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Integrated bioinformatics analysis 
of noncoding RNAs with tumor 
immune microenvironment 
in gastric cancer
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In recent years, molecular and genetic research hotspots of gastric cancer have been investigated, 
including microRNAs, long noncoding RNAs (lncRNAs) and messenger RNA (mRNAs). The study on 
the role of lncRNAs may help to develop personalized treatment and identify potential prognostic 
biomarkers in gastric cancer. The RNA-seq and miRNA-seq data of gastric cancer were downloaded 
from the TCGA database. Differential analysis of RNA expression between gastric cancer samples 
and normal samples was performed using the edgeR package. The ceRNA regulatory network was 
visualized using Cytoscape. KEGG pathway analysis of mRNAs in the ceRNA network was performed 
using the clusterProfiler package. CIBERSORT was used to distinguish 22 immune cell types and the 
prognosis-related genes and immune cells were determined using Kaplan-Meier and Cox proportional 
hazard analyses. To estimate these nomograms, we used receiver operating characteristic and 
calibration curve studies. The ceRNA regulation network of gastric cancer was built in this study, 
and the genes in the network were analyzed for prognosis. A total of 980 lncRNAs were differentially 
expressed, of which 774 were upregulated and 206 were downregulated. A survival study identified 
15 genes associated with gastric cancer prognosis, including VCAN-AS1, SERPINE1, AL139002.1, 
LINC00326, AC018781.1, C15orf54, hsa-miR-145. Monocytes and Neutrophils were associated with 
the survival rate of gastric cancer. Our research uncovers new ceRNA network for the detection, 
treatment, and monitoring of gastric cancer.
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Gastric cancer is one of the most common gastrointestinal malignancies in the  world1. There were an estimated 
26,380 new cases and 11,090 deaths of gastric cancer in the United States in  20222. The incidence of gastric can-
cer varies significantly by region: highest in East Asia, Eastern Europe and South America, lowest in North and 
South  Africa3. Helicobacter Pylori (HP) infection is the most important risk factor for gastric  tumorigenesis4. 
Approximately 2 billion people worldwide are infected with HP, of which about 1 million will develop gastric 
 cancer5. Hence, HP infection significantly increases the incidence of gastric  cancer6. In addition to HP infection, 
gender, heredity, severe lack of sleep, irregular diet, excessive work and psychological stress can all contribute to 
the increased incidence of gastric  cancer7.

Gastric cancer has low early diagnosis rate and 5 years survival  rate8. Advanced gastric cancer can be metas-
tasized to liver, pancreas, omentum, esophagus, bile duct and lymph node, and the treatment effect is  poor9. 
Therefore, it is very important to find effective early diagnosis biomarkers and therapeutic targets for gastric 
cancer. Studies have found that the formation of gastric cancer is a complex process involving multiple factors 
and is usually associated with abnormal gene  expressions10. At the same time, some studies have proved that 
noncoding RNAs (ncRNAs) are related to the development of cancer, and these studies have been continuously 
reported in various  cancers11,12.

Long non-coding RNAs (lncRNAs) belong to noncoding RNAs with a length of more than 200  nucleotides13–15. 
Recently, some researchers found that many lncRNAs are new regulators of gene expression, and aberrant expres-
sion of some lncRNAs is involved in the pathogenesis and progression of malignant  tumors16–18. These new 
lncRNAs may be developed into new clinical biomarkers or new therapeutic  targets19–21. A large number of 
lncRNAs are associated with various cancers and have antitumor or oncogenic  functions22–24. Altered lncRNA 
expression and its mutations are associated with tumorigenesis and  metastasis25. Studies have confirmed that 
both lncRNAs and mRNAs can bind to miRNAs and regulate each other.

LncRNAs have been implicated in facilitating the evasion of immune surveillance by tumor cells through mul-
tiple mechanisms, including the promotion of an immunosuppressive  microenvironment26–28. Multiple studies 
used comprehensive analysis to determine the functions of various lncRNAs in tumor immune microenviron-
ment (TIME) in various cancers, such as colon  cancer29, clear cell renal cell  carcinoma30, breast  cancer31,32, lung 
 cancer33,34, thyroid  cancer35, adrenocortical  adenocarcinoma36, bladder  cancer37, and head and neck squamous 
cell  carcinoma38. LncRNA NKILA has demonstrated the ability to initiate apoptosis in tumor-specific T cells, 
thereby impeding their capacity to infiltrate the tumor, leading to tumor immune  evasion39. LncRNA FENDRR 
mediated TIME and tumor suppression in non-small cell lung cancer (NSCLC)40. LncRNA RP5-881L22.5 was 
reported to play a crucial role in the TIME of tumors and in the colorectal cancer  progression41. LncRNA 
WDFY3-AS2 has been identified to correlate with an immunosuppressive phenotype in the TIME in oral squa-
mous cell carcinoma (OSCC)42. WDFY3-AS2 regulated Wnt/β-catenin pathway and promoted proliferation and 
metastasis in  OSCC42. However, the role of lncRNAs in TIME of gastric cancer has not been elucidated. There-
fore, to further investigate the molecular mechanisms underlying the development of gastric cancer, our study 
investigated the process of lncRNAs binding to miRNAs, mRNAs and proteins in gastric cancer to regulate gene 
expression. Moreover, we tried to comprehensively evaluate the correlation between lncRNAs and the prognosis 
and immune cell infiltration level of gastric cancer patients.

Results
Differentially expressed RNAs. In this study, 980 differentially expressed lncRNAs, 104 differentially 
expressed miRNAs, and 1639 differentially expressed mRNAs were obtained by “DESeq2” analysis with cut-
off (|logFC|≥ 2 and p < 0.01). We found that among 980 DElncRNAs, 774 lncRNAs were upregulated, while 
206 lncRNAs were downregulated. In addition, 87 miRNAs were elevated and 17 miRNAs were reduced. 870 
mRNAs were upregulated, whereas 769 mRNAs were downregulated. Heatmaps of mRNAs, miRNAs, and lncR-
NAs were shown in Fig. 1A. The volcano plot of mRNAs, miRNAs, and lncRNAs was shown in Fig. 1B.

ceRNA regulatory network. To further understand the role of RNAs in gastric cancer, the interactions 
between miRNA-mRNA and lncRNA-miRNA served as the foundation for the development of the ceRNA 
network. The Cytoscape visualization of the ceRNA regulatory network was shown (Fig. 1C). The association 
between the prognosis and biomarkers in the STAD-linked ceRNA network was examined by the K-M sur-
vival evaluation. These analyses showed 15 genes were implicated in the prognosis of gastric cancer, includ-
ing AC011374.1, AC018781.1, ADAMTS9-AS1, AL139002.1, AL391152.1, HOTTIP, FLRT1, NKX2-1-AS1, 
ADAMTS9-AS2, LINC00326, VCAN-AS1, SERPINE1, POU6F2-AS2, IGF2-AS, and miR-145 (Fig. 2).

Prognosis of related genes. Lasso regression analysis was performed, and two plots were generated. 
The variation of coefficients at different log Lambda values was depicted (Fig.  3A). The horizontal axis rep-
resented log Lambda, while the vertical axis represented the values of the coefficients. The changes in partial 
likelihood deviance at different log Lambda values were showcased (Fig. 3B). The horizontal axis represented log 
Lambda, and the vertical axis represented the values of the partial likelihood deviance. VCAN-AS1, SERPINE1, 
AL139002.1, LINC00326, AC018781.1, C15orf54, hsa-miR-145 were obtained by Multivariate Cox regression 
analysis (Fig. 3C). The scores were then calculated, and the patients were classified into high-risk and low-risk 
groups based on the median risk score in the training set (Fig. 3D). The relationships between survival status 
and survival times of gastric cancer patients, ordered by their respective risk scores, were displayed (Fig. 3E).

The high -risk group had a worse chance of survival than the low-risk group (Fig. 4A). The AUC at 1 year, 
3 years, 5 years were 0.665, 0.674 and 0.789 (Fig. 4B). The gene SERPINE1 was highly expressed in both high 
and low-risk groups (Fig. 4C). The Nomogram was established based on the independent prognostic indicators, 
which predicts survival rates for the first, 3 to 5 years. The genes in this nomogram model were VCAN-AS1, 
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SERPINE1, AL139002.1, LINC00326, AC018781.1, C15orf54, hsa-miR-145 (Figs. 4D). Moreover, the calibration 
curve for nomogram models showed a good agreement between the actual survival rate and the predicted 3 years 
overall survival rate, suggesting that this model was accurate in its predictions (Fig. 4E).

Figure 1.  Volcano plots and heatmaps of differentially expressed mRNAs, miRNAs, and lncRNAs. (A) Volcano 
plot of differentially expressed mRNAs, miRNAs and lncRNAs. (B) Heatmap of differentially expressed mRNAs, 
miRNAs and lncRNAs. (C) LncRNA-miRNA-mRNA ceRNA network generated by Cytoscape. Red: upregulated 
RNAs. Green: downregulated RNAs. Triangle: miRNA. Diamond: lncRNA. Circular: mRNA.
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Investigation of immune infiltration and gastric cancer. The immune cell content in the samples 
was shown in Fig. 5A. It was depicted that B cells naïve, T cells CD4 memory resting, Macrophages M0, M1, M2 
were higher in tumor cells, while B cells memory, plasma cells, T cells CD8, T cells CD4 memory activated and 
Monocytes were lower in tumor cells (Fig. 5B). The heatmap was also demonstrated that various immune cells 
were differently expressed in tumor cells (Fig. 5C). CD4 memory activated T cells was associated with survival 
probability. High number of CD4 memory activated T cells had a good survival probability (Fig. 6A). The asso-
ciation among 22 different types of immune cells was presented (Fig. 6B). The expression of B cells naïve, Mast 
cells resting and NK cells activated was higher in younger than in older age, while the expression of Mast cells 
activated, Neutrophils, NK cells resting was lower than in older age (Fig. 7). The expression of Macrophage M0, 
Mast cells activated, and Plasma cells was higher in G1/2 than in G3 grade, while the expression of Macrophage 

Figure 2.  Prognosis-related genes were illustrated by the K-M survival evaluation.
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Figure 3.  LASSO and multivariate regression models screening genes. (A) LASSO coefficient profiles of genes 
in STAD; dotted vertical lines were drawn at the optimal values by using the minimum criteria. (B) LASSO 
coefficient profiles of the candidate OS-related GRGs with nonzero coefficients determined by the optimal 
lambda. A coefficient profile plot was produced against the logλ sequence. (C) Forest plot of several genes was 
involved in the ceRNA network. (D) Risk score analyses of GC patients in the training cohort based on the 
seven-GRGs signature. Distribution of risk scores per patient. (E) Relationships between survival status and 
survival times of GC patients ranked by risk score. The black dotted line represents the optimum cut-off point 
dividing patients into low and high-risk groups.
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M1, Mast cells resting, Monocytes, T cells CD4 memory activated, T cells CD8, and T cells follicular helper was 
lower in G1/2 than in G3 grade (Fig. 7).

Monocytes and neutrophils in gastric cancer. Next, we found no significant difference for survival 
probability between the high-risk group and the low-risk group (Fig. 8A). The data from AUC curve showed 
that the nomogram survival prediction model had a reasonable accuracy. The AUC values at 1 year, 3 years, and 

Figure 4.  The association of ceRNAs and survival. (A) KM analysis of the high-risk and low-risk groups. 
(B) Time-dependent receiver operating characteristic (ROC) analysis for OS prediction of prediction model. 
(C) Heatmap of seven differentially expressed genes. (D) Nomogram based on multiple Cox regression. (E) 
Calibration curve for 3 years survival.
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5 years were 0.569, 0.525, and 0.605, respectively (Fig. 8A). Cox regression analysis obtained two predictable 
related immune cells, Monocytes and Neutrophils. The Nomogram was established based on the immune cells, 
which predicts survival rates for the first, 3 to 5 years. The immune cells in this nomogram model were Mono-
cytes and Neutrophils (Fig. 8B). Moreover, the calibration curve for nomogram models demonstrated a consist-
ent agreement between the actual survival rate and the predicted 3 years overall survival rate, implying that 
this model was accurate in its predictions (Fig. 8B). In addition, hsa-miR-145 and AC018781.1 were associated 

Figure 5.  The association of immune cells and STAD. (A) The percentage of 22 immune cell subpopulations 
in STAD patients. (B) The fraction of immune cells in STAD patients. (C) Heatmap of immune infiltration 
between normal and tumor groups.



8

Vol:.(1234567890)

Scientific Reports |        (2023) 13:15006  | https://doi.org/10.1038/s41598-023-41444-3

www.nature.com/scientificreports/

with Monocytes, while AC018781.1, AL139002.1, SERPINE1, VCAV-AS1 and C15orf54 were associated with 
Neutrophils (Fig. 8C-D). In the high-risk group, Monocytes and neutrophils were highly expressed (Fig. 9A). 
Pearson’s correlation assessed the association between biomarkers and immune cells. C15orf54 had the strongest 
relationship with Neutrophils with a coefficient of 0.32. VCAN-AS1 had a good association with Neutrophils 
with a coefficient of 0.28. In addition, hsa-miR-145 had a stronger relationship with Monocytes with a coefficient 
of 0.31 (Fig. 9B).

Figure 6.  The correlation of immune cells and STAD. (A) T cells CD4 memory activated and survival in STAD. 
(B) Co-expression patterns among fractions of immune cells.
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Discussion
Although the incidence and mortality of gastric cancer have decreased in recent years, gastric cancer is still 
one of the most common malignant tumors in the world and causes a heavy medical burden  globally3. To 
identify potential biomarkers associated with the diagnosis, treatment and prognosis of gastric cancer, compre-
hensive bioinformatics analysis may help to achieve this goal and develop personalized treatment for gastric 
cancer patients. Based on RNA expression profiles from TCGA, 980 lncRNAs, 104 miRNAs and 1639 mRNAs 
were identified, which were differentially expressed between tumors and normal tissues. The current work used 

Figure 7.  Correlation between immune cells and clinical features.
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lncRNA-associated ceRNA to identify key biomarkers that were related to the prognosis of gastric cancer. The 
lncRNAs VCAN-AS1, AL139002.1, LINC00326, AC018781.1, and C15orf54 served as hub nodes in the ceRNA 
network, which targeted other miRNAs and mRNAs.

Figure 8.  The association of immune cells and survival in STAD. (A) Survival probability of high and low-
risk groups (left). AUC curve at 1, 3, 5 years (right). (B) Nomogram for predicting patients’ outcome based on 
immune cells (left). Calibration curves for assessing the discrimination and accuracy of the nomogram (right). 
(C–D) The association between immune cells and prognostic genes.
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LncRNAs have also been considered as an underappreciated novel therapeutic target for gastric  cancer43. Their 
diverse roles in cancer progression offer new opportunities to disrupt metastasis in clinical  settings44. LncRNAs 
play important roles in gene regulation, including regulation of gene activation and silencing, X chromosome 
inactivation, alternative splicing, and post-translational regulation. mRNAs, miRNAs, and lncRNAs are linked 
in an intricate network of crosstalk by competing endogenous  RNAs45. LncRNA VCAN-AS1 has been reported 
to promote the malignant tumor behaviors via modulating the miR-106a-5p-involved STAT3/HIF-1α axis in 
breast  cancer46. Two studies also validated that lncRNA VCAN-AS1 was abnormally expressed in gastric cancer 
by constructing the ceRNA regulatory  network47,48. Feng et al.49 reported that lncRNA VCAN-AS1 contributed 
to gastric cancer progression via regulation of p53 expression. Hence, lncRNA VCAN-AS1 might be a potential 
factor to influence gastric cancer development and progression. Due to the unclear role of lncRNA VCAN-AS1 
in TIME, further investigation is required to determine the functions of VCAN-AS1 in regulating TIME in 
gastric cancer.

One study has confirmed that AL139002.1 sponged miR-490-3p and regulated the expression of Hepatitis 
A virus cellular receptor 1 (HAVCR1) in gastric cancer, contributing to the development of gastric  cancer50. In 
addition, LINC00326 has been found to regulate hepatocarcinogenic lipid  metabolism51. In non-small cell lung 
carcinoma, overexpression of LINC00326 attenuated tumor progression via blockade of Wnt/β-catenin path-
way through miR-657/DKK2  axis52. Liu et al.53 used a competing endogenous RNA network and found that 3 
lincRNAs, C15orf54, ADAMTS9-AS1 and AL391152.1, were involved in survival rate of gastric cancer patients. 
LncRNA AC018781.1 was observed to be an independent risk factors for gastric cancer by a bioinformatic and 
integrated  analysis48.

In this study, we found the important role of miR-145 in gastric cancer. In line with this finding, numerous 
studies have validated the functions of miR-145 in gastric cancer  progression54. For example, miR-145 inhibited 
cell proliferation, invasion and migration as well as cell cycle progression via suppression of transcription fac-
tor Sp1 in gastric  cancer55. Xing et al. reported that miR-145 targeted the expression of catenin-δ1, MYO6 and 

Figure 9.  The association of immune cells and survival in STAD. (A) Heatmap of the immune cells (monocytes 
and neutrophils) in high-risk and low-risk groups. (B) correlation matrix of immune cells and genes.
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inhibited cell invasion in gastric  cancer56,57. Chang et al.58 found that miR-145 induced the antiproliferative effects 
via targeting E2F3 in gastric cancer. Low expression of miR-145-5p was associated with poor prognosis in gastric 
 cancer59. It is clear that the role of miR-145 has been well studied in gastric cancer.

SERPINE1 gene has been studied in a variety of human cancers, including gastric cancer. One group reported 
a SERPINE1-based immune gene signature, which can predict immunotherapy response and patient prognosis 
in gastric  cancer60. Another group uncovered that SERPINE1 enhanced malignant progression and associated 
with poor prognosis in gastric cancer  patients61. Several analyses support SERPINE1 as a potential prognostic 
biomarker in gastric  cancer62–64. One study used data mining in combination with bioinformatics dissected that 
SERPINE1 was associated with immunoinfiltration and might be a diagnosis and prognosis biomarker in stom-
ach  adenocarcinoma65. High SERPINE1 expression group presented higher immune cells’ expression, including 
CD4+ T cells, neutrophils, CD8+ T cells, macrophages and B cells. Moreover, SERPINE1 was associated with 
immune cells in the TIME of stomach  adenocarcinoma65. Another study discovered that SERPINE1 expression 
was correlated with several types of immune cells, such as neutrophils, macrophages, CD4+ T cells, CD8+ T cells, 
B cells, and dendritic cells in clear cell renal cell  carcinoma66.

Recently, evidence suggested that SERPINE1 was associated with immune infiltrates in gastric  cancer67. SER-
PINE1 enhanced the inhibitory TIME, which was positively associated with the infiltration level of neutrophils, 
macrophage M2, resting NK cells, and activated mast cells. SERPINE1 was negatively associated with plasma 
cells and B cell memory in gastric  cancer67. Consistently, in our study, we identified that SERPINE1 expression 
was positively correlated with neutrophils in gastric cancer.

CD4+ regulatory T cells were identified to be associated with survival in gastric  cancer68. In gastric cancer 
patients, CD4+ T cells and regulatory T cells were enriched, and lower expression of miR-128-3p was correlated 
with overall survival. Moreover, miR-128-3p targeted the expression of IL16 in gastric  cancer68. One group 
reported that high infiltration of CD4+ T cells was linked to worse overall survival in gastric  cancer69. Another 
group revealed that CD4+ memory T cell-related genes were correlated with clinical overall survival in patients 
with gastric  cancer70. Additionally, lncRNAs, including A2M-AS1, C2orf27A, and ZNF667-AS1, impaired acti-
vation of CD4+ T cells and affected prognosis of gastric cancer  patients71. In gastric cancer patients with FLOT 
chemotherapy (5-Fluorouracil, Leucovorin, Oxaliplatin and Docetaxel), CD4+/CD8+ lymphocyte ratio was 
elevated and predicted favourable therapy  response72. In our study, CD4 memory activated T cells were linked 
to survival of gastric cancer patients. Without a doubt, more exploration is necessary to determine the mechanism 
of CD4 T cells-mediated survival in gastric cancer.

In summary, we successfully identified lncRNAs closely related to the occurrence and development 
of gastric cancer based on the TCGA database. Based on these lncRNAs, a ceRNA network based on the 
lncRNA–miRNA–mRNA regulatory mechanism was constructed. Several lncRNAs, miRNAs and mRNAs asso-
ciated with gastric cancer prognosis were screened in the ceRNA network by survival analysis. These indicators 
provide new targets for the prognosis evaluation of gastric cancer patients. At the same time, our study also 
confirmed the relationship between immunity and lncRNA-based ceRNA regulatory network. This study will 
enable us to identify more useful targets to develop effective treatment strategies for gastric cancer. It has several 
limitations in this study. In TCGA database, there are lower numbers of control groups compared with the tumor 
groups. The discrepancy between the control group and the experimental group could lead to potential bias in 
the analysis results. In addition, it is important to mention that in vitro and in vivo experiments are necessary 
to validate our findings in the future.

Materials and methods
Data colleting from TCGA . RNA-sequencing data, miRNA profiling and clinical information of STAD 
were downloaded from the TCGA database (https:// portal. gdc. cancer. gov/). Illumina HiSeqRNASeq platforms 
were used to obtain mRNA and lncRNA data. HiSeqmiRNASeq platforms were used to collect miRNA data. 
Data were collected for gastric cancer samples and normal samples. Data were further organized by ID conver-
sion, filtering, merging, correction and clinical information. Demography, histology, tumor stage and TNM 
of the STAD were obtained (Supplementary Table  1 and supplementary file 1). Pre-filtered low count genes 
(rowMeans(data) > 1) were used to preprocess RNA sequencing profiles. We converted the downloaded data 
into count format through R, so as to analyze these samples and screen out differentially expressed RNAs. EdgeR 
(v.3.28.0) is an R package dedicated to analyzing DEGs (differentially expressed genes). Standard settings for 
DEGs were FDR < 0.01 and log fold change (FC) > 2. DElncRNA (differentially expressed lncRNA), DEmRNA 
(differentially expressed mRNA) and DemiRNA (differentially expressed miRNA) were visualized using the 
ggplot package. The Ensembl database was used to annotate genes in RNAseq, and we excluded RNAs not 
included in the Ensembl database. Afterwards, we extracted lncRNA expression profiles and mRNA expression 
profiles from the RNAseq expression matrix.

Construction of CeRNA regulatory network. To further understand the role of DERNA (differen-
tially expressed RNA) in gastric cancer, we constructed a ceRNA regulatory network between lncRNA-miRNA-
mRNA to explore the relationship between them. Then, a ceRNA network was built using the hypergeomet-
ric test and correlation analysis to identify the differentially expressed miRNAs that can control lncRNAs and 
mRNAs (p < 0.05 as the filter threshold criteria). DElncRNAs, DEmiRNAs and DEmRNAs were incorporated 
into ceRNA regulatory network. We visualized the ceRNA regulatory network with Cytoscape. PPI network of 
mRNAs involved in the ceRNA network were generated by  STRING73.

GO analysis and KEGG pathway analysis. Functional analysis of genes from different organisms, which 
includes three gene ontology of cellular component (CC), molecular function (MF) and biological process (BP), 

https://portal.gdc.cancer.gov/
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was further conducted through the Gene ontology (GO)  database74. The clusterProfiler (v.3.14.3) package was 
adopted to perform GO functional annotation and KEGG pathway analysis of mRNAs in the ceRNA  network75.

Prognosis analysis of related genes. The clinical information of gastric cancer patients was down-
loaded from TCGA database and then we extracted the survival information of patients (survival time and sur-
vival status of patients)76. Subsequently, survival information with the expression matrix of RNAs in the ceRNA 
network was combined. To determine whether there is a relationship between biomarker expression and STAD 
survival, Kaplan-Meier (K-M) survival analysis was  performed77. The next step was to find significant factors 
in the original Cox model that had prognostic significance and to incorporate those into the reduced Cox pro-
portional hazard  model78. In order to test the accuracy of the created multifactorial model, LASSO regression 
uses contraction to lower the data value to a particular  point79. Ultimately, a nomogram was developed using 
the multivariate model to forecast the prognosis of STAD. The nomogram might make it possible for doctors to 
assign each biomarker a prognosis value based on how it  expresses80. Indicators of prognosis and total 3- and 
5 years survival may be found in the sum of the individual values. The accuracy of the nomograms was evaluated 
using receiver operating characteristic curve (ROC) analysis and  calibration81.

Immune infiltration in STAD. Gene expression data were used by CIBERSORT to estimate the proportion 
and abundance of different types of immune cells in tumor and normal  groups82. To assess the percentages of 22 
immune cell types in STAD samples, we used CIBERSORT in this instance. Only instances with CIBERSORT 
results of P ≤ 0.05 were considered for further analysis. Important immune cells in tumor samples were distin-
guished from non-malignant samples using Wilcoxon rank-sum83. Next, K-M survival analysis was used to see 
whether the number of particular immune cells was related to overall STAD  survival84. Different immune cells 
were incorporated into a Cox proportional hazard model following LASSO regression analysis, and a nomogram 
for STAD prognosis prediction was  created85. The bias and precision of the nomogram were evaluated using the 
concordance index of the Cox mode.

Association between selected RNAs and immune cells. To examine the immune cells that are con-
nected to survival, univariate Cox regression and Kaplan-Meier survival analysis were  employed77. In parallel, 
multivariate Cox regression analysis and Lasso regression were used to create the final immune cell  model86,87. 
An equation that forecasts medical outcomes was graphically represented as a nomogram. With nomograms, 
patients accumulate points based on the severity of their risk  factors85. The fold difference in gene expression 
between tumor tissues and normal tissues served as the basis for the risk factors of two nomograms that we 
constructed for the study. Then, we forecast the patients’ 1-, 3-, or 5 years survival rate.

Data availability
The data of this study are available from the corresponding author upon reasonable request.
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