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Thermally‑robust spatiotemporal 
parallel reservoir computing 
by frequency filtering in frustrated 
magnets
Kaito Kobayashi * & Yukitoshi Motome 

Physical reservoir computing is a framework for brain-inspired information processing that utilizes 
nonlinear and high-dimensional dynamics in non-von-Neumann systems. In recent years, spintronic 
devices have been proposed for use as physical reservoirs, but their practical application remains a 
major challenge, mainly because thermal noise prevents them from retaining short-term memory, the 
essence of neuromorphic computing. Here, we propose a framework for spintronic physical reservoirs 
that exploits frequency domain dynamics in interacting spins. Through the effective use of frequency 
filters, we demonstrate, for a model of frustrated magnets, both robustness to thermal fluctuations 
and feasibility of frequency division multiplexing. This scheme can be coupled with parallelization 
in spatial domain even down to the level of a single spin, yielding a vast number of spatiotemporal 
computational units. Furthermore, the nonlinearity via the exchange interaction allows information 
processing among different frequency threads. Our findings establish a design principle for high-
performance spintronic reservoirs with the potential for highly integrated devices.

Physical reservoir computing is attracting interdisciplinary attentions as one of the key technologies for realizing 
real-time information processing required in the coming Internet of Things society, while breaking free from 
energy-consuming silicon-based devices1–3. Taking advantage of nonlinear phenomena in a physical system 
known as a “physical reservoir”, the dynamics of the system acts as a mapping of the input data, given in the form 
of a physical signal, onto a high-dimensional internal feature space in a nonlinear manner. When equipped with 
the fading memory property to handle time-varying input streams4,5, the physical reservoir can be considered 
as a physical embodiment of a recurrent neural network, which addresses a wide range of machine learning 
problems such as classification and predictive analysis. In this framework, internal states of the reservoir are 
extracted by a read-out function in the form of vectors, and a linear transformation of these vectors provides 
the final output. It is worth highlighting that, in contrast to conventional neural networks, training is limited to 
linear regression only on the read-out layer, rather than on the physical reservoir itself. This reduction in train-
ing costs allows physical reservoirs to operate at low power, high speed, and high versatility, as demonstrated in 
a variety of implementations, including photonic systems6–14 and electrical systems15–17. Magnetic materials are 
also a potential platform for physical reservoir computing, which has been proposed in various setups, such as 
spin torque oscillators18–22, spin wave devices23–25, skyrmion fabrics25–29, and magnon scatterings30.

Toward device applications of spintronic reservoirs in realistic systems, two major challenges remain to be 
resolved. One is robustness against thermal fluctuations, which is crucial for retaining short-term memory 
(STM) long enough for practical use. Most spintronic reservoirs exploit nonlinear phenomena originating from 
magnetization dynamics, and are therefore inherently vulnerable to external noise that disturbs spin precessions. 
The other challenge is designing devices with highly integrated computational units, the importance of which is 
evident from the problems facing silicon chips. The straightforward solution for the latter is the use of multiple 
read-outs19,20,28,31,32, in which multiple internal state vectors are extracted from several local measurements, 
such as the dynamics of particular spins, and each is used independently for different computations. Another 
solution is parallelization by a selective read-out from superposed signals, such as wavelength-multiplexing10,13 
and frequency-multiplexing14 studied in photonic systems, but such schemes have been largely unexplored for 
spintronic reservoirs thus far.
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In this article, we propose a framework of spintronic physical reservoir computing that achieves both thermal-
robustness and high-integration. We demonstrate it by utilizing a prototypical model of frustrated magnets as a 
physical reservoir, with the input by AC magnetic fields and read-out by spin dynamics. We find that the memo-
ries of input information are stored in the spin dynamics at frequencies around that of the AC field and can be 
preserved against thermal noise by filtering out irrelevant signals at the other frequencies. We also demonstrate 
parallel processing on multiple inputs in both space and time, using read-outs on different spins at different 
frequencies. Moreover, we show that the nonlinearity arising from the exchange interaction allows calculations 
that capture information across various frequencies without the need for dedicated communication channels. 
Our results pave the way for spintronic physical reservoir computing in realistic situations.

Results
Physical reservoir and input/output.  Our spintronic reservoir receives a random sequence of input 
binary digits {sk} in the form of local magnetic fields, and transforms them nonlinearly through the spin dynam-
ics (Fig. 1a). As a prototypical model of frustrated magnets, we consider an antiferromagnetic Heisenberg model 
with classical spins on an L× L (L = 128) triangular lattice with open boundary conditions. The Hamiltonian 
is given by

where Si =
(

Sxi , S
y
i , S

z
i

)

 represents the classical spin at site i (|Si| = 1) and the sum of 〈i, j〉 is taken for nearest-
neighbor sites; Hz

j (t) is the time-dependent magnetic field for the input (Fig. 1b) and � is a set of lattice sites 
used as the input terminals for the physical reservoir (Fig. 1c). Hereafter we take J = 1 as the energy unit. In the 
absence of magnetic fields, the spin configuration of this system has a 120◦ structure with three sublattices at low 
temperature33,34, which might be realized experimentally, for instance, in ACrO2 (A = Li, Na)35–38, Ba3CoSb2O9

39,40, 
and κ-(BEDT-TTF)2Cu2(CN)3

41,42.
The input is a time series information of the binary bit sk with an interval of time, which we take tin = 12 , 

and converted into the magnetic field as

(1)H = J
∑

�i,j�

Si · Sj −
∑

j∈�
Hz
j (t)S

z
j ,

Figure 1.   Concept of physical reservoir computing by utilizing a frustrated magnet. (a) Architecture of 
physical reservoir computing, which consists of the input, reservoir, and output parts. Sequential information 
is converted to physical signals in the input part and nonlinearly transformed in the reservoir part via its 
dynamics. The output part linearly transforms measured signals from the physical reservoir to final outputs, 
whose coefficients are trained so that the final signals give desired answers for a specific problem. (b) Schematic 
diagram of the input magnetic field. The k-th input bit sk is converted to an AC magnetic field Hz

j (t) with the 
duration of tin ; see Eq. (2). (c) Schematic of an antiferromagnetic Heisenberg model on a triangular lattice used 
as the physical reservoir. The blue arrow represents the terminal spin where the input magnetic fields are applied 
using a probe indicated by the yellow needle, and the gray arrows represent the other spins. The z components 
of the spin dynamics on the terminal sites are observed as the read-out. (d) Schematic diagram of read-out from 
the physical reservoir. The spin component is observed every �tin = tin/Nt and transformed to an (Nt + 1)
-dimensional internal state vector Xk ; see Eq. (4). The final output yk is calculated as yk = Xk · w with the 
weight vector w.
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where Hin and fin is the norm and frequency of the magnetic field, respectively (Fig. 1b). We take fin = n/(2tin) 
with an integer n so that Hz

j (t) varies continuously in time. The magnetization dynamics under the input field is 
simulated by the stochastic Landau–Lifshitz–Gilbert (LLG) equation

where α is the Gilbert damping constant and Heff
i  is the effective magnetic field at site i consisting of the input 

magnetic field, the exchange magnetic field, and the thermal field at temperature T43,44 (see the “Methods” sec-
tion). We take Hin = 0.1 and α = 0.1 in the following calculations. The time profiles of the z components of the 
read-out spins Szj  are observed every �tin = tin/Nt (Fig. 1d) where we take Nt = 12045. Then, the internal states 
of the reservoir, Xk , are defined by an (Nt + 1)-dimensional vector including an additional component with the 
constant value 1 as

The final output is obtained by linear transformation of the internal state vector yk = Xk · w where w is a 
weight vector. With sufficiently large training data, the weight w is trained so that each yk becomes close to the 
desired output yk for a given problem. The reservoir performance is evaluated by the determination coefficient R2 
between the sequence of outputs y =

{

yk
}

 and targets y =
{

yk
}

 : R2 = cov2
(

y, y
)

/[σ 2
(

y
)

σ 2
(

y
)

] where cov and 
σ2 denote covariance and variance, respectively. R2 is close to 1 when y and y are well matched, and approaches 
0 otherwise (see the “Methods” section).

Thermal robustness by frequency domain filtering.  First, we examine the STM task to evaluate how 
long the input information is retained in the reservoir. The target output for this task is yk = sk−d where d is 
the delay step after the input. It is noteworthy that the STM task is pivotal in quantifying the fading-memory 
property, which is a vital aspect of reservoir computing when dealing with time series analysis. Here, we apply 
the input magnetic field at frequency fin = 8/tin to one specific terminal spin at site j , namely, � =

{

j
}

 , and use 
the spin dynamics at the same site, Szj (t) , as a read-out to construct the internal state vectors. We place j around 
the center of the system to avoid uninteresting behavior near the edges.

Figure 2a shows the temperature dependence of the reservoir performance for the STM task. At absolute zero 
temperature, the memories are recovered with high accuracy of R2 > 0.95 up to delay d = 7 , and decay gradu-
ally for larger d , exhibiting the fading memory property required for a physical reservoir. In contrast, at finite 
temperature, the reservoir rapidly loses the STM older than d = 2 even at extremely low temperature T = 10−4 , 
and furthermore, remaining memories of d = 0 and 1 are also lost as the temperature increases. This is an indi-
cation that the STM stored in the spin dynamics is extremely fragile against thermal noise, as commonly seen 
in various spintronic physical reservoirs18–28.

To clarify how the thermal noise disturbs the read-out signals, we analyze the Fourier spectrum of the dynam-
ics of Szj (t) . Figure 2d displays the spectra at three different temperatures. At T = 0 , the spectrum shows strong 
peaks at around the frequency of the input magnetic field, ± fin , as the terminal spin linearly follows the time-
dependent magnetic field via the Zeeman coupling. The wavy structure repeating every 1/(2tin) also appears, 
which originates from the random switching of the input magnetic field at every tin according to the input bit. 
Here, the finite peak width at ± fin reflects the probabilistic nature of the bit sequence {sk} in the input magnetic 
field, otherwise there would be only a delta-functional peak at exactly ± fin . In contrast, at finite temperature, 
thermal noise disturbs the spin dynamics, obscuring these characteristic peaks. At T = 0.001 , the wavy structure 
disappears due to thermal noise, but the peaks at around ± fin are still present. The latter peaks are also mostly 
drowned out at a higher temperature, T = 0.1.

From this observation, we introduce a frequency filter in order to mitigate the disturbances caused by ther-
mal agitations. Specifically, we only retain signals within the frequency windows of fin ≤

∣

∣f
∣

∣ < fin + 1/(2tin) , 
and use the frequency-filtered spin dynamics Szj,filtered(t) for computation instead of the whole spin dynamics, 
Szj (t) ; see Fig. 2c and the “Methods” section. Figure 2b shows the reservoir performance for the STM task with 
the frequency filter. In clear contrast to the case without frequency filtering in Fig. 2a, the STM persists up to 
d = 5 with almost no information loss even at finite temperature, and the older memories are lost gradually. 
This indicates, surprisingly, that the input information can be recovered only by the signals within the narrow 
frequency bandwidth of 1/(2tin) including fin , and that the memories within this range are resistant to thermal 
fluctuations. Similar improvements by frequency filtering can be observed in the memory capacity46, see Sup-
plementary Note 1 and Fig. S1. Consequently, even at finite temperatures, our reservoir has the ability to handle 
a wide range of temporal tasks that necessitate the STM through the utilization of frequency filters. This is a 
qualitative leap from the previously expected scenario where performance is significantly degraded for almost 
all temporal tasks due to the loss of STM in the presence of thermal noise.

Figure 2e shows the distributions of the STM in frequency domain. We introduce frequency filters that pass 
signals within the frequency window of (m− 1)/(2tin) ≤

∣

∣f
∣

∣ < m/(2tin) , and evaluate the performance for the 
STM task while changing a positive integer m . At T = 0 , the memories are encoded over a broad frequency 
range, but R2 gradually diminishes as the frequency window deviates from fin . Since the information embedding 

(2)Hz
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Figure 2.   Reservoir computing in the Heisenberg antiferromagnet at finite temperature. (a) Reservoir 
performance for the STM task at several temperatures T when using the whole spin dynamics (without 
frequency filtering). Delay step d denotes discretized time length after input and R2 is the determination 
coefficient. The STM is extremely fragile against thermal noise, especially for d ≥ 2 . (b) The same plot as (a) 
with the frequency filter of fin ≤

∣

∣f
∣

∣ < fin + 1/(2tin) . The memories are retained even at finite temperatures, 
proving the efficiency of frequency filtering for thermal noise. (c) Schematic picture of a frequency filter. The 
signals within a specific frequency band are extracted by means of the (inverse) Fourier transformation. (d) 
Fourier spectra of the spin dynamics on the terminal site Szj (t) at three different temperatures. The dashed lines 
display the input frequency ± fin . (e) Distributions of the STM in frequency domain. The color represents the 
value of R2 and the dashed line shows fin . The memories are stored at around fin where the spin dynamics is 
preserved against thermal fluctuations, allowing for an efficient reservoir computing even at finite temperature.
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process from the input magnetic field is mainly governed by the linear Zeeman interaction, the input informa-
tion is prominently restored in the spin dynamics at around fin . At T = 0.001 , the system performance at around 
fin remains largely unchanged from that at T = 0 , although it deteriorates significantly at other frequencies. 
A comparison with Fig. 2d demonstrates that the input information is retained only at frequencies where the 
spin dynamics is preserved against thermal noise. As the signals at the other frequencies contribute as noise, 
the reservoir without the frequency filter is vulnerable to thermal agitations. At T = 0.1 , the reservoir is almost 
non-functional even at around fin because of the increased noise level as shown in Fig. 2b. The presence of ther-
mal noise also disrupts the echo state property4,46,47, but its impact can be partially mitigated through frequency 
filtering (see Supplementary Note 2, Fig. S2).

In our configuration, we employ a single spin as the input and read-out, however, we verify that the utiliza-
tion of multiple spins or the entire system does not alter the fundamental behavior. We note that increasing the 
amplitude of the input magnetic field broadens the temperature range within which the system can operate 
effectively (see Supplementary Note 3, Fig. S3). The influence of the input information in frequency domain is 
closely tied to the typical time scale of the system. In our input protocol, the input magnetic field is decomposed 
into the product of an AC magnetic field at frequency fin and a pulse square field that randomly changes its sign 
every tin depending on the supplied bit. This switching duration is the only relevant time scale for the random-
ness of the input, and thus the information is stored in units of 1/tin in frequency domain. In other words, the 
memories retained at around f  , f ± n/tin and −f + n/tin with a positive integer n are almost identical (see 
Supplementary Note 4, Fig. S4). This observation suggests that filters of (m− 1)/(2tin) ≤

∣

∣f
∣

∣ < m/(2tin) are 
the narrowest frequency bandwidth that enables maximum recovery of STM without overlapping information.

Parallel reservoir computing in frequency and spatial domains.  The above concept of frequency 
filtering can be extended to implement frequency division multiplexing, which allows for the simultaneous 
transmission of multiple signals encoded at different frequencies. As an illustration, we prepare three sequences 
of random input bits 

{

s1k
}

,
{

s2k
}

,
{

s3k
}

 and examine the STM task of each input bit: the target output is ynk = snk−d 
with delay step d and n = 1, 2, 3 . We choose different frequencies f 1in = 8/tin , f 2in = 45/(2tin) , f 3in = 36/tin for 
each binary sequence, and transform the bits snk to the magnetic field at the assigned frequency in the same man-
ner as Eq. (2): superposition of these three magnetic fields is given to one input terminal spin at site j (Fig. 3a). 
Herein the input bits snk are nonlinearly transformed through the dynamics of the terminal spin Szj (t) and the 
internal state vectors Xk are then extracted for computations. Figure 3b shows the Fourier spectrum of Szj (t) at 
zero temperature, where three peaks corresponding to ± f 1in , ± f 2in , ± f 3in appear in addition to the wavy structure 
present over a wide frequency range.

Figure 3c represents the reservoir performance for the STM tasks of three input bit sequences in frequency 
domain. Each information is embedded into the spin dynamics at around its input frequency and not affected 
by the other input bits. Consequently, the memories can be selectively recovered using a frequency filter that 
passes the input frequency where the desired bits are provided. Indeed, for all n , R2 at around each f nin is greater 
than 0.9 up to delay d = 5 and gradually decreases for larger d due to the fading memory property, which indi-
cates that the performance is almost the same for different parallel threads. This clearly demonstrates that the 
spin dynamics at different frequencies can be regarded as mutually independent parallel threads, allowing for 
frequency division multiplexed computational units. This parallelization scheme works at finite temperature in 
the same manner as Fig. 2e by filtering out irrelevant signals. Worth noting that the degree of parallelization can 
be further increased by allocating more frequencies for computation; we confirm that a spacing of 1/tin or more 
is sufficient for such parallelization.

Our reservoir can also be parallelized in spatial domain with multiple inputs and read-outs. To demonstrate 
this, we perform the STM task by selecting two input terminal spins at sites j1 and j2 separated by 17 spins, namely 
� =

{

j1, j2
}

 in Eq. (1), denoted as terminal 1 and terminal 2, respectively (Fig. 4a). A bit sequence of 
{

s
j1,1
k

}

 
({

s
j1,2
k

})

 is given to terminal 1 and 
{

s
j2,1
k

}

 
({

s
j2,2
k

})

 is given to terminal 2 at frequency f 1in 
(

f 2in
)

 ; in total, four 
input bit sequences are simultaneously supplied to the system. Figure 4b shows the performance for the STM 
tasks of different input sequences at zero temperature. For the computation, the signals received from terminal 
1 and terminal 2 are independently utilized with frequency filters. When the spin dynamics at terminal 1 is used 
as the read-out, the memories of 

{

s
j1,1
k

}

 and 
{

s
j1,2
k

}

 can be reproduced at around each input frequency with 
R2 > 0.9 up to delay d = 5 , whereas the information of 

{

s
j2,1
k

}

 and 
{

s
j2,2
k

}

 cannot be recovered at all. The opposite 
is true when utilizing signals from terminal 2. This illustrates that the spin dynamics at different sites can be 
treated as independent parallel computational threads, which realizes spatial multiplexing of computational units 
while preserving the frequency multiplexing. Due to the availability down to even single spin, the minimal 
components of magnetic materials, as read-outs, our proposed scheme offers the potential for high-density 
integration at the nanoscale on one magnetic chip; we confirm that a lattice spacing of more than 10 spins is 
sufficient for such parallel computation in our model. Moreover, simultaneous parallelization in spatial and 
frequency domains would allow for extreme integration of computational units in spatiotemporal domain by 
further increasing the number of frequency bands and I/O terminal spins.

Logic gate operation of bits in different threads.  Applying the characteristics of frequency division 
multiplexing, different information retained in parallel at different frequencies can be accessed simultaneously 
by selecting signals at appropriate frequencies. To demonstrate this, we examine logic gate tasks between input 
bits in different parallel threads9,29. Two binary sequences 

{

s1k
}

 and 
{

s2k
}

 are simultaneously transformed to the 
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input magnetic field at the frequency f 1in = 8/t in and f 2in = 45/(2t in) , respectively; the resulting superposi-
tion of them is then applied to one input terminal spin at site j . Here, we observe the spin dynamics on the 

Figure 3.   Parallel reservoir computing by frequency division multiplexing with the superposed input magnetic 
fields. (a) Schematic of the preparation of input magnetic field. Multiple bit sequences are converted to magnetic 
fields at different frequencies, and their superposition is given as the input magnetic field. (b) Fourier spectrum 
of the spin dynamics Szj (t) on the terminal site. The gray lines display the frequencies of the input field: 
f 1in = 8/tin for the bit sequence 

{

s1k
}

 (dashed), f 2in = 45/(2tin) for 
{

s2k
}

 (dashed-dotted), and f 3in = 36/tin for 
{

s3k
}

 (dotted). Strong intensities are observed at around these three input frequencies. (c) Reservoir performance 
for the STM task in frequency domain. The color represents R2 for the STM task of the input sequence 

{

s1k
}

 
(top), 

{

s2k
}

 (middle), and 
{

s3k
}

 (bottom). The gray lines represent f 1in , f 2in , and f 3in as in (b). Each STM is retained 
at around the corresponding input frequency, which allows for multiplexing in frequency domain.
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Figure 4.   Parallel reservoir computing with multiple input/output spin terminals. (a) Set up of two input 
terminal spins. A bit sequence 

{

s
j1,1
k

}

 
({

s
j1,2
k

})

 is given to terminal 1 (the blue arrow) and 
{

s
j2,1
k

}

 
({

s
j2,2
k

})

 is 
given to terminal 2 (the sky blue arrow) through the magnetic field at the frequency f 1in = 8/tin 
(

f 2in = 45/(2tin)
)

 . The yellow needles indicate probes to apply magnetic fields. (b) Reservoir performance for the 
STM task by independently processing the signals from terminal 1 (left) and terminal 2 (right). The top two 
figures represent the STM of 

{

s
j1,1
k

}

 and 
{

s
j1,2
k

}

 , and the bottom two figures show the STM of 
{

s
j2,1
k

}

 and 
{

s
j2,2
k

}

 . 

The gray lines correspond to f 1in and f 2in . The STM of 
{

s
j1,1
k

}

 and 
{

s
j1,2
k

}

 can be recovered only by the signals 

from the terminal 1, and the STM of 
{

s
j2,1
k

}

 and 
{

s
j2,2
k

}

 requires the signals from the terminal 2 for 
reproduction. Each memory is retained at around the corresponding input frequency. A straightforward 
extension of this scheme would allow for high-density integration of computational units in both spatial and 
frequency domains.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15123  | https://doi.org/10.1038/s41598-023-41757-3

www.nature.com/scientificreports/

nearest-neighbor site from the input terminal site, denoted as jNN , for the read-out from the reservoir; the 
spin dynamics at the terminal site j is also traced for a comparison (Fig. 5a). The target output yk is the result-
ant bit obtained by performing the logic gate operations on two input bits s1k and s2k , the truth table of which is 
summarized in Fig. 5b. Figure 5c represents the Fourier spectra of the spin dynamics on the terminal site j and 
the neighboring site jNN at zero temperature. While the overall behaviors, especially the strong peaks at ± f 1in 
and ± f 2in , are common to both spectra, a significant difference is found in the additional peaks in the spectrum 
from the site jNN at around the second harmonics frequencies: ± 2f 1in , ± 2f 2in , ±

(

f 2in − f 1in
)

 and ±
(

f 1in + f 2in
)

 . The 
signals at ± 2f 1in and ± 2f 2in , which originate from the square of the magnetic fields at the same frequency, are 
delta-functional since the sign information of the binary bits is lost. In contrast, the signals at ±

(

f 2in − f 1in
)

 and 
±
(

f 1in + f 2in
)

 resulting from a nonlinear process at different frequencies have finite widths because the random-
ness of the input bits is preserved.

To begin with, the logic gate tasks—AND, OR, XOR, NAND, NOR, and XNOR—are demonstrated using sig-
nals in the frequency windows of f 1in − 1/(2tin) ≤

∣

∣f
∣

∣ < f 1in + 1/(2tin) and f 2in − 1/(2tin) ≤
∣

∣f
∣

∣ < f 2in + 1/(2tin) . 
Figure 5d plots the reservoir performance for each task, where the blue and red bars exhibit R2 with read-outs 
on the input site j and the nearest-neighbor site jNN . Additionally, the accuracy, calculated as the percentage 
of agreement between y′k and yk , is also depicted by the blue and red lines. Here, y′k corresponds to the binary 
output obtained by applying a threshold value of 0.5 to yk . In the case of randomly generated outputs, the accu-
racy achieves 0.75 for the AND, OR, NAND, and NOR tasks, while it takes  0.5 for the XOR and XNOR tasks. By 
utilizing signals from the input site, the reservoir shows almost the same accuracy as in the random case, with 
moderate R2 ∼ 0.6 for linearly separable tasks, namely AND, OR, NAND, and NOR, and extremely poor R2 ∼ 0 
for linearly inseparable tasks, XOR and XNOR. When utilizing the nearest-neighbor spin for the read-out, the 
performance becomes slightly better, but R2 for the inseparable tasks are still low. Thus, although the signals 

Figure 5.   Logic gate operations of two input bits stored in different frequencies. (a) Schematic of the input 
terminal spin (the blue arrow) and its nearest-neighbor spin (the red arrow). The former is directly affected by 
the input magnetic field through a probe represented by the yellow needle, while the latter is affected via the 
exchange interaction between the spins. (b) Truth table for logic gates with input bits s1k and s2k . (c) Fourier 
spectra of the dynamics of the terminal spin Szj (t) (top) and the nearest-neighbor spin Sz

jNN
(t) (bottom). The 

dashed lines display f 1in = 8/tin (light green) for the bit sequence 
{

s1k
}

 and 2f 1in (dark green). The dotted lines 
show f 2in = 45/(2tin) (light blue) for the input sequence 

{

s2k
}

 and 2f 2in (dark blue). The dashed-dotted lines 
represent the second harmonics frequencies f 2in − f 1in (pink) and f 1in + f 2in (purple). Strong intensities appear at 
around ± f 1in and ± f 2in in both spectra, while only that of the nearest-neighbor spin shows peaks at ± 2f 1in , ± 2f 2in , 
±
(

f 2in − f 1in
)

 and ±
(

f 1in + f 2in
)

 . (d) Reservoir performance for the logic gate tasks with frequency filters centered 
on ± f 1in and ± f 2in . The blue and red bars represent R2 utilizing the dynamics of the terminal spin and the nearest-
neighbor spin, respectively. Additionally, the blue and red lines illustrate the corresponding accuracies, while the 
gray lines depict the accuracies when the output is randomly estimated, with values of 0.75 for AND, OR, 
NAND, and NOR tasks (dashed-dotted) and 0.5 for XOR and XNOR tasks (dotted). The linearly inseparable 
gates, XOR and XNOR, are nearly impossible with these frequency filters. (e) The same plot as (d) with 
frequency filters centered on ±

(

f 2in − f 1in
)

 and ±
(

f 1in + f 2in
)

 . The performance of the nearest-neighbor spin 
becomes much better for all gating operations including the inseparable gates, owing to the nonlinear processes 
via the exchange interaction.
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containing input frequencies of ± f 1in and ± f 2in should possess information of both s1k and s2k as discussed above, 
the memories are concentrated around their assigned frequencies and have little effects on one another, making 
it difficult to resolve tasks that are heavily reliant on information in both frequencies.

In contrast, the spin dynamics at around the frequencies of ±
(

f 2in − f 1in
)

 and ±
(

f 1in + f 2in
)

 are equally influ-
enced by ± f 1in and ± f 2in via the nonlinear process, retaining the memories of both s1k and s2k . This is demonstrated 
by utilizing the spin dynamics at the neighboring site jNN as a read-out, where information is nonlinearly 
transferred from the input site j via the exchange interaction. Figure 5e exhibits the reservoir performance for 
logic gate tasks using signals in the frequency windows of f 2in − f 1in − 1/(2tin) ≤

∣

∣f
∣

∣ < f 2in − f 1in + 1/(2tin) and 
f 1in + f 2in − 1/(2tin) ≤

∣

∣f
∣

∣ < f 1in + f 2in + 1/(2tin) . With read-out on the nearest-neighbor site, the reservoir oper-
ates very well with R2 > 0.9 , as well as achieving an accuracy close to 1 , for both linearly separable and insepa-
rable tasks. These findings clearly indicate that the nonlinear processes via the exchange interaction enable two 
bits in different threads to exert an influence on one another. The importance of this coupling is evident from the 
very low R2 and accuracy when utilizing the input spin as the read-out in Fig. 5e. In this case, the spin dynamics 
is dominated by the linear Zeeman coupling at ± f 1in and ± f 2in , thereby obscuring the information at ±

(

f 2in − f 1in
)

 
and ±

(

f 1in + f 2in
)

 . Multi-bit tasks such as gating require mixing different information within the same reservoir 
dynamics, otherwise different bits cannot establish a nonlinear relationship. This is thus an operation that takes 
full advantage of the principle of superposition in the frequency domain, and is almost impossible with other 
parallelization schemes such as spatial domain multiplexing. In Supplementary Fig. S5, a more challenging logic 
gate task is demonstrated, involving inputs at different time steps. The high performance presented there serves 
as robust evidence confirming the system’s ability to handle nonlinear temporal tasks. We note, however, that 
the second harmonics in the dynamics of the nearest-neighbor spin are vulnerable to thermal noise, making 
linearly inseparable gating almost infeasible at finite temperature. This issue would be resolved by enhancing 
nonlinearity in models with different interactions, as we shall discuss later.

Discussion
In this paper, we have proposed a framework for physical reservoir computing in magnetic materials utilizing 
frequency domain dynamics. The input through an AC magnetic field and the selective read-out with frequency 
filters enable both thermal noise reduction and frequency division multiplexing, which are of great practical 
significance in the design of spintronic physical reservoir computing devices. In addition, by utilizing multiple 
read-outs, a substantial number of computational units can be integrated through parallelization in spatiotem-
poral domain. The inherent nonlinearity in the interacting spin systems allows the mixing of information stored 
in the spin dynamics at different frequencies.

In magnetic materials, the linearly introduced information via the Zeeman coupling is nonlinearly processed 
by the exchange interaction. This is where the differences in materials are most pronounced. For instance, an 
increase in connectivity and complexity of the interactions would enhance the nonlinearity of the spin dynam-
ics, and longer-ranged interactions would propagate the input information over a wider region. When electrons 
in the system exhibit itinerant nature rather than localized one, the synergy between charge and spin degrees of 
freedom could alter the information transfer and processing. Moreover, in quantum spin systems, the reservoir 
takes advantage of the large dimensionality of Hilbert space, where quantum correlations and quantum entan-
glement would strongly influence the performance of the reservoir31,32,48,49. The impact of specific interactions 
on information processing will be a subject of future research.

The complexity of the magnetic structure contributes to the high dimensionality of the feature space where 
information is projected by a physical reservoir, providing ample resources for machine learning tasks. Here, the 
dimension corresponds to the number of spins whose dynamics is linearly independent, which determines the 
number of parameters in the feature space. In general, the spin dynamics in a uniform environment, such as a 
ferromagnetic state, can be described with a few parameters, while those in a complex environment require many 
parameters. Our reservoir with a frustrated magnet, consisting of only three sublattices, yields low-dimensional 
internal states, yet proves sufficient for the tasks demonstrated; we confirm magnets with solely nearest-neighbor 
ferromagnetic interactions are too simple to be employed for computation. Physical reservoirs with more complex 
magnetic textures would project information onto higher-dimensional feature spaces, which would enhance 
computational performance for complicated tasks, as presented in skyrmion systems27,28. Our protocol can be 
implemented experimentally either by employing a probe microscope, such as an atomic force microscope or 
a scanning tunneling microscope, to apply a local magnetic field or, alternatively, by utilizing standard equip-
ment to apply a magnetic field to the entire magnetic material. As for the comprehensive influence of detailed 
magnetic structures on information processing, we leave their theoretical and experimental elucidation to future 
investigations.

In addition to its thermal robustness and parallel processing capabilities, our scheme exhibits versatility 
in its broad applicability to a variety of spintronic physical reservoirs with input by AC signals and read-out 
by time-varying signals. In magnetoelectric systems, for instance, the information could be embedded and 
extracted via either magnetic or electrical AC signals, while taking advantage of the nonlinearity of the spin-
charge coupled dynamics for information processing50,51. The input information should be stored within the spin 
and charge dynamics at the characteristic frequency bands, where frequency filtering would play an important 
role. It is worth noting that the utilization of frequency filters extends beyond spintronic physical reservoirs; its 
applicability can encompass a wide range of oscillator systems20,46,52,53 where information is distributed within 
a specific range in frequency domain. Consequently, our implementation-independent protocol of frequency 
filtering would be integrated into various types of physical reservoirs as a component to enhance computational 
capability by enabling noise reduction and frequency division multiplexing. Our discovery opens up the way 
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for hardware implementation of large-scale intelligent systems that exploit complex physical dynamics for real-
time computation.

Methods
LLG calculation.  To simulate the magnetization dynamics, we employ the stochastic LLG equation summa-
rized in Eq. (3). The effective magnetic field Heff

i  includes the exchange field Hex
i  and the thermal field Hth

i  . The 
former is given by the Si derivative of the Hamiltonian [Eq. (1)] as Hex

i = −∂H/∂Si , and the latter is introduced 
as a white noise with the following properties:

where �t denotes the time step (we take �t = 0.005), δ(t) the Dirac delta function, and δij the Kronecker delta. 
The time evolution is traced by the fourth-order Runge–Kutta method. At each temperature, equilibrium spin 
configurations are obtained by relaxation for a sufficient time starting from a complete in-plane 120° structure, 
and they are used as an initial state of the reservoir. The temperature dependences of the energy and specific heat 
are in agreement with the previous results using Monte Carlo calculations33,54.

Scheme for training and testing.  We take sequences of binary digits {sk} , and each data sk is fed to the 
system by the out-of-plane input magnetic field to the input terminal spin. The time interval tin = 12 is selected 
to strike a balance between being excessively brief and overly extended for the information input, yielding the 
most optimal performance among all the alternatives we experimented with. The internal state is characterized 
by the induced out-of-plane dynamics at the read-out spin as the 1× (Nt + 1)-dimensional vector Xk [Eq. (4)] 
that is then linearly transformed to the output yk by the (Nt + 1)× 1-dimensional weight w . In total ltot = 6, 000 
inputs are used: lw = 2, 000 to warm up the system, ltr = 2, 000 for training of w , and lts = 2, 000 for testing the 
reservoir performance. Since they are sufficiently large numbers compared to the number of tuning parameters 
Nt + 1 (Nt = 120) , the generalization performance is preserved without overfitting. The vectors {Xk} at training 
phase and test phase are summarized to an ltr × (Nt + 1) matrix Xtr = {Xk}

lw+ltr

k=lw  and an lts × (Nt + 1) matrix 
Xtr = {Xk}

lw+ltr+lts

k=lw+ltr  , and correspondingly the target output vectors are given by an ltr × 1 vector ytr =
{

yk
}lw+ltr

k=lw
 

and an lts × 1 vector yts =
{

yk
}lw+ltr+lts

k=lw+ltr
 . The weight should be trained to satisfy ytr = Xtr · w , which is impos-

sible for overdetermined systems with ltr ≫ Nt + 1 . Alternatively, we optimize w to minimize the least squares 
error between vectors on both sides, which is analytically given by w = Xtr+ · ytr where X+ is the Moore–Pen-
rose pseudoinverse-matrix. The output in the testing phase is calculated by y = Xts · w and the similarity to the 
desired output yts is evaluated using the determination coefficient R2 = cov2

(

yts, yts
)

/[σ 2
(

yts
)

σ 2
(

yts
)

].

Frequency filtering.  The spin dynamics in the training phase Str(t) and in the testing phase Sts(t) are calcu-
lated every time step �t = 0.005 by the stochastic LLG equation, with the observation time being ltr × tin = 24, 000 
for training and lts × tin = 24, 000 for testing. The dynamics in time domain Str(t) and Sts(t) are independently 
Fourier transformed to Str(f ) and Sts(f ) with a sampling frequency of 1/�t = 200 and a frequency resolution of 
1/24, 000 . Of these, only the desired frequency components are inverse Fourier transformed to real-time dynam-
ics Str

filtered
(t) and Sts

filtered
(t) , which are then used to the construct internal state vectors Xtr and Xts , respectively. It 

is worth noting that the frequency filter can be implemented experimentally by attaching electrical components 
that pass desired frequency components of the measured spin dynamics signal, such as a bandpass filter, outside 
the physical reservoir. The installation of these components does not make our system unnecessarily complex or 
slow, thus preserving the advantages of the simplicity of our reservoir even with frequency filtering.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Code availability
The simulation codes used in this study are available from the corresponding author upon reasonable request.
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