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Prediction of lung papillary 
adenocarcinoma‑specific survival 
using ensemble machine learning 
models
Kaide Xia 1,6, Dinghua Chen 2,6, Shuai Jin 3,6, Xinglin Yi 4 & Li Luo 5*

Accurate prognostic prediction is crucial for treatment decision-making in lung papillary 
adenocarcinoma (LPADC). The aim of this study was to predict cancer-specific survival in LPADC using 
ensemble machine learning and classical Cox regression models. Moreover, models were evaluated to 
provide recommendations based on quantitative data for personalized treatment of LPADC. Data of 
patients diagnosed with LPADC (2004–2018) were extracted from the Surveillance, Epidemiology, and 
End Results database. The set of samples was randomly divided into the training and validation sets at 
a ratio of 7:3. Three ensemble models were selected, namely gradient boosting survival (GBS), random 
survival forest (RSF), and extra survival trees (EST). In addition, Cox proportional hazards (CoxPH) 
regression was used to construct the prognostic models. The Harrell’s concordance index (C-index), 
integrated Brier score (IBS), and area under the time-dependent receiver operating characteristic 
curve (time-dependent AUC) were used to evaluate the performance of the predictive models. A user-
friendly web access panel was provided to easily evaluate the model for the prediction of survival and 
treatment recommendations. A total of 3615 patients were randomly divided into the training and 
validation cohorts (n = 2530 and 1085, respectively). The extra survival trees, RSF, GBS, and CoxPH 
models showed good discriminative ability and calibration in both the training and validation cohorts 
(mean of time-dependent AUC: > 0.84 and > 0.82; C-index: > 0.79 and > 0.77; IBS: < 0.16 and < 0.17, 
respectively). The RSF and GBS models were more consistent than the CoxPH model in predicting 
long-term survival. We implemented the developed models as web applications for deployment into 
clinical practice (accessible through https://​shiny​shine-​820-​lpapr​edict​ion-​model-​z3ubbu.​strea​mlit.​
app/). All four prognostic models showed good discriminative ability and calibration. The RSF and GBS 
models exhibited the highest effectiveness among all models in predicting the long-term cancer-
specific survival of patients with LPADC. This approach may facilitate the development of personalized 
treatment plans and prediction of prognosis for LPADC.

Lung cancer remains the leading cause of cancer-related death worldwide, accounting for approximately 1.8 mil-
lion deaths1. In the United States of America, the 5-year survival rate of patients with lung cancer is approximately 
20%2. Adenocarcinoma is the major histological subtype of non-small cell lung cancer3, 4. Recent advances in 
research have facilitated the classification of primary lung cancer5. Based on semi-quantitative assessment, the 
World Health Organization classified the histomorphologic growth pattern of invasive non-mucinous adenocar-
cinoma into five subtypes (i.e., lepidic, acinar, papillary, micropapillary, and solid)6. In particular, primary lung 
papillary adenocarcinoma (LPADC) is a rare subtype, accounting for approximately 0.84% of all lung cancer 
cases7. This subtype may originate from glandular follicular cells and often exhibits a prominent inflammatory 
stromal response8. In the early stages of LPADC, patients do not develop clinical symptoms (e.g., cough, phlegm, 
and fever), and are not effective in antibiotic treatment for pneumonia. Studies have investigated differences in 
the prognosis of different subtypes of LPADC, the evidence highlighted the importance of prognostic prediction 
in lung adenocarcinoma (a subtype of lung cancer with independent presentation)9, 10.
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Due to the rarity of LPADC, most currently available studies are case reports or single-center small-sample 
investigations. The 5-year overall survival rate of LPADC patients is less than 35%, and Cox proportional hazards 
regression models constructing nomograms based on tumor characteristics, demographic characteristics, and 
treatment modalities are the traditional methods used to predict survival in LPADC11. Previous studies have also 
explored the use of machine learning algorithms in the diagnosis and prognosis of small cell lung cancer in the 
lung12–14.Of note, Cox models often rely on the restrictive assumption of proportional risk. In addition, when 
using this approach, it is important to consider whether the association between predictors and hazards is suitable 
for modeling, and whether nonlinear effects or higher-order interactions of predictors should be included15, 16.  
To overcome this limitation, the evolution of machine learning provides an alternative to semi-parametric 
modeling by relaxing the assumptions of the data generation mechanism and taking into account all possible 
interactions between variables and influence correction17.

Few studies have used integrated machine learning algorithms to assess the prognosis of patients with lung 
adenocarcinoma, even fewer studies have used the output of predictive models to aid clinical practice18. There-
fore, this study used a sample of patients with LPADC from the Surveillance, Epidemiology and End Results 
(SEER) database to develop and validate an integrated machine learning model for the prediction of LPADC 
cancer-specific survival (CSS). The objectives were to support clinical decision-making in LPADC, and develop 
a web-based calculator for estimating the individual probability of CSS for patients with lung adenocarcinoma. 
The selection of studies was based on the TRIPOD report checklist19.

Materials and methods
Patient selection.  The SEER*Stat version 8.4.0 (https://​seer.​cancer.​gov/​seers​tat/) software was used to 
select patients with LPADC from the version of the SEER research plus database (18 registries, with additional 
treatment fields, 2000–2018) based on November 2019 submissions. The inclusion criteria were as follows: (I) 
diagnosis from 2004 to 2018; (II) International Classification of Diseases for Oncology, Third Edition, histologic 
type codes 8260 and 8050; (III) primary site codes C34.0–C34.9; and (IV) diagnostic confirmation through 
histology. The exclusion criteria were as follows: (I) blank or not exact tumor size; (III) unknown tumor-node-
metastasis (TNM) stage; (IV) tumor laterality in both lungs; (V) age < 18 years; and (VI) unknown race, survival 
months, and surgery status (Fig. 1). The SEER database is publicly accessible; hence, there was no requirement 
for additional ethical approval.

Cohort definition and variables.  We randomly classified the study sample into the training and valida-
tion cohorts using a 7:3 ratio. The training and validation cohorts were used to construct and verify the model, 
respectively. Fourteen variables from the SEER database were included in the study model, including demo-
graphic variables (age at diagnosis, sex, race, and marital status), tumor characteristics (laterality, TNM stage, 
grade, tumor size, and primary site), and treatment status (chemotherapy, surgery, and radiotherapy). Based on 
the age at diagnosis and tumor size, X-tile software (https://​medic​ine.​yale.​edu/​lab/​rimm/​resea​rch/​softw​are/) 
was used to determine the optimal cut-off values for category-based conversion of the measures and also to 
maximize the difference between categories after conversion20, 21. The marital status was either married or other, 
while the cancer grade was I–II, III–IV, or unknown. Primary sites in the lung were classified as lower, middle, 
upper, other, and not otherwise specified. The three surgical approaches to the primary site were no surgery, 
lobectomy, and other surgery. The dummy variable design for disordered multicategorical variables was per-
formed using the ‘get_dummies’ function in the pandas package. In the present study, the eighth edition of TNM 
staging was used after manual conversion coding. CSS was defined as death specifically due to LPADC and used 
as the outcome variable of interest in this study.

Model development.  Categorical variables were collated in frequency and percentage format, and dif-
ferences between groups were compared using the χ2 test. Four prognostic models, including three ensemble 
learning models (i.e., gradient boosting survival [GBS] analysis, random survival forest [RSF], and extra survival 
trees [EST]) and a Cox proportional hazards regression (CoxPH) model, were used to analyze the CSS rates of 
patients with LPADC. The area under the time-dependent receiver operating characteristic curve (time-depend-
ent AUC) and Harrell’s concordance index (C-index) were used to evaluate the discriminative ability of these 
models22. Evaluation of the calibration capability of the prediction model was performed using the integrated 
Brier score (IBS). Furthermore, we visualized feature importance (‘PermutationImportance’ function) in the 
models using the training dataset. A web-based calculator for the probability of CSS in patients with LPADC 
was deployed, presenting the estimated prognostic survival curves and 3-, 5-, and 10-year survival rates. All 
machine learning models, statistical analysis, and visualization were implemented in Python version 3.9 (Python 
Software Foundation for Statistical Computing, Wilmington, DE, USA) using the scikit-survival23, tableone24, 
and eli5 packages.

Ethics statement.  The SEER database is free for researchers to download and therefore does not require 
ethical review by the authors’ institution.

Results
Patient characteristics.  The best cutoff values for age and tumor size were 79 years and 28 and 52 mm, 
respectively. Age was divided into two age groups (i.e., < 79 and ≥ 79 years), while tumor size was divided into 
four groups (i.e., < 28, 28–52, > 52 mm, and unknown). A total of 3,615 patients diagnosed with LPADC (2004–
2018) were included in this analysis. After randomization, there were 2,530 and 1,085 patients in the training and 
validation cohorts, respectively. Overall, 86% of the patients were younger than 80 years; the sample included 

https://seer.cancer.gov/seerstat/
https://medicine.yale.edu/lab/rimm/research/software/
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a slightly higher number of females (51.6%) than males (48.4%). LPADC was more likely to occur on the right 
side (58.6%) of the lung; 67% of patients had pre-T3 stage disease without regional lymphatic metastases. 23% of 
patients had distant metastases, while 60% had low-grade disease and tumor size < 28 mm, mostly in the lower 
and upper parts of the lung (86%). Moreover, 80% and 65% of the patients did not receive radiotherapy and 
chemotherapy, respectively. Lobectomy was performed in more than half of the patients. Other surgical proce-
dures were performed in 18% of the patients, while nearly 30% of the patients did not undergo surgery. Based on 
the χ2 test, there was no difference in the correlation index between the two cohorts generated by the random 
split, indicating that these groups were comparable (Table 1).

Model application and performance.  To ensure comparability, we used all the features for the construc-
tion and validation of the models. In the training cohort, the EST model had the largest time-dependent AUC, 
followed by the RSF, CoxPH, and GBS models. The mean time-dependent AUC for the EST, RSF, CoxPH, and 
GBS models were 0.935, 0.886, 0.843, and 0.849, respectively. In the training cohort, the time-dependent AUC 
showed that the GBS and CoxPH models progressively abolished their discriminative ability for the predic-
tion of long-term survival (Fig. 2A). In the validation cohort, the discriminative ability of the four prediction 
models tended to be similar. According to the time-dependent AUC, the EST and RSF models did not exhibit 
a similar performance to that observed in the training cohort. The highest mean value of the time-dependent 
AUC was 0.821, 0.825, 0.830, and 0.827 for the EST, RSF, CoxPH, and GBS models, respectively; according to 
these findings, the EST model exhibited the worst performance. In terms of time trends, the RSF model and GBS 
performed more consistently across time than the other models, while the CoxPH model performed less well for 
long-term forecasts after 10 years (Fig. 2B).

The C-index analysis yielded similar findings to those noted with the time-dependent AUC. In the training 
cohort, the EST model exhibited the best performance (C-index: 0.850), followed by the RSF, GBS, and CoxPH 
models; the IBS also showed similar results. In the validation cohort, the CoxPH model had the largest C-index 

Figure 1.   Screening process for the selection of patients. ICD-O-3, International Classification of Diseases for 
Oncology (Third Edition).
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Table 1.   Clinical, pathological, and treatment characteristics of patients with lung papillary adenocarcinoma 
(LPADC). NOS not otherwise specified.

Characteristics

Overall Training Validation

p-valuen (%) n (%) n (%)

Age, years

  < 79 3098 (85.7) 2161 (85.4) 937 (86.4)
0.489

  ≥ 79 517 (14.3) 369 (14.6) 148 (13.6)

Sex

 Female 1865 (51.6) 1304 (51.5) 561 (51.7)
0.957

 Male 1750 (48.4) 1226 (48.5) 524 (48.3)

Race

 Black 376 (10.4) 264 (10.4) 112 (10.3)

0.481 Other 408 (11.3) 275 (10.9) 133 (12.3)

 White 2831 (78.3) 1991 (78.7) 840 (77.4)

Laterality

 Left 1496 (41.4) 1055 (41.7) 441 (40.6)
0.580

 Right 2119 (58.6) 1475 (58.3) 644 (59.4)

T stage

 T1 1445 (40.0) 979 (38.7) 466 (42.9)

0.069
 T2 1005 (27.8) 716 (28.3) 289 (26.6)

 T3 540 (14.9) 396 (15.7) 144 (13.3)

 T4 625 (17.3) 439 (17.4) 186 (17.1)

N stage

 N0 2413 (66.7) 1665 (65.8) 748 (68.9)

0.340
 N1 337 (9.3) 243 (9.6) 94 (8.7)

 N2 655 (18.1) 471 (18.6) 184 (17.0)

 N3 210 (5.8) 151 (6.0) 59 (5.4)

M stage

 M0 2781 (76.9) 1927 (76.2) 854 (78.7)
0.105

 M1 834 (23.1) 603 (23.8) 231 (21.3)

Marital status

 Married 2037 (56.3) 1402 (55.4) 635 (58.5)
0.091

 Other 1578 (43.7) 1128 (44.6) 450 (41.5)

Grade

 I–II 2139 (59.2) 1490 (58.9) 649 (59.8)

0.424 III–IV 329 (9.1) 223 (8.8) 106 (9.8)

 Unknown 1147 (31.7) 817 (32.3) 330 (30.4)

Tumor size, mm

 28–52 1173 (32.4) 833 (32.9) 340 (31.3)

0.413
  < 28 1776 (49.1) 1225 (48.4) 551 (50.8)

  > 52 471 (13.0) 328 (13.0) 143 (13.2)

 Unknown 195 (5.4) 144 (5.7) 51 (4.7)

Primary site

 Lung NOS 167 (4.6) 124 (4.9) 43 (4.0)

0.380

 Lower 1442 (39.9) 985 (38.9) 457 (42.1)

 Middle 265 (7.3) 190 (7.5) 75 (6.9)

 Other 77 (2.1) 55 (2.2) 22 (2.0)

 Upper 1664 (46.0) 1176 (46.5) 488 (45.0)

Chemotherapy

 No/Unknown 2356 (65.2) 1642 (64.9) 714 (65.8)
0.627

 Yes 1259 (34.8) 888 (35.1) 371 (34.2)

Surgery group

 Lobectomy 1941 (53.7) 1351 (53.4) 590 (54.4)

0.557 No surgery 1040 (28.8) 741 (29.3) 299 (27.6)

 Other surgery 634 (17.5) 438 (17.3) 196 (18.1)

Radiation

 No/Unknown 2890 (79.9) 2027 (80.1) 863 (79.5)
0.724

 Yes 725 (20.1) 503 (19.9) 222 (20.5)
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value (0.783), followed by the GBS, RSF, and EST models. In the validation cohort, the RSF and GBS models had 
the lowest IBS (0.16), whereas the EST model had the highest IBS (0.166) (Table 2).

Feature importance.  The feature importance plot shows the contribution of each feature in the prognostic 
model. N2 stage, M1 stage, and no surgery occupied the top three positions in the feature importance rank-
ing; this ranking was consistently observed across the four models. In the CoxPH model, T4 stage, and tumor 
primary location (lower and upper) were more important than other features. In the machine learning survival 
model, the most important features were chemotherapy, tumor size, grade unknown, and sex (Fig. 3).

Algorithm deployment.  The constructed models for determining the CSS rate of patients with LPADC 
were deployed on a web page. The functionality of the application and the visualization of the output are shown 
in the following Fig. 4. The web application, primarily used for research or informational purposes, can be pub-
licly accessed at https://​shiny​shine-​820-​lpapr​edict​ion-​model-​z3ubbu.​strea​mlit.​app/.

Discussion
The accurate prediction of survival in patients with LPADC is essential for patient counseling, follow-up, and 
treatment planning. Previous studies have revealed multiple prognostic factors that affect the survival time of 
patients with pulmonary papillary carcinoma, including patient age, grade classification, lymph node status, 
tumor size, distant metastases, and surgical treatment9, 11. Machine learning is increasingly utilized in research 
for the prediction of survival of patients with cancer25–27, with relatively favorable results. Although CoxPH is 
the classical method utilized for the analysis of survival data, the use of this method requires linear relationships 
between variables. As a result of the continuous advances achieved in recent years, machine learning is widely 
applied to the medical field28–30. In this study, we used ensemble machine learning models to accurately predict 
CSS in patients with LPADC, and obtained satisfactory results.

Consistent with the findings reported by You et al., the four models developed in this study confirmed that 
surgery is an important prognostic factor for patients with lung adenocarcinoma3. Similarly, distant metasta-
ses have an important impact on the prognosis of patients with LPADC. In conjunction with previous analy-
ses, the findings demonstrate that patients who developed distant metastases had poorer survival rates than 
other patients26, 27. A higher N-stage also plays a crucial role in the model, indicating poor prognosis28. Other 

Figure 2.   Time-dependent receiver operating characteristic curve for the training (A) and validation (B) 
cohorts.

Table 2.   Performance of the models. CoxPH Cox proportional hazards, EST extra survival trees, GBS gradient 
boosting survival, IBS integrated Brier score, RSF random survival forest.

Model

Training cohort Validation cohort

C-index IBS C-index IBS

CoxPH 0.798 0.156 0.783 0.162

RSF 0.816 0.137 0.776 0.160

GBS 0.807 0.153 0.780 0.160

EST 0.850 0.110 0.773 0.166

https://shinyshine-820-lpaprediction-model-z3ubbu.streamlit.app/
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characteristics (e.g., tumor size, grade, sex, chemotherapy, primary site, etc.) have different degrees of impor-
tance in various models11, 23, 27. These results suggest that the selection of appropriate treatment modalities (e.g., 
surgery, radiotherapy, and chemotherapy) may be more important for predicting CSS in patients with LPADC 
than TNM staging alone.

Interestingly, the ensemble models (i.e., GBS, EST, and RSF) did not demonstrate a markedly better ability 
for predicting CSS in LPADC in the validation cohort compared with the CoxPH model. This indicates that the 
machine learning approach may only offer advantages when traditional models are limited. Therefore, there are 
several possible explanations for the comparable predictive performance observed between the ensemble and 
CoxPH models in this study. Firstly, the number of predictors used to construct the model was not sufficiently 
large, and the advantages of machine learning in analyzing large samples and multivariate data are not fully real-
ized. Secondly, the SEER database collects variables derived from clinical experience; many of these variables are 
linearly correlated with outcomes. Therefore, the data may be better qualified for the application of parametric 
(CoxPH) models. The GBS, EST, and RSF models developed in this study achieved the predictive efficacy of the 
CoxPH model under a broader condition. The web calculator constructed for the study is based on the train-
ing dataset, and care should be taken when applying the EST model that may be overconfident. Hence, it is not 
recommended to use this algorithm for the prediction of survival. In this study, the CoxPH model had poorer 
long-term predictive power than the ensemble models. Therefore, use of the RSF model is recommended for the 
prediction of LPADC CSS beyond 10 years.

This study had several limitations. Firstly, in the SEER database, there was a lack of data regarding estab-
lished predictors of survival in patients with LPADC (e.g., chemotherapy regimens and biological markers). 
Secondly, due to the retrospective nature of this study and data processing, samples with missing information 
were excluded; this may have led to considerable bias. Thirdly, the work related to the measurement of predic-
tion model errors in the study is not yet complete. Finally, the results of this study were not externally validated; 
although we randomly split the study sample during the development of the models, the generalizability and reli-
ability of this approach should be further validated with external datasets. The prognostic value of this approach 
should be improved in the future by adding more predictors, increasing external validation, and conducting 
prospective studies.

In conclusion, a geometric model and a CoxPH model were developed and evaluated for the prediction of 
CSS in patients with LPADC. Overall, all four models showed excellent discriminative and calibration capabili-
ties; in particular, the RSF model and GBS model showed excellent consistency for long-term forecasting. The 

Figure 3.   Feature importance plot of the CoxPH (A), EST (B), GBS (C), and RSF (D) models. CoxPH Cox 
proportional hazards, EST extra survival trees, GBS gradient boosting survival, RSF random survival forest.
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integrated web-based calculator offers the possibility to easily calculate the CSS of patients with LPADC, provid-
ing clinicians with a user-friendly risk stratification tool.

Data availability
The original contributions presented in the study are included in the article, further inquiries can be download 
from https://​github.​com/​Shiny​Shine-​820/​LPApr​edict​ion.
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