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Meteorological variability 
and predictive forecasting 
of atmospheric particulate 
pollution
Wan Yun Hong 

Due to increasingly documented health effects associated with airborne particulate matter (PM), 
challenges in forecasting and concern about their impact on climate change, extensive research 
has been conducted to improve understanding of their variability and accurately forecasting them. 
This study shows that atmospheric PM10 concentrations in Brunei-Muara district are influenced 
by meteorological conditions and they contribute to the warming of the Earth’s atmosphere. 
PM10 predictive forecasting models based on time and meteorological parameters are successfully 
developed, validated and tested for prediction by multiple linear regression (MLR), random forest 
(RF), extreme gradient boosting (XGBoost) and artificial neural network (ANN). Incorporation of 
the previous day’s PM10 concentration (PM10,t-1) into the models significantly improves the models’ 
predictive power by 57–92%. The MLR model with PM10,t-1 variable shows the greatest capability 
in capturing the seasonal variability of daily PM10 (RMSE = 1.549 μg/m3; R2 = 0.984). The next day’s 
PM10 can be forecasted more accurately by the RF model with PM10,t-1 variable (RMSE = 5.094 μg/m3; 
R2 = 0.822) while the next 2 and 3 days’ PM10 can be forecasted more accurately by ANN models with 
PM10,t-1 variable (RMSE = 5.107 μg/m3; R2 = 0.603 and RMSE = 6.657 μg/m3; R2 = 0.504, respectively).

Air pollution is the world’s largest environmental health risk that accounts for 6.7 million deaths every year with 
4.2 million deaths globally in 2019 due to exposure to atmospheric particulate matter that causes cardiovascular 
and respiratory diseases, and cancers according to recent estimates by the World Health Organisation (WHO)1. 
The greatest atmospheric (outdoor) air pollution-related deaths were in the Southeast Asia region. The impact 
of air pollution on human health is of growing concern due to increasing exposure to air pollution, with almost 
all (99%) of the world’s population in 2019 living in areas where the air pollution levels exceed the safe WHO air 
quality guideline (AQG) limits2. There is also concern about the implications of air pollution on the climate and 
ecosystem around the world3,4. Therefore, concerted action is urgently needed to reduce air pollution to protect 
the populations from health risks and mitigate climate change.

Effective and sustainable air quality management strategies for cleaner air need to be implemented to address 
the global air pollution emergency. Research relating to air pollution has been receiving remarkable interest due 
to the urgency of understanding the influence of air pollution and its trends5. An air quality forecasting model 
could be an important tool in providing estimates and future predictions of air pollutant concentrations for 
policymakers to develop legislation and policies to reduce air pollution as well as to alert the public when air 
pollution events are expected6. Two common methods used in air quality forecasting are statistical modelling and 
chemical transport modelling, which can be based on meteorological conditions to account for atmospheric dilu-
tion and diffusion capacity5,7. Statistical models are suitable for describing site-specific associations between air 
pollutants and meteorological parameters, they are easier, faster and more accurate than the chemical transport 
models8 and no costly emission inventories and computer resources are required9. However, statistical models 
are highly dependent on the time series data and they require a large amount of historical data5.

A popular statistical method uses machine learning models10. Lasheras et al. (2020) built and analyze different 
statistical and machine learning PM10 forecasting models based on the concentrations of six air pollutants: PM10, 
sulfur dioxide (SO2), nitrogen monoxide (NO), nitrogen dioxide (NO2), carbon monoxide (CO) and ozone (O3) 
as input variables11. For instance, deep learning models (a subset of machine learning) such as artificial neural 
networks (ANNs) tend to have higher accuracy than statistical models but they are unstable and have a high 
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dependence on data5. On the other hand, the chemical transport models explicitly describe all major physico-
chemical and meteorological processes associated with air pollution12. The drawbacks of chemical transport 
models are inaccuracies in describing the physico-chemical processes due to inadequate information on pollutant 
sources and they are not able to accurately predict extreme events, the spatio-temporal variation of air pollutants 
and time series for short and medium ranges9.

The atmospheric air quality in Brunei Darussalam, a Southeast Asian country, is usually considered clean 
despite being seasonally affected by the transboundary smoke haze, in which the atmosphere contains high 
concentrations of particulate matter (PM), especially PM equal to or smaller than 10 µm in diameter (PM10) that 
can penetrate deep into the lungs. The highest daily PM10 concentration observed across Brunei Darussalam was 
100.90 μg/m3 (moderate air quality) in September 2019 during the south-west (SW) monsoon season, which was 
caused by the transboundary smoke haze from hotspots in the Borneo region13. Although various approaches 
have been proposed for air pollution forecasting, statistical/empirical models for predicting the concentrations 
of atmospheric PM in Brunei-Muara district from time and meteorological inputs are yet to be developed.

For this reason, the present study aims to analyze the temporal variations and associations of PM10 concentra-
tions and meteorological parameters, and develop predictive forecasting models for atmospheric PM10 concentra-
tion in Brunei-Muara district that accounts for changes in meteorology over time. The objectives of the study are:

1.	 to determine the correlation between PM10 and the individual meteorological parameters (such as tempera-
ture, wind speed, wind direction and total rainfall) in different monsoon seasons as well as the combined 
effects of different rain and wind conditions on PM10 to examine their contribution to atmospheric PM10 
pollution;

2.	 to build PM10 predictive forecasting models using four modelling approaches (such as multiple linear regres-
sion (MLR), random forest (RF), extreme gradient boosting (XGBoost) and artificial neural network (ANN)) 
from the available PM10 concentration and meteorological data;

3.	 to add the previous 1, 2 or 3 days’ PM10 concentration to the model to enhance the model’s predictive power 
in explaining variability14;

4.	 to validate and test the models for predicting and forecasting the next 1, 2 or 3 days’ PM10 concentration of 
the studied area; and

5.	 to evaluate the models’ performances in explaining the daily variability of PM10 concentration.

The presented results will provide a better understanding of the effect of meteorological parameters on atmos-
pheric PM10 in Brunei-Muara district. To the best of the author’s knowledge, this study is the first to explore and 
quantify the combined effects of different rain and wind conditions on PM10 concentrations in Brunei-Muara 
district, which can be helpful to policymakers when developing air pollution mitigation measures or assessing 
the effectiveness of those measures for the studied area. The study also intends to demonstrate the significant 
potential of the proposed PM10 predictive forecasting models in producing more accurate PM10 predictions that 
can provide early information against unhealthy atmospheric PM10 concentrations to the local community so that 
the necessary precautionary measures can be taken to minimize exposure to air pollution to protect public health.

Study area and data
Brunei-Muara district is located in the northeast of Brunei Darussalam, bordering the South China Sea and 
Labuan (Malaysia) to the north, Brunei Bay to the east, Limbang, Sarawak (Malaysia) to the south and the Bru-
neian district of Tutong to the west15 (Fig. 1). It is the most populated district in Brunei Darussalam, with 318,530 
people (as of 2021), containing about 72% of the country’s population although it has the smallest area (570 
km2) among the four districts of Brunei Darussalam15,16. Brunei-Muara is where the country’s capital (Bandar 
Seri Begawan), the seat of government ministries and departmental headquarters, and the center of commercial 
activities are located15. It also houses the country’s only international airport (Brunei International Airport) and 
main deep-water port (Muara Port).

Daily average PM10 concentrations (μg/m3) and meteorological data measured in Brunei-Muara district from 
2009 to 2019 (11 years) were obtained from the Department of Environment, Parks and Recreation (JASTRe), 
Ministry of Development, Brunei Darussalam and the Brunei Darussalam Meteorological Department (BDMD), 
Ministry of Transport and Infocommunications, Brunei Darussalam, respectively. The meteorological parameters 
include the daily average temperature (°C), wind speed (m/s) and wind direction (°), and daily total rainfall 
(mm). The time parameters are the observations’ day, month and year. The data are classified into four monsoon 
seasons, namely: north-east (NE) monsoon (from December to March), inter-monsoon 1 (from April to May), 
south-west (SW) monsoon (from June to September) and inter-monsoon 2 (from October to November).

Methods
This study employed XLSTAT software for statistical analysis and modelling. The statistical analysis includes 
descriptive statistics (such as minimum, maximum, mean and standard deviation) of daily average PM10 con-
centrations and meteorological parameters during different seasons in Brunei-Muara district from 2009 to 2019. 
To explore the impact of meteorological parameters on PM10 pollution in different seasons, Pearson correlation 
tests were performed between daily average concentrations of PM10 ( y-variable) and daily average temperature, 
wind speed and wind direction, and daily total rainfall ( x-variables) that were recorded from 2009 to 2019, with 
the seasons as the subsamples. The Pearson correlation coefficient r was calculated using:
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where n is the number of observations, x is the value of the x-variable in the sample and y is the value of the y
-variable in the sample. A Pearson correlation coefficient represents the degree of the linear correlation between 
two variables. The correlations were also tested with a significance level of 5%. The computed coefficients of 
determination R2 correspond to the squared of the Pearson correlation coefficients, which measure the strength 
of the correlation.

Data from 2009 to 2018 (10 years) were first modelled using the MLR approach to describe the variance of 
the time and meteorological parameters on the daily variation of PM10 concentrations for seven scenarios. For 
Scenario 1/Baseline (i.e., PM10 model with time and meteorological parameters only), the explanatory variables 
were the time parameters (that include the observations’ day, month and year) and the meteorological parameters 
(that include the daily temperature, wind speed, wind direction and total rainfall). For Scenarios 2 to 4 (i.e., PM10 
models with the previous day’s PM10, the average of the previous 2 days’ PM10 and the average of the previous 
3 days’ PM10; which are denoted by PM10,t-1, PM10,t-2 and PM10,t-3, respectively), the explanatory variables were 
all the time and meteorological parameters and the PM10,t-1, PM10,t-2 or PM10,t-3 variable. For Scenarios 5 to 7 
(i.e., PM10 models for the next 1 day, 2 days and 3 days; which are denoted by PM10,t+1, PM10,t+2 and PM10,t+3, 
respectively), the explanatory variables were all the time and meteorological parameters, the corresponding 
PM10 concentrations and the PM10,t-1 variable. Variables that might be either constant or too correlated with 
other variables used in the model were not taken into account by the model and the model’s tolerance value was 
0.0001. The interactions in the model were set at 3 and the best model was selected based on the lowest mean 
square errors (MSE). The minimum variables for all MLR models were set at 2 and the maximum variables were 
set at 7 for Scenario 1/Baseline, 8 for Scenarios 2 to 4, and 9 for Scenarios 5 to 7. In this study, 90% of the data 
were used for model learning and 10% of the data were randomly selected for model validation. Once the best 
model was built, it was tested to make predictions on the 2019 data (1 year).

Then, the RF approach was applied to build more efficient predictive regression models for daily PM10 con-
centrations by generating several predictors and then combining their respective predictions. Data from 2009 
to 2018 (10 years) were used to develop random forest PM10 models for the seven scenarios. The explanatory 
variables used in the RF models for Scenarios 1 to 7 were the same as those used in the MLR method. For the 
forest parameters, the sampling method was random with replacement and the forest type was bagging with 
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Figure 1.   Locations of PM10 and meteorological monitoring stations in Brunei-Muara district, Brunei 
Darussalam.
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90% of the data used to generate the trees. The number of trees in the forest was set at 300 and the maximum 
allowable construction time of all trees in the forest was set at 300 s with a convergence of the machine learning 
algorithm set at every 100 trees. For the tree parameters, the minimum node size was 7 for Scenario 1, 8 for 
Scenarios 2 to 4) and 9 for Scenarios 5 to 7, respectively). The minimum son size was set at 2 and the maximum 
tree depth was set at 20 with a complexity parameter value of 0.0001 for all the models. All the random forest 
PM10 models were validated with 10% of the data, which were randomly selected, and tested to make predictions 
on the 2019 data (1 year).

Next, an XGBoost approach was employed to build combined boosted ensemble regression models for daily 
PM10 concentrations prediction based on the available data from 2009 to 2018 (10 years) for the seven scenarios. 
The explanatory variables used in the XGBoost models for Scenarios 1 to 7 were the same as those used in the 
MLR method. The maximum number of iterations of the model was 50 and the learning rate was 0.3 with zero 
minimum loss reduction. The objective/loss function was quadratic and the metric of the loss function was the 
root mean square error (RMSE). For the tree parameters, the minimum son size was 2 and the maximum tree 
depth was 6. When the PM10 models for Scenarios 1 to were built, they were validated with 10% of the data 
(selected at random) and then tested to make predictions on the 2019 data (1 year).

Lastly, an ANN approach was employed to build more complex and efficient predictive regression models 
for daily PM10 concentrations for the seven scenarios. The ANN model consists of an input layer (explanatory 
variables for Scenarios 1 to 7), two hidden layers and an output layer (PM10 variable for Scenario 1 to 4, PM10,t+1 
variable for Scenario 5, PM10,t+2 variable for Scenario 6 and PM10,t+3 variable for Scenario 7) with a group of 
interconnected nodes (artificial neurons). The explanatory variables used in the ANN models for Scenarios 1 to 7 
were the same as those used in the MLR method. The neuralnet function in XLSTAT-R was used, which calls the 
neuralnet function from the neuralnet package in R developed by Stefan Fritsch and Frauke Guenther (2022)17. 
Data from 2009 to 2019 (11 years) were rescaled and randomly split into a training sample (80% of the data), a 
validation sample (10% of the data) and a test sample (10% of the data). The number of neurons in the hidden lay-
ers was 2,2 (that corresponds to 2 neurons in the first hidden layer and 2 neurons in the second hidden layer) for 
Scenario 1, 3,2 for Scenarios 2 to 4, and 4,2 for Scenarios 5 to 7. The threshold value was 0.01 and the maximum 
steps were 100,000. The algorithm RProp + was chosen, which refers to resilient backpropagation with weight 
backtracking. The error function was squared errors and the activation function was logistic with linear output.

The models’ error and accuracy between the predicted and observed values for Scenarios 1 to 7 were evalu-
ated by several performance metrics, which include the RMSE, R2, mean absolute percentage error (MAPE), 
Willmott’s index of agreement (WIA) and Legates and McCabe index (LCI). The best model was chosen when 
it has a minimal error (i.e., RMSE close to 0 and/or MAPE close to 0%) and it has high accuracy (i.e., R2, WIA 
and/or LCI close to 1).

Results and discussion
Table 1 summarizes the seasonal characteristics of PM10 pollution and meteorological conditions in Brunei-
Muara district from 2009 to 2019. In this time period, only 1.1% of the daily average PM10 concentrations were 
greater than the 2006 WHO Global AQG limit for daily average PM10 concentration (i.e., 50 μg/m3)18 and only 
1.4% of the daily average PM10 concentrations were greater than the 2021 WHO Global AQG limit for daily 
average PM10 concentration (i.e., 45 μg/m3)19, mostly during the SW monsoon season in June, August and Sep-
tember, and occasionally continued during the inter-monsoon 2 season in October (Fig. 2a). The maximum daily 

Table 1.   Statistical summary of seasonal PM10 pollution and meteorological conditions in Brunei-Muara 
district from 2009 to 2019.

Season & Period Statistic PM10 (µg/m3) Temperature (°C) Wind speed (m/s) Wind direction (°)
Total rainfall 
(mm)

NE Monsoon (Dec–Mar)

Minimum 1.0 23.2 1.2 2.0 0

Maximum 38.0 30.0 7.1 33.1 195.1

Mean 12.3 27.4 2.5 18.8 9.9

Standard Deviation 6.2 1.0 0.8 5.0 21.1

Inter-Monsoon 1 (Apr–
May)

Minimum 1.1 25.1 1.3 10.9 0

Maximum 39.7 31.0 3.8 28.3 150.2

Mean 12.1 28.3 2.2 21.3 8.6

Standard Deviation 5.8 0.9 0.4 2.4 18.6

SW Monsoon (Jun–Sep)

Minimum 1.5 24.8 1.2 10.1 0

Maximum 97.4 30.5 5.1 27.7 275.0

Mean 17.9 28.0 2.3 21.3 7.6

Standard Deviation 12.2 1.0 0.5 2.0 17.3

Inter-Monsoon 2 (Oct–
Nov)

Minimum 2.0 24.2 1.1 6.8 0

Maximum 63.5 29.9 5.2 26.9 122.9

Mean 12.8 27.6 2.3 21.0 10.3

Standard Deviation 6.9 0.9 0.5 2.5 17.0
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average concentration of PM10 observed in Brunei-Muara was 97.4 μg/m3 in September 2019, with a seasonal 
mean concentration of PM10 of 17.9 μg/m3 and a standard deviation of 12.2 μg/m3 during the SW monsoon 
season (Table 1).

Brunei-Muara district has a tropical climate and it is usually very warm and wet throughout the year. From 
2009 to 2019, the daily average temperatures ranged between 23.2 °C and 31.0 °C, with the hottest day recorded 
in May 2014 (Table 1 and Fig. 2b). The daily wind speed in Brunei-Muara can be as low as 1.1 m/s (as recorded 
during the Inter-monsoon 2 season in November 2017) and it can reach as high as 7.1 m/s (as recorded during 
the NE monsoon season in February 2016) (Fig. 2c). The wind types experienced in Brunei-Muara from 2009 
to 2019 were either light air (0.3–1.5 m/s), light breeze (1.6–3.3 m/s), gentle breeze (3.4–5.4 m/s) or moderate 
breeze (5.5–7.9 m/s) (Fig. 2f) based on the wind classifications described by the World Meteorological Organiza-
tion (WMO)20. Usually, the wind blows as a light breeze throughout the year (Fig. 2f), with monthly mean wind 
speeds ranging from 2.20 m/s to 2.74 m/s (Fig. 2c). The prevailing winds were from the north-northeast (NNE) 
direction throughout the year (Fig. 2g), with mean wind degree directions between 18.8° and 21.3° (Fig. 2d).

The highest daily total rainfall was 275.0 mm in September 2019 (Table 1 and Fig. 2e). The rainfall types that 
occurred in Brunei-Muara from 2009 to 2019 were either no rain (0 mm/day), drizzle (0.1–19.9 mm/day), light 

Figure 2.   Monthly variations of PM10 concentrations (a), temperature (b), wind speed (c), wind direction (d) 
and total rainfall (e), and monthly frequencies of the classified wind types (f), wind (cardinal) directions (g) and 
rainfall types (h) in Brunei-Muara district from 2009 to 2019.
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rain (20–59.9 mm/day), moderate rain (60.0–239.9 mm/day) or heavy rain (240.0–1,199.9 mm/day) (Fig. 2h) 
according to the rainfall classifications recommended by the WMO20. Drizzle was the most frequent type of 
rainfall (44.9% of the total observations) that often occurs during the NE monsoon (December to March) and 
both inter-monsoon (April to May and October to November) seasons. The dry season usually occurs during 
the SW monsoon season (June to September), with 43.9% of the observations in this season without any rain.

The Pearson correlation coefficients r between PM10 concentrations and the selected meteorological param-
eters for Brunei-Muara district from 2009 to 2019 were computed for different monsoon seasons (Table 2). 
PM10 was positively and moderately correlated (0.30 < r < 0.49) with temperature during NE monsoon, inter-
monsoon 1 and SW monsoon seasons (December to September), and it is positively and weakly correlated ( r < 
0.29) during the inter-monsoon 2 season (October to November). This implies that PM10 absorbs sunlight and 
warms the Earth’s atmosphere21.

Between PM10 and wind speed, a weak positive correlation ( r < 0.29) was observed during the NE monsoon 
season (December to March) and weak negative correlations ( r < − 0.29) were observed during SW monsoon 
and both inter-monsoon seasons (April to November). On the other hand, a weak negative correlation was 
observed between PM10 and wind direction during NE monsoon, and weak positive correlations were observed 
during SW monsoon and both inter-monsoon seasons. This implies that the atmospheric PM10 concentrations 
can be diluted and diffused by particle dispersion and/or transported to a greater height or to a nearby area when 
the wind speed increases22,23 and blows from the NNE direction, generally during SW monsoon and both inter-
monsoon seasons (April to November). However, during the NE monsoon season (December to March), more 
PM10 in the area can be blown away at reduced wind speed when the wind blows from the NNE and N directions.

The correlation between PM10 and total rainfall was negative and weak in all the seasons, indicating that more 
PM10 in the atmosphere can be washed away when the rain gets heavier24. All the coefficients between PM10 
and the selected meteorological parameters, and most of the coefficients between the selected meteorological 
parameters were statistically significant (p-values < 0.0001) at a 0.05 significant level (values with an asterisk * 
in Table 2). The associations between PM10 and each of the selected meteorological parameters during different 
monsoon seasons are illustrated in Fig. 3.

Figure 4 shows the changes in mean daily PM10 concentration (from the previous day) for different rain and 
wind conditions in Brunei-Muara district from 2009 to 2019. When there was no rain in the day, the mean daily 
PM10 concentration was increased by only 5% (minimum) during a gentle breeze and by 15% (maximum) dur-
ing light air (Fig. 4a), suggesting that PM10 in the atmosphere can be blown away as the wind speed increases. A 
drizzling day with a gentle breeze can reduce the mean daily PM10 concentration by only 6% (Fig. 4b), about 2% 
more than those during light and moderate rain with a light breeze (Fig. 4a). When the wind speed was increased 
from light breeze to gentle breeze during light rain, the mean daily PM10 concentration was reduced 2.5 times 
more (i.e., from 1.7% to 4.3%) (Fig. 4a). From 2009 to 2019, moderate rain with light air in Brunei-Muara district 
reduced the mean daily PM10 concentrations by 7% from the previous day’s PM10 concentration, the highest 
among the different rain and wind conditions observed in the area (Fig. 4a).

Table 2.   Pearson correlation coefficients between PM10 concentrations and meteorological parameters 
during different monsoon seasons in Brunei-Muara district from 2009 to 2019. *Coefficient is significant at a 
significance level α = 0.05.

Season & Period Variable PM10 (µg/m3) Temperature (°C) Wind Speed (m/s) Wind Direction (°)
Total Rainfall 
(mm)

NE Monsoon (Dec–Mar)

PM10 (µg/m3) 1 0.376* 0.078* − 0.128* − 0.195*

Temperature (°C) 1 0.223* − 0.193* − 0.410*

Wind Speed (m/s) 1 − 0.652* − 0.037

Wind Direction (°) 1 0.053

Total Rainfall (mm) 1

Inter-Monsoon 1 (Apr–
May)

PM10 (µg/m3) 1 0.328* − 0.257* 0.163* − 0.083*

Temperature (°C) 1 − 0.163* 0.172* − 0.313*

Wind Speed (m/s) 1 − 0.232* 0.134*

Wind Direction (°) 1 − 0.044

Total Rainfall (mm) 1

SW Monsoon (Jun–Sep)

PM10 (µg/m3) 1 0.415* − 0.241* 0.149* − 0.195*

Temperature (°C) 1 − 0.287* 0.358* − 0.388*

Wind Speed (m/s) 1 − 0.204* 0.172*

Wind Direction (°) 1 − 0.141*

Total Rainfall (mm) 1

Inter-Monsoon 2 (Oct–
Nov)

PM10 (µg/m3) 1 0.211* − 0.209* 0.089* − 0.085*

Temperature (°C) 1 − 0.196* 0.049 − 0.298*

Wind Speed (m/s) 1 − 0.187* 0.143*

Wind Direction (°) 1 − 0.022

Total Rainfall (mm) 1
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Figure 3.   Scatter plots of daily PM10 concentrations against temperature (a–d), wind speed (e–h), wind 
direction (i–l) and total rainfall (m–p) during different monsoon seasons in Brunei-Muara district from 2009 to 
2019. R2 is the coefficient of determination that corresponds to the squared of the Pearson correlation coefficient 
r.

Figure 4.   Combined effects of different rain and wind conditions on mean daily PM10 concentrations for 
Brunei-Muara district from 2009 to 2019 (a–b).
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Four modelling approaches (that include MLR, RF, XGBoost and ANN) were trained, validated and tested 
for predicting daily PM10 concentrations in Brunei-Muara district in seven scenarios. The first/baseline sce-
nario was PM10 predictive models with time and meteorological parameters only. The models’ performances 
are presented in Table 3, which showed very low but acceptable accuracy with a good agreement between the 
predicted and observed daily PM10 concentrations, in which the best results were exhibited by XGBoost during 
models’ training (RMSE = 2.739 µg/m3, R2 = 0.898, MAPE = 16.67%, WIA = 0.844 and LCI = 0.687) and validation 
(RMSE = 4.645 µg/m3, R2 = 0.593, MAPE = 27.97%, WIA = 0.706 and LCI = 0.411), and ANN during model test-
ing (RMSE = 7.612 µg/m3, R2 = 0.243, MAPE = 40.20%, WIA = 0.602 and LCI = 0.204). This indicates that some 
daily variability of PM10 in the studied area is not captured by the model. For Scenario 1, the most important 
variable in predicting PM10 concentration is the year (with the highest relative contribution of about 30% to the 
XGBoost model and 29% to the RF model among the variables), suggesting that there is a link between PM10 
concentration and the year.

The second to fourth scenarios were PM10 predictive models with the previous 1, 2 or 3 days’ PM10 concentra-
tion (PM10,t-1, PM10,t-2 and PM10,t-3, respectively) added to the model. As shown in Table 3, the predictive power 
of the PM10 model in explaining variability tends to increase when the previous day’s PM10 concentration (also 
called the PM10 lag effect) was added to the MLR, RF, XGBoost and ANN models. For example, the MLR PM10 
model with PM10,t-1 variable added to the model can explain more variability (by 64% on the training sample, 
60% on the validation sample and 92% on the test sample) than that with the time and meteorological parameters 
only (i.e., Scenario 1). For Scenario 2, this MLR model appears to be a very well fit and acceptably accurate with 
very good agreement between the predicted and observed daily PM10 concentrations with RMSE = 1.549 µg/m3, 
R2 = 0.984, MAPE = 5.77%, WIA = 0.924 and LCI = 0.847 during model testing, outperforming the RF, XGBoost 
and ANN models (Table 3), which was in contrast to previous studies by other researchers25,26. This could be 
due to the differences in location/topography and meteorological conditions of the present study area from 
those of other studies, resulting in varying dispersal of air pollutants. The variability of PM10 of the best MLR 
model for Scenario 2 was explained by eight interaction variables, which were: (1) (temperature × PM10,t-1), (2) 
(month × year × PM10,t-1), (3) (month × wind direction × PM10,t-1), (4) (total rainfall × wind direction × PM10,t-1), 
(5) (wind speed × wind direction × PM10,t-1), (6) (temperature × wind direction × PM10,t-1), (7) (total rainfall × wind 
speed × wind direction), (8) (total rainfall × wind speed × PM10,t-1). The interaction variables (1) to (5) provide 
significant information in explaining the variability of PM10 for Scenario 2.

The most influential variable of the PM10 models with PM10,t-1, PM10,t-2 or PM10,t-3 variables added to the 
model was the interaction variables (temperature × PM10,t-1), (temperature × PM10,t-2) and (temperature × PM10,t-3), 
respectively. Figure 5a–d illustrates the effect of adding PM10,t-1, PM10,t-2 or PM10,t-3 variable to the ANN PM10 
model during model testing. For all four modelling approaches, it was seen that the models’ performances during 
training, validation and testing tend to decrease as the number of lag days of the PM10 concentration increases 
(due to increasing errors) and the best model performance was achieved when PM10,t-1 variable was added to 
the model. This indicates that the addition of PM10,t-1 variable to the model is sufficient to produce a reliable 
PM10 hindcasting capability.

The fifth and seventh scenarios were PM10 predictive forecasting models for the next 1, 2 or 3 days (PM10,t+1, 
PM10,t+2 and PM10,t+3, respectively) with PM10,t-1 variable added to the model. The models’ performances in Table 3 
tend to show some reductions in the predictive power of the PM10 model in explaining variability for the next 
1, 2 or 3 days (PM10,t+1, PM10,t+2 and PM10,t+3, respectively) when compared with the second scenario (i.e., PM10 
model with PM10,t-1 variable added to the model). For example, the MLR PM10,t+1 model explain lesser variability 
(by 0.5% on the training sample, 0.8% on the validation sample and 17.6% on the test sample) than the MLR PM10 
model with PM10,t-1 variable added to the model. The RF PM10,t+1 model appears to be a good fit and agreement 
between the predicted and observed daily PM10 concentrations despite having a low but acceptable accuracy 
during model testing with RMSE = 5.094 µg/m3, R2 = 0.822, MAPE = 14.85%, WIA = 0.790 and LCI = 0.580, out-
performing the MLR, XGBoost and ANN PM10,t+1 models (Table 3). This indicates the capability of the random 
forest models to forecast PM10 concentrations for the next day. The most important variable in forecasting the 
next 2 and 3 days’ PM10 concentrations is the PM10 variable (with the highest relative contribution of 50% to the 
RF PM10,t+1 model among the variables).
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Scenario Model

Training Sample Validation Sample Test Sample

RMSEa 
(µg/m3) R2,b (−)

MAPEc 
(%)

WIAd 
(−) LCIe (−)

RMSEa 
(µg/m3) R2,b (−)

MAPEc 
(%)

WIAd 
(−) LCIe (−)

RMSEa 
(µg/m3) R2,b (−)

MAPEc 
(%)

WIAd 
(−) LCIe (−)

Method 1: Multiple Linear Regression (MLR)

 1 PM10 7.731 0.183 45.54 0.569 0.137 6.810 0.207 43.66 0.564 0.129 11.657 0.068 28.39 0.554 0.107

 2
PM10 
with 
PM10,t-1

3.551 0.823 19.17 0.811 0.621 3.754 0.811 22.86 0.812 0.623 1.549 0.984 5.77 0.924 0.847

 3
PM10 
with 
PM10,t-2

3.938 0.778 21.41 0.787 0.574 4.307 0.788 27.68 0.783 0.566 1.579 0.982 5.42 0.924 0.847

 4
PM10 
with 
PM10,t-3

4.317 0.740 23.44 0.769 0.538 4.395 0.738 23.62 0.771 0.541 1.670 0.979 5.96 0.916 0.831

 5
PM10,t+1 
with 
PM10,t-1

3.621 0.818 19.12 0.811 0.622 3.645 0.803 21.94 0.808 0.615 5.292 0.808 14.80 0.789 0.579

 6
PM10,t+2 
with 
PM10,t-1

4.997 0.651 28.40 0.730 0.460 4.639 0.708 23.94 0.745 0.490 7.484 0.616 20.81 0.699 0.398

 7
PM10,t+3 
with 
PM10,t-1

5.663 0.549 32.30 0.692 0.384 6.143 0.537 27.94 0.702 0.405 8.790 0.473 23.97 0.646 0.292

Method 2: Random Forest (RF)

 1 PM10 5.594 0.572 31.12 0.703 0.406 5.710 0.446 30.88 0.667 0.333 10.180 0.289 25.64 0.614 0.227

 2
PM10 
with 
PM10,t-1

3.734 0.809 20.09 0.804 0.609 3.656 0.775 20.28 0.796 0.592 3.371 0.922 8.25 0.878 0.757

 3
PM10 
with 
PM10,t-2

4.173 0.757 22.83 0.780 0.559 4.472 0.724 19.56 0.757 0.514 3.764 0.897 7.15 0.881 0.761

 4
PM10 
with 
PM10,t-3

4.513 0.716 23.94 0.761 0.522 4.583 0.714 21.81 0.770 0.540 3.973 0.880 8.44 0.858 0.717

 5
PM10,t+1 
with 
PM10,t-1

3.633 0.818 19.64 0.809 0.618 3.880 0.764 22.09 0.799 0.598 5.094 0.822 14.85 0.790 0.580

 6
PM10,t+2 
with 
PM10,t-1

4.933 0.658 27.35 0.733 0.466 5.184 0.653 28.96 0.729 0.458 7.144 0.651 21.19 0.699 0.397

 7
PM10,t+3 
with 
PM10,t-1

5.524 0.569 30.23 0.703 0.406 5.986 0.571 30.10 0.714 0.428 8.482 0.509 23.39 0.664 0.328

Method 3: Extreme Gradient Boosting (XGBoost)

 1 PM10 2.739 0.898 16.67 0.844 0.687 4.645 0.593 27.97 0.706 0.411 10.428 0.254 24.89 0.616 0.232

 2
PM10 
with 
PM10,t-1

1.651 0.962 10.95 0.903 0.806 3.675 0.793 20.42 0.794 0.587 4.800 0.842 11.30 0.833 0.666

 3
PM10 
with 
PM10,t-2

1.846 0.953 12.26 0.891 0.782 4.361 0.691 26.70 0.744 0.487 4.839 0.830 11.68 0.818 0.635

 4
PM10 
with 
PM10,t-3

2.001 0.943 13.19 0.881 0.762 5.082 0.679 29.93 0.743 0.486 4.189 0.867 11.22 0.823 0.645

 5
PM10,t+1 
with 
PM10,t-1

1.559 0.966 10.64 0.907 0.813 3.924 0.793 21.30 0.801 0.602 5.213 0.814 14.87 0.782 0.565

 6
PM10,t+2 
with 
PM10,t-1

2.039 0.940 14.16 0.874 0.749 5.246 0.685 27.89 0.742 0.483 7.840 0.580 22.24 0.679 0.358

 7
PM10,t+3 
with 
PM10,t-1

2.330 0.921 16.17 0.859 0.718 6.059 0.621 32.79 0.701 0.401 9.456 0.390 24.69 0.634 0.269

Method 4: Artificial Neural Network (ANN)

 1 PM10 7.946 0.270 41.95 0.599 0.198 7.192 0.179 40.69 0.559 0.118 7.612 0.243 40.20 0.602 0.204

 2
PM10 
with 
PM10,t-1

3.696 0.825 18.92 0.815 0.631 4.366 0.860 22.13 0.817 0.635 3.712 0.808 19.47 0.803 0.606

 3
PM10 
with 
PM10,t-2

4.127 0.789 22.08 0.789 0.577 4.386 0.803 20.54 0.806 0.612 4.648 0.757 18.91 0.793 0.586

Continued
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For all four modelling approaches, the predictive power in explaining variability during training, valida-
tion and testing decreases as the prediction days were increased (due to increasing errors in the model). The 
ANN PM10,t+2 and PM10,t+3 models were considered to have better model performances with a good agreement 
between the predicted and observed daily PM10 concentrations despite having a very low but acceptable accuracy 
(RMSE = 5.107 µg/m3, R2 = 0.603, MAPE = 24.96%, WIA = 0.741 and LCI = 0.482 for ANN PM10,t+2 model and 
RMSE = 6.657 µg/m3, R2 = 0.504, MAPE = 32.69%, WIA = 0.697 and LCI = 0.395 for ANN PM10,t+3 model) dur-
ing model testing than the MLR, RF and XGBoost PM10,t+2 and PM10,t+3 models (Table 3). The performances of 
the ANN PM10,t+1, PM10,t+2 and PM10,t+3 models with PM10,t-1 variable added to the model during model testing 
are illustrated in Fig. 5e–g, which show a minor increase (1%) in the explanatory power of the ANN PM10,t+2 
model and a small decrease (9%) in the explanatory power of the ANN PM10,t+3 model when compared to the 
ANN PM10,t+1 models.

Conclusions
Temporal variations of PM10 concentrations and meteorological parameters (that include the daily temperature, 
wind speed, wind direction and total rainfall) in Brunei-Muara district from 2009 to 2019 were examined in this 
study. The Pearson correlation analysis showed that PM10 increases with increasing atmospheric temperature. 
More PM10 can be blown away if the wind speed increases and the wind blows from the NNE direction. Heavier 
rain can also wash away more PM10 in the atmosphere, thus improving the air quality in the studied area. Obser-
vations on the combined effects of rain and wind conditions in Brunei-Muara district from 2009 to 2019 revealed 
that moderate rain with light air reduced the most PM10 pollution in the area, with a 7% reduction in the mean 
daily PM10 concentrations from the previous day’s PM10 concentration. The MLR PM10 models, particularly with 
the previous day’s PM10 lag effect (PM10,t-1), can be used to predict daily PM10 concentrations more accurately 
than the RF, XGBoost and ANN PM10 models, provided that the meteorological conditions are known. Mean-
while, the RF PM10,t+1 model with PM10,t-1 variable added to the model showed more accurate forecasts for the 
next day’s PM10 concentration and the ANN PM10,t+1 model with PM10,t-1 variable added to the model showed 
more accurate forecasts for the next 2 and 3 days’ PM10 concentrations. This research can provide a method for 
predicting PM10 concentrations for the studied area where PM10 concentration data are not available. Due to the 
rapid climate change, it was recommended to improve the PM10 predictive forecasting models’ ability to capture 
greater daily variability of PM10 through the inclusion of meteorological and/or PM10 concentrations data in 
Brunei-Muara district beyond 2018 on the models in future studies when available.

Table 3.   Performances of models. The lowest RMSE values of the model for each scenario (computed 
on the training, validation and test samples) are in bold. The best results of other statistical performance 
metrics (computed on the training, validation and test samples) of the model for each scenario are in italics. 
a RMSE = Root mean square error. b R2 = Determination coefficient. c MAPE = Mean absolute percentage error. 
d WIA = Willmott’s index of agreement. e LCI = Legates and McCabe’s index.

Scenario Model

Training Sample Validation Sample Test Sample

RMSEa 
(µg/m3) R2,b (−)

MAPEc 
(%)

WIAd 
(−) LCIe (−)

RMSEa 
(µg/m3) R2,b (−)

MAPEc 
(%)

WIAd 
(−) LCIe (−)

RMSEa 
(µg/m3) R2,b (−)

MAPEc 
(%)

WIAd 
(−) LCIe (−)

 4
PM10 
with 
PM10,t-3

4.560 0.752 23.33 0.774 0.549 4.622 0.798 22.42 0.789 0.579 3.712 0.766 21.12 0.767 0.535

 5
PM10,t+1 
with 
PM10,t-1

0.134 1.000 0.79 0.994 0.987 5.563 0.501 31.50 0.707 0.413 5.729 0.592 25.37 0.735 0.471

 6
PM10,t+2 
with 
PM10,t-1

4.939 0.723 27.19 0.747 0.493 5.568 0.521 27.46 0.723 0.446 5.107 0.603 24.96 0.741 0.482

 7
PM10,t+3 
with 
PM10,t-1

5.364 0.648 29.95 0.717 0.435 5.861 0.634 28.29 0.714 0.428 6.657 0.504 32.69 0.697 0.395
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Data availability
The data that support the findings of this study are available from the Brunei Darussalam Meteorological Depart-
ment (BDMD), Ministry of Transport and Infocommunications, Brunei Darussalam and the Department of 
Environment, Parks and Recreation (JASTRe), Ministry of Development, Brunei Darussalam but restrictions 
apply to the availability of these data, which were used under license for the current study, and so are not publicly 
available. Data are however available from the corresponding author (W.Y. Hong) upon reasonable request and 
with permission of BDMD and JASTRe, Brunei Darussalam.

Figure 5.   Scatter plots of predicted daily PM10 concentrations against observed daily PM10 concentrations for 
the artificial neural network (ANN) PM10 models without and with the previous 1, 2 or 3 days’ PM10 lag effect 
(a–d), the ANN PM10,t+1, PM10,t+2 model and PM10,t+3 models with the previous day’s PM10 lag effect (e–g) on the 
test sample for Brunei-Muara district from 2009 to 2019.
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