 
sum is equal to unity. Respectively, r−1

j  and Amj are the scale and the mode of Gumbel-distributed random num-
bers A, their mean value is equal to E(A) = Amj + r−1

j γ , where γ ≈ 0.5772 is the Euler–Mascheroni constant, 
the standard deviation σ = πr−1

j /
√
6 and the median is equal to E(A) = Amj + r−1

j ln (ln(2)).
An accuracy, with which each component satisfies the Gompertz function, can be easily traced as above again 

considering the variable alteration stated by the generalized Fisher–Pry transform but applied to each component 
separately, i.e. which linearizes Eq. (6):

Finally, it should be pointed out that the points indicating “experimental points belonging to different com-
ponents” are not necessary mutually exclusive data points from the initial dataset. Two of such points may share 
the same value of the original A being taken with weights corresponding to the inputs from particular coexisting 
random processes, see details in31.

The obtained mEPSCs datasets for four experimental conditions (SHAM, ChABC, SHAM  0  Mg, 
ChABC 0 Mg) were analyzed according to the procedure described above. The results of the data processing 
are shown in Fig. 3. The key illustrations are given in subpanels (A,D,G,J) showing an accurate reproduction 
of the empiric c.d.f. formed by the experimental data with the proposed model Eqs. (5)–(6) containing either 
two or one Gumbel’s (Gompertz’s) components (their numerical parameters as well as statistical criteria for the 
goodness-of-fit are provided in Supplementary material). The respective p.d.f. of the components (7) are plot-
ted in subpanels (B,E,H,K) and superimposed for the sake of qualitative comparison with the histograms of the 
experimental data distributions. To confirm this decomposition quantitatively, Fig. 3C,F,I, and L represent the 
generalized Fisher–Pry plots (8), from which one can see coinciding linearity of the experimental data and their 
fitting by the proposed approximation.

Under control conditions in sham solution the mEPSCs amplitude distribution clearly showed two modes 
(Fig. 3A–C). The first major mode characterised by the mean mEPSC amplitude of 21.6 ± 3.5 pA (mean± σ ) 
giving us estimation of quantal size and variability. The mean amplitude of the second mode for large-amplitude 
mEPSCs is equal to 37.2 ± 4.6 pA. Several studies support the interpretation that the multiple modes in some 
of the mEPSC amplitude histograms reflect the spontaneous multivesicular release10,18–20,33,34. The differently 
sized mEPSCs were not due to the chance summation of randomly occurring monoquantal events, because the 
mEPSC frequency was low (approximately 45 events per minute in 7 cells). In our case large mEPSCs from the 
second mode of the amplitude distribution seemed to be generated by two vesicles released with small temporal 
jitter. Thus under this assumption under control conditions the quantal size estimated from mEPSCs amplitude 
distribution is approximately equal to 21 pA. Changing the extracellular solution by removing Mg2+ and addition 
of AMPA receptor blocker caused the disappearance of the large-amplitude mEPSCs subpopulation (Fig. 3D–F). 
While the mean NMDA-dependent mEPSCs amplitude remained almost the same as for the main mode of 
distribution in control and was equal to 20.5 ± 3.1 pA. This finding suggests that the high-amplitude mEPSCs 
subpopulation undo control condition can be related to AMPA receptor mediated component of the mEPSCs.

Note that in the SHAM 0 Mg dataset we can reliably identify only one component but with the K1 < 1 as 
shown in Fig. 3D. At the same time, it is worth noting that an existence of the second component can not be 
excluded completely because it could lead to underestimating the data collected in the bin centred at A = 29.5 pA, 
see Fig. 3E, and the appearance of the hump-like deviation from linearity in the generalised Fisher–Pry plot in 
Fig. 3F in the same range of amplitudes. However, a limited amount of registered data with large amplitudes does 
not allow specifying details of the second component in this case.

Interesting that upon enzymatic attenuation of the ECM in hippocampal slices, the amplitude distributions of 
mEPSCs in pyramidal neurons also clearly showed bimodality in both cases in control for normal solution and 
for NMDA receptor-dependent mEPSCs in solution without Mg2+ (Fig. 3G–L). However, one can observe the 
appearance of the low-amplitude mEPSCs subpopulation with a mean mEPSCs amplitude of 7.9 ± 1.4 pA (and 
6.8 ± 1 pA for NMDA-dependent mEPSCs at 0 mM [Mg2+]), which is three times smaller than the quantal size 

(5)c.d.f .(A) =
2

∑

j=1

Gj(A)
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−e
−rj(A−Amj)

e−rj
�

A−Amj

�

≡ Kj
1

r−1
j

e

−











�

A−Amj

r−1
j

�

+e

−





A−Amj

r−1
j















.

(8)FP(A) ≡ − ln

[

ln

(

Kj

A

)]

= rjA+ Amj .



6

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15660  | https://doi.org/10.1038/s41598-023-42882-9

www.nature.com/scientificreports/

obtained upon control condition. The mean of the main mode of mEPSCs amplitude distribution not significantly 
decreased compared to sham case and is equal to 18.8 ± 3.4 pA in the presence of Mg2+ and to 17.3 ± 2.3 pA for 
NMDA-dependent mEPSCs in solution without Mg2+ . The differences between the mean mEPSCs amplitudes 
for sham and ChABC cases is less than the largest of the pair of σ of their distributions. The appearance of low-
amplitude mEPSCs subpopulations and the decrease seen in the mean mEPSC amplitudes of the main mode for 
both normal and NMDA-dependent mEPSCs after ChABC treatment can indicate an increase in the number of 
new unpotentiated synapses onto CA1 pyramidal neurons following ECM attenuation. This result is consistent 
with the observation that immature synapses have lower quantal amplitude than potentiated ones35.

The results obtained using the proposed analysis are consistent with the findings of the original work28, from 
which we used the mEPSC datasets. In that study, morphological observations based on the 3D reconstruction 
of electron microscopy images of hippocampal slices revealed that ECM attenuation increases the number of 
glutamatergic synapses onto CA1 pyramidal neurons. However, the traditional approach of electrophysiological 
data analysis, based on the comparison of cumulative probability distributions of mEPSC amplitudes and estimat-
ing of mean mEPSC amplitudes for the entire dataset, was not able to reveal the appearance of a low-amplitude 
mEPSC subpopulation upon ECM attenuation. Consequently the shown28 statistically significant decrease in the 
mean mEPSC amplitude upon ECM attenuation does not coincide with the results of our analysis.

Discussion
In this paper, we present the following key finding: a novel sequential procedure for precise analysis of mEPSC 
amplitude distributions, which argues in favour of the representation of mPSC amplitudes’ statistics as following 
the Gumbel distribution, which is directly related to the extreme events theory, which considers the registered 
spikes as the such events. We have shown that the proposed approach can reliably detect multimodality in the 

Figure 3.   Statistical analysis of mEPSC amplitudes for SHAM (A–C) and ChABC (G–I) experimental 
conditions as well as for NMDA receptor-dependent mEPSCs amplitudes for SHAM 0 Mg (D–F) and 
ChABC 0 Mg (J–L). Empiric c.d.f.’s formed by experimental data are shown as black circles in (A,D,G,J) along 
with their fitting by Eq. 5 (black solid curve) and the individual components (blue dashed and green dash-dotted 
curves). Subpanels (B,E,H,K) demonstrate the respective empiric probability distributions (histograms with 
bins of the widths �A = 2 pA centred in semi-integer points), the total composite p.d.f. as a sum of Gumbel’s 
components given by Eq. 6 (black solid line) and partial weighted Gumbel distributions (blue dashed and green 
dash-dotted curves). The generalized Fisher–Pry plots (8) for the two revealed components, where solid lines 
indicated linear fits best approximating the subdivided components of experimental data (circles) in the least-
mean square sense are shown in (C,F,I,L).
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distributions of mEPSC amplitude, allowing for accurate determination of the size and variability of the synaptic 
response, which is more statistically rich than the simplest quantal picture.

The proposed procedure for mEPSC amplitude distributions analysis does not operate with the fitting of 
empiric frequencies of the events’ occurrences to some a priory chosen model probability density function since 
this widely used approach is not robust and leaves a variety of interpretations for different skewed bell-shaped 
functions. On the contrary, we deal with the cumulative distribution functions, i.e. with the representation 
known as belonging to the class of robust methods29,36 and also provides a possibility to judge the adequacy of 
the method using the linearising variable alteration without referring to details of the optimization procedure’s 
implementation.

Figure 2 illustrates this feature for the whole class of distributions, which can be considered as the possible 
generalization of binomial model, i.e. with the probability of spike-induced current defined by a product of a 
possible current’s value and its complement to unity (a possibility to not discharge). It is shown that neither of 
finite integer power laws lead to adequate linearisation of the direct experimental data.

Figure 4 illustrates this approach by the case study of testing of the Weibull distribution (as a generalization 
of the Gamma distribution), which has been discussed earlier23,27 as a possible candidates for such statistics. The 
Weibill distribution has the cumulative distribution function

where �Ŵ(1+ 1/k) = �A� determines the mean values 〈A〉 and k is the power-law parameter. This c.d.f. allows 
the linearising variable alteration, see labels of axes in Fig. 4, which directly operates with the recorded data. 
But is clearly seen that, in contrast to Fig. 3F, it is definitely non a straight line. Thus, the Gumbel distribution 
demonstrates its indisputable advantage (note that some arguments in favour of such situation were provided 
in the work27 but without such demonstrable unambiguous confirmation).

Another important comparison should be done with the Skew normal distribution (SND), which may origi-
nates for the statistics of data obtained, e.g. by the simple artificial elimination of data with amplitudes below 
some threshold from the full record of normally distributed random process37.

In this case, one can see from Fig. 5 that both c.d.f.’s corresponding to the Gumbel distribution [Eq. (6)] and 
to the SND, which has the form

have similar reproducibility of the data, although the Gumbel distribution is slightly better: the correlation coef-
ficients are equal to 0.9992 and 0.9950 for the Gumbel distribution and the SND, respectively; the relative aver-
age absolute deviations between the experimental and the fit-based data are equal to AADGumbel = 0.93% and 
AADGumbel = 1.32% . There are two reasons for this: (1) the SND is more flexible (Eq. 9) has four parameters, A′ , 
ω , α , for the adjustment if the asymptotic values is strictly equal to one, otherwise their number is equal to five) 
while the Gumbel-Gompertz expression has only three parameters even taking into account an indefinite asymp-
totic value; (2) the Gumbel distribution relates to the statistics of extremes in the time series, i.e. it is also a kind 
of the sample’s truncation although, as it will be discussed below, this variant looks more biophisically-relevant.

The best overlapping two cumulative distributions seen in Fig. 5 is observed in the middle part, which is 
around the mode of the probability density functions. From Eq. (7),

c.d.f .W (A) = 1− exp
(

−(A/�)k
)

,

(9)c.d.f .SND(A) =

A−A′
ω

∫

−∞

[

1+ erf

(

α
x
√
2

)]

e−
x2

2
dx
√
2

Figure 4.   Testing of applicability of the Weibull distribution to the statistics of experimental data recorded in 
Mg2+ free sham solution (SHAM 0 Mg).
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i.e. reproduces the Gaussian distribution in the vicinity of A = Am.
The probability density functions corresponding to Eq. (9) has the same property around A = A′:

Both expressions, Eqs. (10) and (11), supports the classic idea3 that individual quantal peaks are not a point-
wise-supported but has a finite wide due to the normal-distributed nose widening. Thus, our results, which oper-
ate with the single-quantum range of currents are in line with this hypothesis but refine it taking into account 
skewness of the distribution due to the specificity of the experiments’ realisation. In addition, we would like to 
stress again, despite the similarity of Eqs. (10) and (11), the former in the full range of A provides a more clear 
picture.

Let us consider this in more detail. From the computational point of view, the approach proposed in this 
work, based on the Gompertz equation, and leading the the Gumbel distribution, operates with the model, 
which allows the linearising variable alteration, see Figs. 2 and 3F, which is independent of any optimisation 
procedure, it requires the raw experimental data only to ensure the adequacy of the model. For the SND, there 
is no such transformation in principle, i.e. quality of regression carried out by the more multiparametric curve 
is determined by the optimization procedure. For example, looking at Fig. 3F, one can see a “hump-like” devia-
tion from linearity for the current amplitude around 28 pA and, respectively, to interpret it as traces of very 
rare spikes of the higher mode. No such conclusion can be made from the optimization-based procedure for 
the SND. This is especially important for the case of multimodal signals, see Fig. 3A–C and G–L. Although now 
the decomposition involves the optimization (not very complicated due to linearizability), the results for both 
components again can be checked by the existence of linearity for the transformed separated data. There is no 
such possibility for the SND; moreover, the procedure starts to be more complicated, computationally expensive 
and less robust due to necessity to deal with numerical integration of Eq. (9) and searching the global minimum 
influenced by 10 parameters in the case of two components.

The second line of reasoning addresses more biophysical interpretation of experiments and their results. The 
SND emerges when an observer mechanically cuts-off all data with magnitudes less than some arbitrary thresh-
old. Thus, the rest of the data may include both high-intense components of the background noise and target 
spikes. On the contrary, the Gumbel distribution emerges when only extreme events for each short subinterval 
of observations are taken into account. This is namely the procedure of extractions of spikes (i.e. extreme events) 
from the background electric noise.

This approach provides also a solid statistical background for choosing an appropriate distribution or a com-
bination of superimposed local distributions. When operating with sigmoidal functions representing c.d.f.’s, it 
is possible to introduce generalised multiparametric functions, which cover a variety of possible distributions 
and to choose the one, which best resembles the experimental data, and support this choice statistically. As well, 
processing sigmoidal c.d.f.’s allows for transferring to this new area of applications the methods developed in 
the field of population dynamics and mathematical economics for the decomposition of a process with multiple 
saturated states into its constituent components. This transfer is based on the general mathematical similarity of 
expressions for the saturated growth curves and the asymptotic tending of the cumulative probability distribu-
tion functions when time in the former case is replaced with an ordered set of registered values of measured 
stochastic quantities in the latter.
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Figure 5.   The comparison of the c.d.f. of the Gumbel distribution (solid line) and the Skew normal distribution 
(dashed line) fitted to the experimental data (circles) recorded in Mg2+ free sham solution (SHAM 0 Mg).
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To illustrate the developed approach, we chose previously obtained experimental data of mEPSCs amplitudes 
on the effect of the extracellular matrix on synaptic plasticity28. Proposed statistical technique allowed us to 
identify previously unnoticed additional modality in the mEPSC amplitude distribution, indicating the forma-
tion of new immature synapses upon ECM attenuation.

Presence of different components in amplitudes of mEPSCs could reveal different actions of ECM removal in 
Sham and ChABC conditions. Consistently with previous data28, the second observed low-amplitude subpopula-
tion of mEPSCs upon ECM attenuation could be mediated by currents occurring in new immature spines, which 
are not present in Sham. Alternatively, this second component could also be observed as a result of increased in 
glutamate diffusion after ECM removing38,39 and could trigger activation of a larger number of NMDA receptors 
in ChABC condition. The latter, could significantly affect synaptic transmission and plasticity. Therefore, current 
approach can help to identify different physiologically relevant components of mEPSCs.

Note that due to the low frequency of mEPSC generation in our analysis, we used the mEPSC amplitude 
dataset for all recorded cells together. As a result, the second low-amplitude component of the distribution may 
correspond to outlier cells with measurement artifacts (such as having a large resistance and, accordingly, smaller 
current amplitudes). However, the proposed statistical procedure can automatically identify and account for such 
outliers. To resolve this issue, the mEPSC amplitude should be analyzed in individual recordings. The approach 
proposed in this study allows researchers to automatically identify features of the data that require additional 
checks and can significantly increase the informativeness of both existing and newly obtained experimental data.

Note also, that identification of different statistical components of mEPSCs may have functional significa-
tions for neuronal circuits at system level. Purely random fluctuations with smaller amplitudes were local events 
determined only by quantal nature of synaptic release. The extreme events required more level of coherence that 
can be provided by different mechanisms of network or system level activation including neuron circuit signal-
ling and extrasynaptic processes.

We chose to use mEPSC recording data to illustrate the proposed statistical approach because they are the 
most difficult to analyze and are valuable in determining the quantal response. The problems associated with 
mEPSC data processing are as follows: (1) data points are noisy and scarce; (2) mEPSCs are highly variable; (3) 
mPSC amplitudes are small relative to the recording noise; and finally, (4) in practice, mEPSC amplitude histo-
grams are skewed toward larger amplitudes and differ from a normal distribution, making it a challenge to find 
a continuous function that fits the mEPSC amplitude distributions well. Despite these difficulties, estimates of 
quantal size and its variability from the mEPSC amplitude distributions are highly sought after, as they are used 
as a reference for correcting methods for establishing the quantal parameters that describe synaptic transmis-
sion and indicate the locus of synaptic plasticity. In addition to mEPSC data, the developed approach could be 
applied to detect multimodality and precisely estimate the characteristics of different modes in the amplitudes of 
evoked PSCs. Usually, an amplitude histogram of evoked PSCs demonstrates narrow, well-defined multiple peaks 
that can be fitted as the sum of several Gaussian curves, with amplitudes corresponding to integral multiples of 
quantal size. However, there are several potential sources of error in fitting distributions using this approach, such 
as the dependency of the fitting algorithm on bin size, variations in data subsets, and finite sampling from large 
populations. Thus, it was essential to subject the amplitude data to various tests to evaluate the relative quality of 
statistical models for a given dataset. Within this context, the methods of similarity quantification, which is inde-
pendent of an procedure of optimisation during fitting and operates with the raw data only, look more convinc-
ing. The discussed similarity between the Gompertz equation known from the theory of dynamical systems and 
the Gumbel distribution related to stochastic processes, is a promising example toward the mentione direction.

Finally, we can highlight that the p.d.f.’s for both components belong to the same kind of distribution, which 
argues in favour of its interpretation as an example of the extreme value process. The “high” values of micro-
currents, which reflect spontaneous synaptic activity, are relatively rare events emerging against the background 
of sub-threshold activity. It is worth noting that this situation is conceptually close to the subject of nonequi-
librium statistical physics of small fluctuating systems, where noise plays a significant and constructive role40,41. 
In particular, one can note recent combinatorial arguments42 for an emergence of the extreme value statistics in 
the presence of excited/non-excited states instead of the canonical distribution.

Methods
Slice preparation and electrophysiology.  All experiments were performed in 4- to 6-week-old 
C57BL/6J male mice. Animals were killed by cervical dislocation and then decapitated. The brains were exposed 
and chilled with ice-cold solution containing (in mM) 87 NaCl, 2.5KCl, 7 MgCl2 , 1.25 NaH2PO4 , 26.2 NaHCO3 , 
0.5 CaCl2 , 25 D-glucose, and 50 sucrose. Hippocampi from both hemispheres were isolated, and 350 μm-thick 
transverse slices were cut with a vibrating microtome (Microm HM 650 V, Thermo Fisher Scientific, or VT1200S, 
Leica). Slices were incubated in a 3-mL chamber for 2 h at 37 ◦ C in a solution containing (in mM) 113 NaCl, 
2.38 KCl, 1.24 MgSO4 , 0.95 NaH2PO4 , 24.9 NaHCO3 , 1 CaCl2 , 1.6 MgCl2 , 27.8 D-glucose, and 0.2 % bovine 
serum albumin (sham) or in the same solution supplemented with 0.2 U/mL of protease-free chondroitinase 
ABC (ChABC) from Proteus vulgaris (Amsbio, UK). Attenuation of ECM by ChABC was confirmed with a loss 
of Wisteria floribunda agglutinin (WFA) labeling. Next, the slices were transferred to a recording chamber and 
were continuously perfused with a solution containing (in mM) 119 NaCl, 2.5KCl, 1.3 MgSO4 , 1 NaH2PO4 , 26.2 
NaHCO3 , 2.5 CaCl2 , and 11 D-glucose. All solutions were saturated with 95% O 2 and 5 % CO2 . The osmolarity 
was 295 ± 5 mOsm.

Whole-cell recordings from CA1 pyramidal neurons were obtained with glass electrodes (3–5 M� resist-
ance). mEPSCs were recorded using an intracellular solution containing (in mM): 130 KCH4SO4 , 8 NaCl, 10 Na 
phosphocreatine, 10 HEPES, 2 EGTA, 3 Na L-ascorbic acid, 10 HEPES, 0.4 NaGTP, 2 MgATP, and 5 QX314 Br 
(pH adjusted to 7.2 with KOH and osmolarity adjusted to 290 mOsm). The membrane potential was clamped at 
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− 70 mV. The extracellular solution contained 100 μM picrotoxin, 200 μM (S)-a-methyl-4-carboxyphenyglycine 
(MCPG), 5 μM CGP52432, and 1 μM tetrodotoxin to block GABAA, mGluR, GABAB receptors, and action 
potentials, respectively. mEPSCs mediated by NMDA receptors were pharmacologically isolated by applying 
25 μM NBQX, an AMPA receptor blocker. NMDA-mediated mEPSCs were recorded using an intracellular solu-
tion containing (in mM): 130 KCH3SO3 , 8 NaCl, 10 Na phosphocreatine, 10 HEPES, 2 EGTA, 3 Na L-ascorbic 
acid, 10 HEPES, 0.4 NaGTP, 2 MgATP, and 5 QX314 Br (pH adjusted to 7.2 with KOH and osmolarity adjusted 
to 290 mOsm) in Mg2+ free extracellular solution in the presence of 100 μM picrotoxin, 200 μM MCPG, 5 μM 
CGP52432. Figure 6 illustrates representative traces of mEPCSs and NMDA-mediated mEPSCs (recorded at 0 
Mg2+ and additionally in the presence of AMPARs blocker). From our measurements, we observe significantly 
lower noise level compared to amplitude of events. The amplitude of mEPCSs and NMDA-mediated mEPSCs 
were similar for both Sham and ChABC and ranged from average from 15 to 35 pA, however the amplitude was 
slightly lower in ChABC and ranged from 10 to 25 pA.

Electrophysiological data were analyzed with WinWCP, Mini analysis (6.0.2, Synaptosoft, USA), and Clampfit 
(9.0 Axon Instruments Inc.; Union City, CA, USA). Detection of mEPSC was done with a first-order derivative 
algorithm, applied to traces after digital low-pass filtering at 2 kHz.

Data availability
Data and code available from the corresponding author on reasonable request.
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