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Magnetic dynamics 
and nonreciprocal excitation 
in uniform hedgehog order 
in icosahedral 1/1 approximant 
crystal
Shinji Watanabe 

The hedgehog state in the icosahedral quasicrystal (QC) has attracted great interest as the theoretical 
discovery of topological magnetic texture in aperiodic systems. The revealed magnetic dynamics 
exhibits nonreciprocal excitation in the vast extent of the reciprocal lattice q-energy ω space, 
whose emergence mechanism remains unresolved. Here, we analyze the dynamical as well as static 
structure of the hedgehog order in the 1/1 approximant crystal (AC) composed of the cubic lattice with 
spatial inversion symmetry. We find that the dispersion of the magnetic excitation energy exhibits 
nonreciprocal feature along the N-P-Ŵ line in the q space. The dynamical structure factor exhibits 
highly structured intensities where high intensities appear in the high-energy branches along the Ŵ -H 
line and the P-Ŵ -N line in the q space. The nonreciprocity in the 1/1 AC and also in the QC is understood 
to be ascribed to inversion symmetry breaking by the hedgehog ordering. The sharp contrast on the 
emergence regime of nonreciprocal magnetic excitation between the QC and the 1/1 AC indicates that 
the emergence in the vast q-ω regime in the QC is attributed to the QC lattice structure.

Quasicrystal (QC) has no periodicity but possesses a unique rotational symmetry forbidden in periodic 
crystals1–3. In periodic crystals, the electric states can be understood on the basis of the Bloch’s theorem grounded 
on the translational symmetry of the lattice. In contrast, in the QC, the Bloch’s theorem can no longer be applied. 
This makes understanding of the electronic states and physical properties of the QC far from complete one and 
hence their clarifications have attracted great interest as the frontier of the condensed matter physics as well as 
the material science.

One of the important remaining issues has been whether the magnetic long-range order is realized in the 
QC. In the rare-earth based approximant crystals (AC)s which have the local atomic configuration common to 
that in the QC with periodicity, the magnetic long-range order was observed experimentally4. The 4f electrons 
at the rare-earth atom are responsible for the magnetism. The antiferromagnetic (AFM) order was observed in 
the 1/1 AC Cd6 R (R=Tb, Y, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu)5–7, and Au–Al–R (R=Gd and Tb)8, 9. 
The ferromagnetic (FM) order was observed in the 1/1 AC Au-SM-R (SM=Si, Ge, and Al; R=Gd, Tb, Dy, and 
Ho)10–13. Recently, the FM long-range order has been discovered in the QC Au–Ga–Tb and Au–Ga–Gd, which 
has brought about the breakthrough14.

Theoretically, lack of the microscopic theory of the crystalline electric field (CEF) at the rare-earth site in 
the QC and AC has prevented us from understanding the strongly-correlated electron states, in particular, the 
properties of the magnetism. Recently, general formulation of the CEF theory in the rare-earth based QC and AC 
has been developed on the basis of the point charge model15. This allows us to reveal that the magnetic anisotropy 
arising from the CEF at the rare-earth site plays a crucial role in realizing unique magnetic structures16, 17. Recent 
theoretical analyses of the effective model taking into account the magnetic anisotropy in the QC Au–SM–Tb 
have shown that the uniform FM state is stabilized, which provides a candidate for the magnetic structure 
observed recently in the QC Au–Ga–Tb17. Moreover, interestingly enough, uniform hedgehog state has theo-
retically been shown to be stabilized in the QC16. The hedgehog state is the topological magnetic texture whose 
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magnetic moments located at the 12 vertices of the icosahedron (IC) are directed outward from the IC as shown 
in Fig. 1A, which is characterized by the topological charge n = +116.

Recently, the magnetic dynamics of the uniform hedgehog order in the QC has for the first time been studied 
theoretically18. It has been revealed that the nonreciprocal excitation appears in the vast extent of the reciprocal 
lattice q-energy ω space. Namely, the dynamical structure factor has been shown to have different values for the 
reciprocal lattice vector in the opposite direction, i.e., S(q,ω)  = S(−q,ω) . In this report, to get insight into the 
nonreciprocal excitation, we analyze the dynamical as well as static structures of the uniform hedgehog order 
in the 1/1 AC.

It is remarked here that the dynamics of the topological magnetic textures20 and the nonreciprocal mag-
netic excitation21 has attracted much attention nowadays in periodic crystals22. In non-centrosymmetric sys-
tems, the Dzyaloshinskii–Moriya interaction for the magnetic moments is known to cause the nonreciprocal 
excitations23–31. The nonreciprocal magnon was also shown to appear in centrosymmetric systems32–36. Recently, 
the nonreciprocal excitation has been found in the Skyrmion crystal on the centrosymmetric lattice21, whose 
mechanism has not been fully understood. Therefore, the present study contributes to the understanding of the 
nonreciprocal excitations in the topological magnetic textures on centrosymmetric systems.

Results
Lattice structure of the IC and 1/1 AC.  We consider the lattice structure of the 1/1 AC identified experi-
mentally in the Au70Si17Tb1313. The IC is located at the center and the corner of the body-center-cubic (bcc) unit 
cell with the lattice constant a = 14.726 Å , as shown in Fig. 1B. The crystal structure is cubic (Space Group No. 
204, Im3̄ , T5

h ), which retains the spatial inversion symmetry.
The hedgehog state in the IC is regarded as the superposition of the coplanar alignment in the three layers 

orthogonal each other as shown as the purple, pink, and yellow rectangles in Fig. 1A. Each rectangle has the side 
length d1a = 0.374a and d2a = 0.612a . As for the direction of the magnetic moments, we consider that each 
moment is directed to the 5-fold axis (but not the pseudo 5-fold axis on the distorted IC) whose direction is 
given by the vector passing through each vertex of the regular IC from the center. Namely, the magnetic moment 
at each vertex of the rectangle in Fig. 1A is given by Si = S(± 1√

τ+2
,± τ√

τ+2
, 0) for the i = 1 , 3, 11, and 12th site 

(purple rectangle), Si = S(± τ√
τ+2

, 0,± 1√
τ+2

) for the i = 5 , 6, 8, and 9th site (pink rectangle), and 
Si = S(0,± 1√

τ+2
,± τ√

τ+2
) for the i = 2 , 4, 7, and 10th site (yellow rectangle). Here, S is the magnitude of the 

total angular momentum, which is referred to as “spin” hereafter, and τ is the golden mean τ = (1+
√
5)/2.

Minimal model for magnetism in rare earth based QC and AC.  We employ the minimal model for 
the rare earth-based QC and AC introduced in Ref.19:
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Figure 1.   (A) The hedgehog state in the IC, where the magnetic moments (red arrows) are directed outward 
from the IC to the 5-fold axis direction. The rectangle in the IC is colored in purple, pink, and yellow (see text). 
(B) Uniform hedgehog order at the center and corner of the bcc unit cell in the 1/1 AC. The box frame is the 
cubic unit cell with the side length a. (C) Local coordinate at the Tb site with the orthogonal unit vectors ê1 , ê2 , 
and ê3 where ê3 is directed to the magnetic easy axis arising from the CEF (see text). (This figure is created by 
using Adobe Illustrator CS5 Version 15.1.0.).



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:14438  | https://doi.org/10.1038/s41598-023-41292-1

www.nature.com/scientificreports/

where Si is the “spin” operator at the ith Tb site with Si = 6 and Jij is the exchange interaction for the “spins” at 
the ith and jth Tb sites. The second term represents the magnetic anisotropy arising from the CEF, where êi3 is 
the unit vector along the magnetic easy axis arising from the CEF as shown in Fig. 1C (see Section “Methods” 
for detail). This model is considered to be effective for broad range of the rare earth-based QC and AC, which is 
not only restricted to the Tb-based system but also is applied to the other rare-earth-based QC and AC.

The ground-state phase diagram of the model (1) applied to the single IC in the large-D limit was determined 
by the numerical calculations for the ferromagnetic (FM) interaction17 and the antiferromagnetic (AF) interac-
tion Jij16, where J1 is the nearest neighbor (N.N.) interaction [5 bonds for each site with the bond length 0.374a 
(1 bond) and 0.378a (4 bonds)] and J2 is the next nearest neighbor (N.N.N.) interaction [5 bonds for each site 
with the bond length 0.610a (4 bonds) and 0.612a (1 bond)]. In both cases, the hedgehog state was shown to 
be realized in the ground state phase diagram of J2/J1 . The model (1) was also applied to the 1/1 AC where the 
nearest neighbor (N.N.) interaction and the next N.N. (N.N.N.) interaction not only for the intra IC but also for 
the inter IC was considered in the large-D limit16. The intra IC interaction is the same as noted above. As for the 
inter IC interaction, the N.N. interaction is set to be J1 [5 bonds for each site with bond length 0.368a (4 bonds) 
and 0.388a (1 bond)] and the N.N.N. interaction is set to be J2 [6 bonds for each site with bond length 0.528a (2 
bonds) and 0.530a (4 bonds)]. It was shown in Ref.17 that this minimal model for the large-D limit explains the 
magnetic structures of the FM order (ferrimagnet) observed in the 1/1 AC Au70Si17Tb1313 and the AFM order of 
whirling-moment states in the 1/1 AC Au72Al14Tb1426.

It was shown that for J2/J1 > 2 , the hedgehog state and anti-hedgehog state are realized at the center and 
corner of the bcc unit cell in the ground state16, 17. Within the linear spin-wave theory, we find that the uniform 
hedgehog order is realized in the 1/1 AC as metastable state although the true ground state is alternated hedge-
hog order as shown in Refs.16, 17. In this report, to get insight into the mechanism of the nonreciprocal magnetic 
excitation in the uniform hedgehog order found in the QC, we analyze the magnetic excitation in the “uniform” 
hedgehog state in the 1/1 AC by employing the metastable state (local minimum in the energy landscape) but 
not the true ground state.

Static structure factor of magnetism.  First, let us analyze the magnetic structure of the uniform hedge-
hog ground state in the 1/1 AC. The static structure factor of magnetism is defined as

where N is the total number of the Tb sites. Let us rewrite the position vector of the Tb site as ri = Rj + r0m , 
where Rj denotes the position of the center of the IC and r0m denotes the position of the mth Tb site on the IC. 
The position vector of the IC Ri is expressed as

where ni is an integer and ai is the basic translation vector of the bcc lattice a1 = a
2 (−1, 1, 1) , a2 = a

2 (1,−1, 1) , 
and a3 = a

2 (1, 1,−1) . Here, a is the lattice constant of the bcc unit cell (see Fig. 1B). The magnetic structure 
factor (Eq. 2) is derived to be expressed in the convolution form as

where the structure factor of the lattice FL(q) and the magnetic structure factor on a single IC SIC(q) are given by

respectively. Here, NL = N3
1 is the number of the primitive unit cell which contains the single IC i.e., 12 Tb sites 

(note that the box frame drawn in Fig. 1B denotes the expanded unit cell which contains two ICs, i.e., 24 Tb sites) 
and N = 12NL holds. The wave vector is given by

where bi is the basic translation vector in the reciprocal lattice with b1 = 2π
a (0, 1, 1) , b2 = 2π

a (1, 0, 1) , and 
b3 = 2π

a (1, 1, 0).
We consider the periodic boundary condition along ai for i = 1, 2, and 3. Then, h̃ , k̃ , and l̃ are given by h̃ = m1

N1
 , 

k̃ = m2
N1

 , and l̃ = m3
N1

 with integer mi (i = 1, 2, 3) . The structure factor of the bcc lattice of the 1/1 AC is calculated as
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For integer h̃, k̃, and l̃  , the vector q in Eq.  (7) becomes the reciprocal lattice vector, i.e. q = Q
h̃k̃l̃

 , where 
Q
h̃k̃l̃

≡ h̃b1 + k̃b2 + l̃b3 with integer h̃ , k̃ , and l̃  . Then, we obtain FL(Qh̃k̃l̃
) = 1 . As h̃, k̃ , and l̃  deviate from the 

integer values, FL(q) decays rapidly in the finite-size system. For the bulk limit, i.e., N1 → ∞ , FL(q) becomes 
zero for non-integer h̃ , k̃ , and l̃  , which yields FL(q) = δq,Q

h̃k̃l̃
.

Then, it tuns out that the convolution form in Eq. (4) indicates that the q vector giving Fs(q)  = 0 is restricted 
to the integer values of h̃ , k̃ , and l̃  where FL(q) becomes non zero. We have calculated Fs(q) in N1 → ∞ 
for q = 2π

a (h, k, l) where h, k, and l are defined by h ≡ k̃ + l̃  , k ≡ h̃+ l̃  , and l ≡ h̃+ k̃ , respectively. For 
(h, k, l) ∈ [−10, 10] , the maximum of Fs(q) is identified to be 0.215 at (h, k, l) = (±8,±4, 0) , (0,±8,±4) , and 
(±4, 0,±8) . We plot Fs(q) for q = 2π

a (h, k, 0) in the h-k plane in Fig. 2A. We have also calculated Fs(q) for 
q = 2π

a (h, 0, l) in the l-h plane at k = 0 and Fs(q) for q = 2π
a (0, k, l) in the k-l plane at h = 0 . The results are the 

same as those in Fig. 2A where h and k are replaced with l and h respectively and k and l respectively. It is noted 
here that Eq. (4) is also applied to the QC, where FL(q) is the structure factor of the QC lattice.

Here, to get insight into the magnetic structure on the IC, let us analyze SIC(q) in a single IC for gen-
eral q . We have searched the maximum in SIC(q) for h, k, l ∈ [−10, 10] . Then, the maximum appears at 
(h, k, l) = (±2.532,±4.098, 0) , (0,±2.532,±4.098) , and (±4.098, 0,±2.532) . Figure 2B shows SIC(q) in the h-k 
plane at l = 0 . We note that the analytic form of SIC(q) for q = 2π

a (h, k, 0) can be derived as

We have also calculated SIC(q) for q = 2π
a (h, 0, l) in the l-h plane at k = 0 and SIC(q) for q = 2π

a (0, k, l) in the 
k-l plane at h = 0 . The results are the same as those where h and k in Fig. 2B are replaced with l and h respectively 
and k and l respectively. These are understandable from the symmetry of the hedgehog shown in Fig. 1A. Namely, 
the alignment of the magnetic moments on the IC is invariant under the permutation of the x, y, and z axes so 
that the same results of SIC(q) are obtained by replacing (qx , qy , qz) with (qz , qx , qy) and also with (qy , qz , qx)18.

Dispersion of magnetic excitation from the hedgehog ground state.   To clarify the property of 
the magnetic excitation in the uniform hedgehog order in the 1/1 AC, we employ the linear spin-wave theory (see 
Section “Methods”). Namely, we apply the Holstein-Primakoff transformation37 to H, the “spin” operators are 
transformed to the boson operators as Si · êi3 = S − ni with ni ≡ a†i ai , S

−
i = a†i

√
2S − ni  , and S+i =

√
2S − niai , 

where S+i (S
−
i ) is the raising (lowering) “spin” operator and a†i (ai) is a creation (annihilation) operator of the 

boson at the ith Tb site. We retain the quadratic terms of the boson operators since the higher order terms are 
irrelevant at least for the ground state. By taking the primitive unit cell under the periodic boundary condition, 
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Figure 2.   (A) The magnetic structure factor of the 1/1 AC Fs(q) for q = 2π
a
(h, k, 0) in the h-k plane. (B) The 

magnetic structure factor of the IC SIC(q) for q = 2π
a
(h, k, 0) in the h-k plane. The color scale is common to that 

in (A). (This figure is created by using Adobe Illustrator CS5 Version 15.1.0.).
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we have performed the numerical calculations in the systems with N1 = 8, 64, and 256, and show the results in 
N1 = 256.

The excitation energy ωm′(q) is obtained by diagonalizing the spin-wave Hamiltonian under the assumption 
that the uniform arrangement of the hedgehog state in the 1/1 AC. The result of ωm′(q) for q (solid line) along 
the symmetry line illustrated in the inset is shown in Fig. 3. We have confirmed that by assuming the uniform 
hedgehog ground state, all the excitation energies are positive ωm′(q) > 0 for J1 = 1.0 , J2 = 2.3 , and D = 50.0 
as shown in Fig. 3. Positive excitation energies indicate that the assumed ground state is stable at least as a local 
minimum in the energy landscape. Although the AFM interaction between the ICs conflicts with uniform 
arrangement of the hedgehog state, the strong uniaxial anisotropy D = 50.0 as well as the strong N.N.N. AFM 
interaction J2 inside the IC gives rise to the metastable state within the linear spin-wave theory. It should be noted 
here that the true ground state is the hedgehog-anti-hedgehog ordered state as shown in Ref.16 and the uniform 
hedgehog order is the metastable state with the higher energy. In this report, the results for J1 = 1.0 , J2 = 2.3 , 
and D = 50.0 are presented as the representative case of the uniform hedgehog order. Figure 3 shows ωm′(q) for 
q (solid line) along the symmetry line illustrated in the inset. Because of the uniaxial anisotropy due to the CEF, 
the energy dispersion emerges beyond the excitation gap.

We also plot ωm′(−q) (dashed line) for q along the same symmetry line for the ωm′(q) in Fig. 3. It is remark-
able that clear deviation from the solid line emerges along the N-P-Ŵ line, indicating ωm′(q) �= ωm′(−q) . Namely, 
nonreciprocal excitation appears in the uniform hedgehog order in the 1/1 AC. We have calculated the magnon 
dispersion in the collinear FM order in the 1/1 AC and have confirmed that the nonreciprocal dispersion does 
not appear (Supplementary information, Fig. S1). Since the lattice structure of the 1/1 AC has the inversion sym-
metry (see Fig. 1B), the emergence of the nonreciprocal dispersion is ascribed to the alignment of the magnetic 
moments in the hedgehog state (see Fig. 1A). This point will be discussed in detail in the section of analysis of 
nonreciprocal excitation below.

Magnetic dynamical structure factor. Next, we calculate the magnetic dynamical structure factor defined by

where |GS� is the ground state with the energy E0 and Sqα is the Fourier transformation of the “spin” operator 
defined by Sqα = 1√

N

∑N
i=1 e

−iq·ri Siα . We set η = 10−3 . The intensity of inelastic neutron scattering is expressed 
by the dynamical structure factor

where q is the incident wavevector and q̂α ≡ qα/|q|38. The results of S⊥(q,ω) for q along the symmetry line in the 
bcc unit cell illustrated in the inset of Fig. 3 are shown in Fig. 4A. Notable is that the high intensities appear in 
the high-energy branches, especially along the Ŵ -H line and the P-Ŵ -N line. In the upper branches, the relatively 
high and moderate intensities appear.

This is in sharp contrast to the case in the collinear FM order in the 1/1 AC where high intensity in Sxx(q,ω) 
and Syy(q,ω) appears continuously from the Ŵ point in the magnon branch with the lowest excitation energy 
(Supplementary information, Fig. S3). In Fig. 4, the remarkable intensity appears for q along the N-P-Ŵ line where 
the nonreciprocal dispersion ωm′(q) �= ωm′(−q) appears (see Fig. 3).

In the QC, the dynamical structure factor was calculated in Ref.18 where the high intensity appears around 
the Ŵ point in the high energy region. The high intensities of S⊥(q,ω) around the Ŵ point, i.e., along the Ŵ -H line 
as well as the P-Ŵ -N line shown in Fig. 4A capture this feature. Figure 4B shows the intensity plots of S⊥(−q,ω) 
for the same q presented in Fig. 4A. By comparing Fig. 4B with Fig. 4A, we see that the nonreciprocity can be 
detected as the differences in the intensities of S⊥(−q,ω) and S⊥(q,ω) for q along the N-P-Ŵ line. Namely, the 
nonreciprocal dispersion is remarkable by the intensity differences of the dynamical structure factors in the 
upper and lower branches.
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S−qβ |GS�,

(11)S⊥(q,ω) =
∑

α,β=x,y,z

(δαβ − q̂α q̂β)Sαβ(q,ω),

100

105

110

(q
)
/(
SJ

1
)

 q
 -q

qy
qx

qz

P

N H

H N P N

Figure 3.   The excitation energy ωm′(q) (solid line) and ωm′(−q) (dashed line) for q along the symmetry line 
in the bcc unit cell illustrated in the inset. The inset shows the unit cell of the bcc lattice of the 1/1 AC in the 
reciprocal lattice space. (This figure is created by using Adobe Illustrator CS5 Version 15.1.0.).
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Analysis of nonreciprocal excitation. To analyze the mechanism of the emergence of the nonreciprocal 
excitation, let us consider how the excitation from the hedgehog ground state propagates in the 1/1 AC.

First, for comparison, let us consider the collinear FM ordered state in one dimensional lattice shown in 
Fig. 5A where the magnetic moment with the total angular momentum J = 6 is aligned to the z direction and 
the lattice is formed along the transverse direction, which is set as the x axis. Namely, |J = 6, Jz = 6� is realized at 
each site, which is denoted as |Jz�i , i.e., |6�i hereafter. Then, let us consider the excited state created at the ith site, 
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Figure 4.   Intensity plots of the dynamical structure factors (A) S⊥(q,ω) and (B) S⊥(−q,ω) along the symmetry 
line in the unit cell of the bcc lattice illustrated in the inset of Fig. 3. In (B), the color scale is common to that in 
(A). (This figure is created by using Adobe Illustrator CS5 Version 15.1.0.).
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Figure 5.   (A) The collinear FM order in the x chain. Each magnetic moment is aligned along the z direction 
with Jz = 6 . (B) The excited state with Jz = 5 shows precession at the ith site. (C) The excited state with Jz = 5 
showing precession of the magnetic moment at the 1st site (blue arrow) on the IC. The propagation of the 
precession to the 2nd site is illustrated by the yellow arrow. (D) The excited state with Jz = 5 showing precession 
of the magnetic moment at the 12nd site (blue arrow) on the IC. The propagation of the precession to the 10th 
site is illustrated by the yellow arrow. (This figure is created by using Adobe Illustrator CS5 Version 15.1.0.).
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i.e., |5�i illustrated in Fig. 5B. This excited state describes the precession around the ordered moment direction, 
i.e., z axis, which propagates to neighboring sites via the exchange interaction J1(SixSjx + SiySjy) . Namely, the 
excited state at the ith site propagates to the jth site as

Here, the relation of Six = (S+i + S−i )/2 and Siy = (S+i − S−i )/(2i) and S+i |5� =
√
12|6� and S−i |6� =

√
12|5� 

are used. Hence, for the right neighbor site j = i + 1 , the excitation is expressed as the plane wave 
6J1 exp{iq · (ri − ri+1)} = 6J1 exp(−iqxa) where a is the lattice constant. For the left neighbor site j = i − 1 , 
the excitation is expressed as the plane wave 6J1 exp{iq · (ri − ri−1)} = 6J1 exp(iqxa) . The superposition of these 
yields the excitation energy ε(q) of the magnon

Since the right moving wave and left moving wave both have the same matrix element 6J1 as Eq. (12), the excita-
tion has the reciprocal energy with respect to the transverse wavevector to the ordered moment direction, i.e., 
ε(−qx) = ε(qx) . It is noted that we have confirmed that the reciprocal magnon dispersion appears in the collinear 
FM order in the 1/1 AC (Supplementary information, Fig. S2).

Next, let us consider the excitation from the uniform hedgehog ordered state in the 1/1 AC composed of 
the regular IC. Suppose that among 12 vertices of the regular IC with the |J = 6, Jz = 6� states, an excited state 
|J = 6, Jz = 5� is created at a single site, e.g., the ith site. This excited state can propagate to the neighboring sites 
via the interaction J1Si · Sj . Since the |J , Jz� state is defined at each site with the local coordinate, hereafter we 
denote the state at the ith site as |Jz�i . The neighboring |Jz = 5�i ⊗ |Jz = 6�j state is exchanged as

where Ri
nn′ is the rotation matrix at the ith site defined in Eq. (20) (see Section “Methods”). Note that as expressed 

by the n = 3 component in the right hand side (r.h.s.) of Eq. (14), Szi S
z
j  also contributes to the exchange of |5�i|6�j 

and |6�i|5�j because of the non-collinear alignment of the magnetic moments. The excitation energy ε(q) is 
obtained by diagonalizing the matrix describing the propagation of |5�i among the |6�j states on all the j( = i) th 
sites

where i and j denote the Tb sites inside the primitive unit cell of the bcc lattice.
Let us focus on the excited state at the i = 1 st site |5�1 illustrated as the precession of the blue arrow in Fig. 5C. 

This state propagates to the neighboring j = 2 nd site (see the yellow arrow in Fig. 5C), which is expressed by 
the matrix element

Here, r1 = d(1, τ , 0) and r2 = d(0, 1, τ) are used. On the other hand, the matrix element between the spatially 
inverted sites i = 12 and j = 10 (see the yellow arrow in Fig. 5D) is calculated by Eq. (14) as

Here, r12 = d(−1,−τ , 0) and r10 = d(0,−1,−τ) are used. The sign in the iτ term in Eqs. (16) and (17) are oppo-
site, which signals the nonreciprocal excitation. This can be understood by taking the superposition of Eq. (16) 
and its spatially inverted term Eq. (17) as done in Eq. (13)

The cos term is even function in terms of q , while the sin term is odd function giving rise to the nonreciprocal 
contribution. Namely, the sign change occurs when q is replaced with −q in the sin term, which is in sharp con-
trast to the collinear FM case in Eq. (13). The sin term also emerges for the other N.N. sites of j = 4, 5 , and 6 to the 
i = 1 st site and their spatially inverted sites except for the j = 3 rd site (Supplementary information, Section IV).

By diagonalizing Hi,j(q) in Eq. (15), the excitation energy εm′(q) is obtained. Figure 6A shows the lowest exci-
tation energy ε1(q) in the h-k plane at l = 0 for q = 2π

a (h, k, l) . The result shows ε1(qx , qy , 0) = ε1(−qx ,−qy , 0) 
indicating that the reciprocal excitation appears in the qx-qy plane at qz = 0 . This explains the result shown in 
Fig. 3 where ωm′(q) = ωm′(−q) holds along the Ŵ-H-N line and the Ŵ -N line. We have also calculated ε1(q) in 
the k-l plane at h = 0 and in the l-h plane at k = 0 . The result is the same as Fig. 6A with h and k being replaced 
with k and l respectively in the former case and also with h and k being replaced with l and h respectively in the 
latter case. These results show that ε1(qx , 0, qz) = ε1(−qx , 0,−qz) and ε1(0, qy , qz) = ε1(0,−qy ,−qz).

(12)
J1(SixSjx + SiySjy)|5�i|6�j =

J1

2
(S+i S

−
j + S−i S

+
j )|5�i|6�j

=6J1|6�i|5�j .

(13)ε(q) = 6J1(e
iqxa + e−iqxa) = 12J1 cos(qxa).

(14)J1Si · Sj|5�i|6�j = 3J1

3
∑

n=1

(Ri
n1 − iRi

n2)(R
j
n1 + iR

j
n2)|6�i|5�j

(15)Hi,j(q) = 3J1

3
∑

n=1

(Ri
n1 − iRi

n2)(R
j
n1 + iR

j
n2)e

iq·(ri−rj),

(16)H1,2(q) = 3J1
1√
τ + 2

(1+ τ − iτ)ei{qx+qy(τ−1)−τqz }d .

(17)H12,10(q) = 3J1
1√
τ + 2

(1+ τ + iτ)e−i{qx+qy(τ−1)−τqz }d .

(18)6J1
1+ τ√
τ + 2

cos[{qx + qy(τ − 1)− τqz}d] + 6J1
τ√
τ + 2

sin[{qx + qy(τ − 1)− τqz}d].
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Next, we plot ε1(q) in the h-l plane for q = 2π
a (h, h, l) in Fig.  6B. The result shows that 

ε1(qx , qx , qz)  = ε1(−qx ,−qx ,−qz) , namely, nonreciprocal excitation appears, which is most prominent at 
(h, k, l) = (1/2, 1/2, 1/2) . This indicates that the point P and P’ in the reciprocal lattice space (see inset in Fig. 6C) 
are not equivalent. This explains the result shown in Fig. 3 where the nonreciprocal excitation ωm′(q) �= −ωm′(q) 
appears along the N-P-Ŵ line.

We show εm′(q) for m′ = 1, 2, . . . , 12 for q along the symmetry line displayed in the inset of Fig. 6C. We note 
that ε1(−q) (blue dashed line) at the P point in Fig. 6C is equivalent to the energy at P’ in Fig. 6B. As discussed 
in Fig. 6B, the nonreciprocal excitation is remarkable along the N-P-Ŵ line not only for the first excited state, i.e., 
m′ = 1 , but also for m′ > 1 as shown in Fig. 6C. These behaviors are consistent with the nonreciprocal feature 
emerging prominently along the N-P-Ŵ line in Fig. 3. It is noted that to demonstrate the emergence of the analytic 
form of the sin function [see Eq. (18)], here we discuss the energy dispersion εm′(q) for the N.N. interaction J1 
in Fig. 6C. Since the energy dispersion ωm′(q) is plotted in Fig. 3 after subtraction of the ground state energy 
[see the denominator in r.h.s. of Eq. (10)] for not only the N.N. interaction but also the N.N.N. interaction and 
uniaxial anisotropy, the energy dispersions in Figs. 3 and 6C are different. However, the nonreciprocal disper-
sions appear remarkably along the N-P-Ŵ line in both cases.

The origin of the nonreciprocity can be understood as follows: When the magnetic moment at each Tb site 
located at the position r is spatially inverted by operating −r with each moment direction being kept (see Fig. 1A), 
the hedgehog state on the IC is transformed to the anti-hedgehog state. The anti-hedgehog state is defined as the 
state where the magnetic moment directions are all inverted from those shown in Fig. 1A. The same is applied 
to the 1/1 AC (see Fig. 1B). Since the magnetic state changes by the space inversion, the inversion symmetry is 
broken by the hedgehog ordering. Hence, the nonreciprocal dispersion is considered to appear in the excitation 
from the uniform hedgehog order in the 1/1 AC.

As for the uniform hedgehog order in the QC, the nonreciprocal excitation was reported in Ref.18. Since the 
infinite limit of the unit cell size of a series of ACs (1/1, 2/1, 3/2, . . . ACs) corresponds to the QC, the infinite 
folding of the energy dispersion of magnon is expected to occur in the QC. This tendency was indeed confirmed 
by theoretical calculations in one-dimensional system39 and two-dimensional system40. This is considered to 
be reflected in the fine structures of the intensities in the dynamical structure factor for the wide q-ω plane in 
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the icosahedral QC as if they are continuum shown in Ref.18 where the recursive structure, i.e., the self-similar 
structure, appears in the intensities. These results suggest that the hedgehog ordering which breaks the spatial 
inversion symmetry is the origin of the nonreciprocity in the QC18.

Summary and discussion
We have clarified the dynamical as well as static magnetic structure in the uniform hedgehog order in the 1/1 
AC. We have shown that the static structure factor of magnetism in the 1/1 AC is generally expressed as the 
convolution form Fs(q) = FL(q)SIC(q) where FL(q) is the lattice structure factor and SIC(q) is the magnetic 
structure factor of the IC. We have revealed the static structure factor in the uniform hedgehog order by deriving 
the analytic forms of FL(q) and SIC(q) as well as by calculating them numerically.

We have discovered that the nonreciprocal dispersion of the excitation energy appears prominently along 
the N-P-Ŵ line in the reciprocal lattice q space. The dynamical structure factor of the magnetic excitation in the 
hedgehog state exhibits the high intensities in the high-energy branches along the Ŵ -H line and the P-Ŵ -N line. 
The nonreciprocity S(q,ω)  = S(−q,ω) is remarkable in the high-energy branches for q along the N-P-Ŵ line. The 
nonreciprocity is clarified to be ascribed to inversion symmetry breaking by the hedgehog ordering whose micro-
scopic source is the strong uniaxial anisotropy D as well as the strong N.N.N. AFM interaction J2 inside the IC. 
In the ferrimagnetic order in the 1/1 AC, the reciprocal dispersion of the magnetic excitation ωm′(q) = ωm′(−q) 
appears19. Since the spatial inversion symmetry is not broken by the ferrimagnetic order in the 1/1 AC, the above 
statement is consistent with this case. As for the ferrimagnetic order in the QC discussed in Ref.19, spatial inver-
sion symmetry is not broken. The intensities of the dynamical structure factors S(q,ω) and S(−q,ω) are almost 
the same but there exist slight differences in the intensities at some (q,ω) points19 [see S⊥(q,ω) and S⊥(−q,ω) 
in Fig. S5 in Supplementary Information]. The clarification of this origin is left for future study.

In the hedgehog order in the QC, the nonreciprocal excitation in the hedgehog state appears in the vast 
extent of the q-ω plane where the dynamical structure factor exhibits S(q,ω)  = S(−q,ω) with considerable 
intensities18. It is noted that we have confirmed on this point for S⊥(q,ω) , i.e., S⊥(q,ω) �= S⊥(−q,ω) . Namely, 
|S⊥(q,ω)− S⊥(−q,ω)| exhibits considerable intensities (Supplementary Information, Fig. S6B). In the 1/1 AC, 
the dynamical structure factor shows remarkable difference between the intensities of S(q,ω) and S(−q,ω) for 
q along the N-P-Ŵ line where the nonreciprocal dispersion ωm′(q) �= ωm′(−q) appears.

These results indicate that the emergence of considerable intensity peaks in S(q,ω) with different values 
between q and −q in the wide q-ω plane is attributed to the QC lattice structure.

The present study has pointed out that the inversion symmetry breaking by the uniform hedgehog ordering 
causes the nonreciprocity S(q,ω)  = S(−q,ω) . There exists a series of the ACs such as 1/1 AC, 2/1 AC, 3/2 AC, 
. . . , where the n → ∞ limit in the Fn−1/Fn−2 ACs corresponds to the QC with Fn being the Fibonacci number. 
Hence, as n increases, the size of the unit cell in the Fn−1/Fn−2 AC expands, where the nonreciprocal dispersion 
of the excitation energy giving rise to S(q,ω)  = S(−q,ω) is considered to appear when the uniform hedgehog 
ordering occurs because of the inversion symmetry breaking. Then, in the n → ∞ limit corresponding to the 
infinite limit of the unit-cell size of the AC, the nonreciprocity S(q,ω)  = S(−q,ω) is considered to appear in the 
uniform hedgehog order in the QC. Hence, the symmetry argument clarified in this study is useful for under-
standing the nonreciprocal magnetic excitation emerging in the QC.

Thus far, the dynamical structure factor of the icosahedral QC and AC has not been observed experimentally. 
Hence, the present study is expected to stimulate future experiments to search for unique magnetic states such 
as the hedgehog and also to observe the dynamical as well as static structure factor of the magnetism.

Methods
Linear spin‑wave theory for hedgehog state.  To analyze the dynamical structure factor for the hedge-
hog state in the 1/1 AC, the linear spin-wave theory is used in this study. Since the hedgehog state is non-col-
linear magnetic state, it is convenient to introduce the local orthogonal coordinate at the ith Tb site spanned by 
the unit vectors êiβ (β = 1, 2 , and 3) (see Fig. 1C) where êi3 is directed to the magnetic easy axis of the hedgehog 
state, i.e., the 5-fold axis direction of the regular IC16. The relation between the unit vector r̂α in the global coor-
dinate (r̂1 ≡ x̂, r̂2 ≡ ŷ , and r̂3 ≡ ẑ) and êiβ is given by

where the direction of êi3 is expressed by the polar angles (θi ,φi) and Ri is the rotation matrix given by42,

Then, the interaction of “spins” between the ith and jth sites described by the first term in Eq. (1) is expressed as

By employing the relation Si · êi1 = (S+i + S−i )/2 and Si · êi2 = (S+i − S−i )/(2i) where S+i  and S−i  are raising and 
lowering “spin” operators, respectively, we apply the Holstein-Primakoff transformation37 to H. Namely, “spin” 
operators are transformed to the boson operators as S+i =

√
2S − niai , S−i = a†i

√
2S − ni  and Si · êi3 = S − ni 

with ni ≡ a†i ai where a†i  (ai) is the creation (annihilation) operator of the boson at the ith site. We retain the 

(19)r̂α = Ri
αβ ê

i
β ,

(20)Ri =
[

cos θi cosφi − sin φi sin θi cosφi
cos θi sinφi cosφi sin θi sin φi
− sin θi 0 cos θi

]

.

(21)
∑

�i,j�
Ji,j(Si · eiα)(Sj · e

j
β)

∑

γ

Ri
α,γR

j
γ ,β .
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quadratic terms with respect to a†i  and ai , which are considered to be at least valid for the ground state. Since the 
hedgehog state has non-collinear magnetic structure, the anomalous terms such as a†i a

†
j  and aiaj in addition to 

the normal terms aia†j  and a†i aj appear. The position of the ith site is expressed as ri = Rj + r0m where Rj denotes 
the position of the center of the IC and r0m denotes the position of the mth Tb site on the IC. Hence, by perform-
ing the Fourie transformations a†i = a†j,m = 1√

NL

∑

q e
−iq·(Rj+r0m)a†q,m and ai = aj,m = 1√

NL

∑

q e
iq·(Rj+r0m)aq,m 

with q being the wave vector, the spin-wave Hamiltonian is expressed by a†q,m and aq,m . Then, by performing the 
Bogoliubov transformation, i.e., the para-unitary transformation41, the spin-wave Hamiltonian is diagonalized 
as

Here, ωm′(q)(> 0) is the energy of the m′ th spin wave and b†q,m′ (bq,m′) is the creation (annihilation) operator of 
the boson which is given by the linear combination of the boson operators of a†q,m and aq,m.
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All the data supporting the findings are available from the corresponding author upon reasonable request.
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