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The basal heave stability of supported excavations is an essential problem in geotechnical 
engineering. This paper considers the probabilistic analysis of basal heave stability of supported 
excavations with spatially random soils by employing the random adaptive finite element limit 
analysis and Monte Carlo simulations to simulate all possible outcomes under parametric uncertainty. 
The effect of soil strength variability is investigated for various parameters, including the width and 
depth of the excavation ratio, strength gradient factor, and vertical correlation length. Probabilistic 
basal stability results have also been employed to determine the probability of design failure for 
a practical range of deterministic factors of safety. Considering probabilistic failure analysis, the 
more complete failure patterns caused by the various vertical correlation length would decrease the 
probability of design failure. There are different tendencies between the probability of design failure at 
the same safety factor with various vertical correlation lengths. These results can be of great interest 
to engineering practitioners in the design process of excavation problems.

Population growth has led to an increase in demand for city infrastructure, especially in megacities worldwide. 
To cope with the growing demand, effective use of underground space is essential to alleviate land scarcity. The 
stability of the excavation system is crucial because of safety and reliability considerations, with basal heave sta-
bility being a significant concern contributing to braced excavation system failure. Previous studies have focused 
mostly on excavation problems related to wall movements and lateral earth pressures. The classic stability solu-
tions of supported excavations have been assessed using a limit equilibrium approach proposed by  Terzaghi1 and 
Bjerrum and  Eide2. Later researchers such as  Goh3, Faheem et al.4, and Goh et al.5 investigated the basal heave 
stability problems under plane strain conditions using the finite element method (FEM). Meanwhile, stability 
studies of supported excavations have expanded to three-dimensional problems for rectangular and circular 
excavations using FEM (e.g., Cai et al.6; Faheem et al.7;  Goh8; and  Goh9).

The finite element limit analysis (FELA) was carried out by Ukritchon et  al.10; Keawsawasvong and 
 Ukritchon11; Chen et al.12; Lai et al.13; and Kounlavong et al.14 to investigate the basal stability of supported planar 
and circular excavations with full bracing. FELA is a powerful numerical technique based on plastic limit analysis 
theory, which can provide upper and lower-bound estimations of the actual collapse  load15. Early versions of 
FELA used linear programming, while recent developments utilise nonlinear programming  formulations16–21. 
However, limited research on utilising adaptive finite element limit analysis (AFELA) to examine fully braced 
excavations in soils with spatial variability can be found. Previous studies of plane strain fully braced excavations 
using FELA relied on deterministic analysis. The current study aims to contribute to the existing knowledge by 
addressing this problem from a broader perspective, particularly in spatially random clays.
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Soil parameters, namely cohesion, frictional angle, and soil unit weight are widely found to differ greatly 
from one site to another. Typically, they have geographically random fields. Probabilistic analysis has also been 
employed to investigate the effects of geographical variability and form better conclusions on a project’s eventual 
results. Several studies on the random field have been adopted in many geotechnical problems, such as slope 
 stability22–25,  embankment26 and deep  excavation27. The undrained shear strength is generally handled as a 
random field with a log-normal distribution and a spatial correlation length for undrained stability  concerns28. 
Griffiths and  Fenton29 and Griffiths et al.30 conducted initial investigations that interpreted the bearing capacity 
of a strip footing from a series of Monte Carlo simulations statistically by incorporating a Cholesky decomposi-
tion method with midpoint discretisation to integrate the lognormally distributed undrained shear strengths 
to an elastoplastic displacement-based finite element  analysis31. The random finite element method (RFEM) is 
a well-known approach similar to the earlier described technique, which Griffiths and  Fenton32 and Griffiths 
et al.33 utilised to study the effects of spatial variability on slope dependability. Zhu et al.34 applied the RFEM to 
study the limit load of a shallow passive trapdoor in clay by considering the influence of strength variability of 
spatially random clay.

The random finite element limit analysis (RFELA) based on the numerical upper bound (UB) and lower 
bound (LB) theorem of plasticity that incorporates the stochastic spatial variability of undrained shear strength 
was employed to explore problems of slope reliability (e.g., Kasama and  Zen35; Huang et al.36; Halder and 
 Chakraborty37), probabilistic passive resistance of retaining walls (e.g., Krishnan and  Chakraborty38) and proba-
bilistic bearing capacity, (e.g., Kasama and  Whittle39; Huang et al.40; Li et al.41; Kasama et al.42). However, those 
studies employed a uniform mesh in which all element sizes are constant in the modelled domain. Using a 
uniform mesh for computations has a clear disadvantage in that refining the mesh may be necessary to obtain a 
suitable final mesh. This process can also be time-consuming, particularly when attempting to precisely estimate 
the solution’s accuracy.

The recent development of random adaptive finite element limit analysis (RAFELA) developed by Ali et al.43 
was the first to propose using RAFELA for slope stability and bearing capacity problems. Using RAFELA, tight 
bounds on probabilistic results in each simulation can be obtained with a very high level of accuracy. The details 
of FELA with the adaptive mesh refinement can be found in Lyamin et al.44. A growing body of literature has 
recognized the importance of RAFELA for the probabilistic analysis in geotechnical stability, such as unlined 
tunnels (e.g., Ali et al.45; Ali et al.46; Wu et al.47), slope  stability25, strip footings lying on  voids48, inclined loaded 
strip footings near cohesive  slopes49, and risk assessment of earth  dam50. The latest development of the RAFELA 
technique can be found in the OptumG2 FELA  software21. There were limited studies focusing on the probabil-
istic analysis of basal heave stability of fully braced excavations in spatially variable  clays51,52.

This study investigates the undrained stability of fully braced excavations in spatially variable soils by utilising 
advanced RAFELA. This work aims to measure the effects of geographical variability and geometrical parameters 
on the mean stability number of fully braced excavation and the failure probability. A reasonable set of parameters 
was chosen for the parametric studies, and the likelihood of probabilistic failure (Pf) with different influential 
parameters was supplied for practical usage. In addition, Monte Carlo simulations (MCs) were used to illustrate 
chosen instances of the related failure processes and to provide a deeper understanding and explanation of how 
random fields could affect excavation failures.

Problem definition
In this study, a braced excavation in spatially random clay with a linear increase of strength with depth is defined 
for deterministic and stochastic analyses and shown in Fig. 1. The excavation is under plane strain conditions 
and has a width (B) and depth (H) of excavation and the depth of embedment (D). The clay is considered a 
rigid-perfectly plastic Tresca material with a mean value of undrained shear strength (μsu0) at a depth z = 0 and 
linear strength gradient ρ. As a result, the mean value of undrained shear strength at any depth can be written 
as μsu = μsu0 + ρz, which is a function of depth. The linear function of undrained shear strength with depth was 
originally proposed by  Bishop53. By defining the linear function that relates the undrained shear strength to 
the random field, the function can take the random value as input and return a corresponding undrained shear 
strength value. As a result, a non-stationary random field can be generated. More information regarding the 
non-stationary random field can be found in Yi et al.54 and Liu et al. 55.

The constant unit weight (γ) is the objective variable (or output) for the braced excavation in spatially random 
clay. For deterministic analysis, the stability number (N) of this excavation problem in plane strain conditions 
is the normalised term of the unit  weight10, which can be expressed as follows:

This stability number results in AFELA, which can be known as a function of the normalised width of 
excavation (B/H), the normalised depth of embedment (D/H), the strength gradient ratio (ρH/μsu0), and some 
dimensionless coefficients describing the inherent spatial variability of soil concisely. Note that the definition 
of the stability number (N) and other input non-dimensional parameters are based on the previous studies by 
Ukritchon et al.10; Keawsawasvong and  Ukritchon11; and Kounlavong et al.14. The latter will be described exten-
sively in Section "Random field theory".

Random field theory
This study considers clay’s undrained shear strength (su) as the spatial variability for probabilistic investiga-
tions. The spatial variability of soil properties is assigned to any location in a domain known as random fields. 
According to the random field  theory56–62, parameters CLx and CLy are carried out to define dimensional spatial 

(1)N =
γH

µsu0
.
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correlation lengths in horizontal and vertical directions to capture the scale of fluctuations of random soils. These 
parameters represent a characterisation of spatial variability of su in the soil domain. A large dimensional spatial 
correlation length yields the smoothly varying field of random soils, whereas a low one makes a ragged random 
field. Every point in the random field becomes independent when the dimensional spatial correlation length 
approximates zero. In the random field context, CLx and CLy are generally incorporated through a correlation 
function ρ which can be assumed by the exponential function as shown in Eq. (2a).

where τxij and τyij are the absolute horizontal and vertical distances between two discrete points, respectively; CLx 
and CLy are the horizontal and vertical correlation lengths, respectively. The dimensionless correlation lengths 
ΘX and ΘY are defined as follows:

where H is the depth of excavation.
In this paper, Karhunen–Loeve (K–L) expansion method is adopted for modelling random fields because of 

the advantages of exponential covariance. According to K–L expansion, the analytical solution of the eigenvalue 
problem for an exponential function (Eq. 2) is used to generate a continuous random field. The details of the 
procedures can be found in  Cho63.

The log-normal distributions commonly produce positive variables without a negative random value of su. 
Note that the natural log (e = 2.718) of random variables from a normal distribution curve is carried out in the 
log-normal distribution. By adopting the probability density function (PDF)39,43, the log-normal distribution of 
the undrained shear strength of clay can be expressed in Eqs. (3) to (6).

(2a)ρ(τxij, τyij) = exp

(

−
τxij

CLx
−

τyij

CLy

)

,

(2b)�X =
CLx

H
,
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H
,

(3)f (x) =
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xσlnx
√
2π
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1+ COV2
)

,

(5)COV =
σsu0

µsu0
,

Figure 1.  Problem definition.
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The coefficient of variation (COV) is a practical parameter for describing the inherent variation of soil proper-
ties in the  field56–62. To obtain the cumulative distribution function (CDF) for a continuous random variable, the 
probability density function (PDF) in Eq. (2) is integrated, where the expression of the CDF is shown in Eq. (7).

where erfc is the complementary error  function47,48.
The probability of design failure (Pf) for a practical design application with a factor of safety is also an interest-

ing issue. In this work, the failure is defined to occur when the calculated result of the stability number from the 
probabilistic analysis with random field theory (Nran) is less than the deterministic one (Ndet) with an appropriate 
factor of safety (FS) as follows:

Therefore, the probability of design failure (Pf) can be defined as the probability that the number of calculated 
random stability numbers (Nran) is less than the “factored” deterministic value (i.e., Ndet/FS) over the number 
of realisations or the number of Monte-Carlo simulations (Nc). Nc can be set as 1,000 times to ensure reliable 
results of stochastic analysis. Note that this number of 1,000 times the MCs is selected based on several previ-
ous studies (e.g., Kasama and  Zen35; Kasama and  Whittle39; Huang et al.36; Huang et al.40; Li et al.41; Ali et al.43; 
Ali et al.45; Ali et al.46; Wu et al.47; Wu et al.48). The probability of design failure can be approximated as follows:

where Pf is the probability of design failure for a given value of FS.

Random adaptive finite element limit analysis
A numerical model of a braced excavation in the spatial variability of soil properties in OptumG2 is shown in 
Fig. 2. The boundary dimensions were defined to be at least 10 times of the width of excavation (B) in both verti-
cal and horizontal as illustrated in Fig. 2. In the x-direction, the far vertical sides of the model are constrained. 
The bottom boundary domain is fixed in the x- and y-directions and the top ground surface and excavation 
area are free-moving surfaces. The wall is modelled by rigid plate elements, where the top of the plate boundary 
is activated by setting the wall to no horizontal moments and rotations to simulate the fully braced wall. All 
numerical models are rigorously built to ensure that the domain is adequately broad to prevent the boundary 
impact to achieve appropriate answers. The objective function in this study is the maximum unit weight of clay 

(6)µlnx = lnµx −
1

2
σ 2lnx.

(7)F(x) =
1

2
erfc

(

−
lnx − µlnx

σlnx
√
2

)

(8)Failure is defined if Nran < (Ndet/FS)

(9)Pf = P

[

Nran <

(

Ndet

FS

)]

,

Figure 2.  A numerical model in OptumG2.
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that results in the basal heave and the occurrence of the failure. The parameters arrangement for stochastic 
analysis are listed in Table 1.

The adaptivity approach proposed by Lyamin et al.44 is applied to increase the precision of upper and lower-
bound solutions by merging adaptive mesh refinement with random finite element limit analysis. More informa-
tion regarding RAFELA can be found in Ali et al.43 The internal dissipation estimated from deviatoric stresses and 
strain rates (also known as shear power) is employed as the covariate in this adaptivity system. Three repetitions 
of adaptive meshing were utilised in all numerical simulations of the study, having the initial amount of 1,000 
elements to the final amount of 3,000 elements. The Karhunen–Loeve (KL) expansion method is used to build 
a trustworthy random field for RAFELA.

Examples of the adaptive meshes are shown in Fig. 3 for deterministic analyses and typical realisation of 
stochastic analyses. The selected values of all parameters in Fig. 3 are μsu0 = 100; D = 1.0 m; D/H = 1.0; B/H = 4.0; 

Table 1.  Parameters arrangement for stochastic analysis.

Fixed parameters for all cases

 Coefficient of variation COVsu = 25%, 60%

 Horizontal correlation length Θx = 50.0

 Depth of excavation D = 1.0 m

 Mean undrained shear strength μsu0 = 100 kN/m2

 Number of Monte-Carlo runs 1000

 Number of elements 3000

 Number of mesh refinement 3

Variable parameters

 Vertical correlation length ΘY = 0.125, 0.25, 0.50, 1.00, 2.00, 4.00

 Width of excavation ratio B/H = 0.25, 0.5, 1.0, 2.0, 4.0

 Depth of excavation ratio D/H = 0.25, 0.5, 0.75, 1.0

 Strength gradient factor ρH/μsu0 = 0, 1.0, 2.0

 Factor of safety FS = 1.0, 1.2, 1.4, 1.5, 1.6, 1.8, 2.0, 3.0

Figure 3.  Distribution of su and detailed mesh arrangement of proposed AFELA and RFELA for B/H = 4.0, 
D/H = 1.0, ρH/μsu0 = 1.0, ΘX = 50.0, and ΘY = 1.00.
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ρH/μsu0 = 1; COV = 60%; ΘX = 50.0; and ΘY = 1.00. Figure 3 shows that the distribution of the undrained shear 
strength su(z) for the deterministic analyses is a linearly increasing profile whereas that of the typical realisa-
tion shows a slightly ragged field of su(z) occurring mainly in the vertical direction due to the moderate value 
of ΘY = 1.0. The final adaptive meshes after three steps are also presented in Fig. 3, where the number of meshes 
increases in the zones that have high plastic shear strains which can reveal the failure patterns of the problem. 
Figure 4 shows other typical realisations of random fields for undrained shear strength for different values of 
ΘY = 0.125 to 4.00 and COVsu = 25 and 60%. The cases of the greater COV values result in higher values of  su and 

Figure 4.  Distribution of undrained shear strength with different normalised correlation length (ΘY).
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these values decrease with increasing normalised correlation length from ΘY = 0.125 to 4.00. The distribution of 
su(z) with a smaller value of ΘY is more ragged in the vertical direction of random field profiles.

The current study considers the six design parameters, including B/H, D/H, ρH/μsu0, COVsu, ΘX and ΘY. Using 
the random stability number (Nran) and the associated factors of safety (FS), a series of probabilistic design charts 
are presented for practical design uses and as decision-making considering the uncertainty of soil property. The 
selected range of all dimensionless parameters is shown in Table 1. Phoon and  Kulhawy51 indicated that the 
values of COV are about 25% to 60% for characterising inherent variation of soil properties at the site. The value 
of ΘX is also set to be 50 according to the previous works by Wu et al.47 and Wu et al.48. The values of B/H, D/H, 
and ρH/μsu0 are set to follow the previous works by Ukritchon et al.10 and Keawsawasvong and  Ukritchon11.

Results and discussion
As the first step of the investigation, the deterministic stability number of fully braced supported excavations in 
homogeneous clays under plane strain conditions from the present study is compared with existing solutions 
from the limit equilibrium method (LEM) by  Terzaghi1 and Bjerrum and  Eide2, FEM by  Goh3, and FELA by 
Ukritchon et al.10 Fig. 5 shows that the solutions by  Terzaghi1 and  Goh3 provide an overestimation of the stabil-
ity number. The present solutions using AFELA fairly agree with the previous solutions by Ukritchon et al.10 
and Bjerrum and  Eide2. Note that  Terzaghi1 employed the LEM in this analysis by assuming the failure lines of 
excavations while  Goh3 carried out the solutions from FEM models with very coarse mesh distribution. This can 
lead to the large difference from the present study and  Terzaghi1 and  Goh3 since this study used the FELA with 
the mesh adaptivity approach to obtain more accurate limit state solutions of the excavation problem.

All RAFELA results of the mean of random stability numbers μNran are presented in Tables 2 and 3 for 
COV = 25% and 60%, respectively. Some results are selected to portray the effect of soil strength variability for 
all considered parameters including width and depth of the excavation ratio, strength gradient factor and dimen-
sionless vertical correlation length. Figure 6 presents the mean stability numbers μNran against the dimensionless 
vertical correlation length ΘY for various values of COVsu, ρH/μsu0, and D/H while the value of B/H is set to be 1.0. 
The mean of the random stability number significantly increases and tends to be stable corresponding with the 
lower and further values of the dimensionless vertical correlation length ΘY because a lower value of ΘY causes 
a rougher spatial variability of su. A higher value of ΘY would lead to a smoother spatial variability of  su dealing 
with a maintained value of random stability number Nran. When the value of ΘY reaches 4.00, the completely 
smooth random field of soils with linearly increasing strength can be obtained. Hence, the value of the mean 
stability numbers μNran come closer to the deterministic stability numbers Ndet. As expected, different values of 
the mean stability numbers μNran between ρH/su and COV can be observed, and the higher values of ρH/su and 
COV are considered. The larger and lower values of the mean stability numbers μNran are also observed.

In order to determine accurate probability of design failure (Pf), 1,000 simulations were conducted to achieve 
convergence of Pf, ensuring that the Pf has stabilised, which was demonstrated in Fig. 7 as an arbitrary case of 
braced excavations. Figure 8 shows examples of the variations of the probability of design failure (Pf) versus the 
dimensionless vertical correlation length ΘY, where B/H is fixed as 0.25. Note that other parameters in Fig. 8 
are D/H = 1.0, ρH/μsu0 = 1.0, and COVsu = 25% and 60%. The various values of FS are considered by varying from 
FS = 1.0 to 3.0. The results indicate the curves are different trends between FS = 1.0 and other FS. The Pf tends 
to decrease when FS = 1.0, while the increasing values of Pf are generated by FS > 1.0 according to increasing 
values of ΘY for both COV = 25 and 60%. The FS = 1.0 is well known as a critical state for simulating stable 
analysis. In addition, by comparing the results between Figs. 8(a) and 8(b), the effect of COVsu on the Pf values 
is found to be significant. A large value of COVsu can result in a higher value of Pf for the same giving value of 
FS. Moreover, the different Pf among FS of COV = 60% are higher than that of COV = 25%. Based on the results 
in Fig. 8, the designed FS can be derived for no failures. For example, the excavation would be stable during the 

Figure 5.  Comparison with previous studies for D/H = 0 and ρH/su0 = 0.
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construction process considering the designed FS > 1.6 at any ΘY and COVsu = 25%, while the distribution of 
su is very high fluctuating at the site (COV = 60%). Hence, the designed FS should be increased, FS > 3.0 at any 
ΘY. From the perspective of modelling material properties and loads in engineering, which are typically posi-
tive, the log-normal distribution has the advantage of allowing only positive values. Therefore, the results of all 
simulations should be considered to fit with the log-normal distribution in this study. The random variable X 
is said to follow a lognormally distribution if ln(X) follows a normally distribution. The standard deviation, the 

Table 2.  The mean of random stability numbers μNran with different ΘY when COVsu = 25%.

COVsu

ρH/
μsu0 ΘY

B/H

0.25 0.5 1.0 2.0 4.0

D/H D/H D/H D/H D/H

0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

25%

0

0.125 9.87 12.30 14.67 17.01 7.84 9.15 10.40 11.61 6.63 7.39 8.11 8.79 5.86 6.29 6.72 7.11 5.37 5.60 5.83 6.06

0.25 9.92 12.41 14.78 17.11 7.96 9.25 10.49 11.73 6.71 7.47 8.19 8.89 5.91 6.35 6.77 7.17 5.39 5.62 5.85 6.08

0.50 10.05 12.52 14.88 17.19 8.07 9.35 10.63 11.85 6.82 7.61 8.29 8.99 5.97 6.41 6.83 7.23 5.41 5.65 5.89 6.12

1.00 10.19 12.65 14.99 17.30 8.17 9.46 10.73 11.94 6.93 7.69 8.40 9.06 6.06 6.50 6.93 7.33 5.44 5.69 5.93 6.16

2.00 10.23 12.69 15.07 17.41 8.26 9.54 10.80 12.01 7.01 7.75 8.47 9.14 6.16 6.60 7.02 7.42 5.51 5.76 6.00 6.23

4.00 10.25 12.75 15.14 17.47 8.28 9.63 10.89 12.08 7.08 7.83 8.55 9.23 6.31 6.75 7.16 7.54 5.65 5.90 6.13 6.35

1.0

0.125 22.35 30.07 38.24 46.96 18.56 23.42 28.43 33.73 16.77 20.44 23.93 27.53 16.33 18.98 21.74 24.53 17.75 20.71 23.18 25.56

0.25 22.62 30.35 38.58 47.30 18.83 23.71 28.78 34.11 17.15 20.72 24.22 28.00 16.46 19.19 21.95 24.76 17.62 20.54 23.03 25.43

0.50 22.85 30.64 38.88 47.60 19.10 24.02 29.10 34.46 17.42 21.05 24.57 28.40 16.67 19.47 22.26 25.07 17.63 20.50 23.03 25.44

1.00 23.13 30.95 39.15 47.94 19.40 24.32 29.43 34.85 17.72 21.34 24.94 28.74 16.96 19.81 22.64 25.50 17.79 20.70 23.22 25.71

2.00 23.15 31.03 39.39 48.27 19.50 24.50 29.77 35.23 17.88 21.53 25.21 28.86 17.24 20.09 22.94 25.83 17.99 20.97 23.53 26.04

4.00 23.17 31.14 39.54 48.41 19.60 24.64 29.88 35.34 18.01 23.93 25.40 29.06 17.73 20.66 23.56 26.46 18.23 21.23 23.85 26.38

2.0

0.125 34.66 47.62 61.61 76.69 29.05 37.45 46.41 55.80 26.73 33.02 39.40 46.03 26.22 31.16 36.25 41.42 25.98 31.17 35.92 40.39

0.25 35.09 48.09 62.16 77.25 29.49 37.92 46.93 56.52 27.09 33.39 39.78 46.41 26.37 31.44 36.56 41.78 25.97 31.11 35.96 40.55

0.50 35.44 48.55 62.65 77.75 29.91 38.42 47.59 56.96 27.44 33.82 40.23 46.91 26.62 31.84 36.98 42.29 26.10 31.20 36.21 40.93

1.00 35.88 49.05 63.08 78.31 30.39 39.05 48.10 57.63 27.97 34.46 40.97 47.68 27.22 32.57 37.76 43.05 26.36 31.65 36.69 40.95

2.00 35.89 49.15 63.46 78.87 30.53 39.25 48.35 58.05 28.27 34.72 41.26 48.10 27.59 32.97 38.28 43.71 26.77 32.64 37.35 40.97

4.00 35.91 49.32 63.72 79.09 30.67 39.24 48.43 58.00 28.85 35.38 42.13 49.00 28.29 33.79 39.15 44.52 27.31 35.90 38.33 40.99

Table 3.  The mean of random stability numbers μNran with different ΘY when COVsu = 60%.

COVsu

ρH/
μsu0 ΘY

B/H

0.25 0.5 1.0 2.0 4.0

D/H D/H D/H D/H D/H

0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

60%

0

0.125 8.46 11.35 13.65 15.92 6.98 8.28 9.48 10.64 5.50 6.53 7.22 7.88 5.01 5.42 5.82 6.19 4.56 4.78 4.98 5.20

0.25 8.85 11.59 13.92 16.18 7.15 8.43 9.63 10.78 5.78 6.66 7.35 8.01 5.06 5.49 5.90 6.28 4.57 4.80 5.03 5.25

0.50 9.29 11.86 14.20 16.42 7.39 8.66 9.88 11.07 5.91 6.84 7.52 8.18 5.18 5.62 6.03 6.42 4.58 4.83 5.07 5.30

1.00 9.67 12.09 14.42 16.72 7.70 8.97 10.19 11.35 6.09 7.04 7.74 8.40 5.37 5.80 6.21 6.60 4.64 4.90 5.14 5.37

2.00 9.92 12.32 14.62 16.88 7.91 9.15 10.36 11.52 6.30 7.26 7.93 8.59 5.56 6.01 6.42 6.81 4.78 5.04 5.27 5.50

4.00 10.34 12.88 15.29 17.67 8.31 9.63 10.54 12.05 6.93 7.68 8.37 9.02 5.91 6.32 6.71 7.07 5.06 5.32 5.54 5.75

1.0

0.125 21.98 29.7 37.87 46.59 16.61 21.25 25.98 30.89 14.71 17.99 21.26 24.65 13.82 16.25 18.68 21.17 13.98 16.15 18.23 20.26

0.25 22.25 29.98 38.21 46.93 17.08 21.76 26.65 31.42 15.14 18.46 21.75 25.15 14.01 16.50 18.99 21.53 13.91 16.14 18.30 20.38

0.50 22.48 30.27 38.51 47.23 17.77 22.50 27.32 32.45 15.76 19.13 22.45 25.88 14.45 17.07 19.63 22.21 14.01 16.26 18.50 20.66

1.00 22.76 30.58 38.78 47.57 18.56 23.35 28.32 33.46 16.37 19.81 23.24 26.78 15.20 17.84 20.44 23.06 14.29 16.67 18.94 21.31

2.00 22.78 30.66 39.02 47.9 19.03 23.81 28.74 33.92 17.00 20.44 23.86 27.39 15.83 18.50 21.19 23.96 14.96 17.42 19.81 22.05

4.00 22.8 30.77 39.17 48.04 19.93 25.02 30.22 35.60 18.01 21.70 25.36 29.06 16.99 19.80 22.53 25.24 15.81 18.45 21.11 23.34

2.0

0.125 34.29 47.25 61.24 76.32 28.61 37.01 45.97 55.36 23.31 29.12 34.94 41.00 22.17 26.65 31.12 35.69 22.57 27.06 29.35 35.68

0.25 34.72 47.72 61.79 76.88 29.05 37.48 46.49 56.08 24.01 29.91 35.75 41.88 22.46 27.08 31.63 36.32 22.56 27.00 29.39 35.84

0.50 35.07 48.18 62.28 77.38 29.47 37.98 47.15 56.52 25.03 31.02 36.98 43.14 23.22 28.00 32.75 37.50 22.69 27.09 29.64 36.22

1.00 35.51 48.68 62.71 77.94 29.95 38.61 47.66 57.19 26.02 32.15 38.31 44.70 24.43 29.34 34.11 38.98 22.95 27.54 30.12 36.24

2.00 35.52 48.78 63.09 78.50 30.09 38.81 47.91 57.61 27.02 33.16 39.31 45.71 25.47 30.42 35.37 40.49 23.36 28.53 30.78 36.26

4.00 35.54 48.95 63.35 78.72 30.23 38.8 47.99 57.56 28.60 35.21 41.81 48.54 27.30 32.61 37.67 42.76 23.90 31.79 31.76 36.28
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coefficient of variation and the mean are derived through the transformation of the parameters of the normal 
distribution as defined in Eqs. (4), (5), and (6). The probability distribution function (PDF) and the cumulative 
distribution function (CDF) for the problem of the stability of braced excavations in spatially random clay with 
different values of ΘY are presented in Fig. 9. Note that the plots are the manipulation of the 1,000 values of the 
random stability numbers to develop the histograms in Fig. 9. The probabilistic density function of log-normal 

Figure 6.  Variation of μNran with different ΘY for B/H = 1.0 and (a) D/H = 0.25 (b) D/H = 0.5 (c) D/H = 0.75 (d) 
D/H = 1.0.

Figure 7.  An example of variation of Pf value with number of simulations (A case of B/H = 0.25, D/H = 1.0, ρH/
μsu0 = 1.0, COVsu = 25%, ΘY = 0.5, FS = 1.2).
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distribution is smooth and wide when the values of ΘY is small. However, the curve of the probabilistic density 
function becomes narrow and left skewed when ΘY becomes very larger (e.g., ΘY = 4.00). The dotted lines in the 
histograms in Fig. 9 represent the deterministic values of the stability number. The number of random stability 
numbers Nran, which are lesser than the deterministic one Ndet (or FS < 1), is higher when the value of ΘY is larger. 
It should be significantly interesting from the results in Fig. 9 that over half of the number of random stability 
numbers Nran could be observed, which are lower than the value of deterministic analysis even though the spatial 
variability of su becomes to be completely smooth. This implies that ignoring random fields is not suitable for 
assessing stability excavation. Examples of failure mechanisms of the basal heave stability problem are shown in 
Fig. 10 for the different values of ΘY and COVsu. The distributions of shear dissipation are employed to show the 
pattern of failures, where the values of B/H = 1.0, D/H = 1.0, and ρH/μsu0 = 1.0. Figure 10 shows that considering 
a smaller value of ΘY and a larger value of COV, the failure pattern is not symmetric because of the presence 
of more generated variation and rough spatial variability of su. Figure 10 indicates that the pattern of failures 
becomes more completely symmetric when the values of ΘY are larger. The failure patterns of the stochastic 
case with ΘY = 4.00 for both COVsu = 25 and 60% are analogous to that of the deterministic case. The findings in 
Fig. 10 also demonstrate no differences in the failure patterns between a lower and higher values of COV without 
considering spatial variability of su. Thus, the failure mechanisms of the basal heave excavation problem mainly 
depend on a characterisation of spatial variability of su.

The effect of the strength gradient factor ρH/μsu0 on the mean of random stability numbers is demonstrated 
next. In Fig. 11, the tendency between the mean stability numbers μNran and ρH/μsu0 is a linearly increasing line. 
An increase in ρH/μsu0 causes an increase in the mean stability number, and the gaps between COV = 25 and 60% 
increase with increasing ρH/μsu0 because the larger values of the undrained shear strength are simulated, and 
greater values of random stability number are produced. Figure 12 shows the variation of μNran with different 
values of the width of excavation ratio B/H. Unlike the effect of ρH/μsu0, the tendency between the mean stability 
numbers μNran and B/H is the nonlinear decreasing line. The curves of the mean stability numbers μNran quickly 
go down at the lesser B/H (from B/H = 0.2 to 2.0) and tend to be flat at the further H/B. The reduced levels of 
the mean stability numbers μNran are significantly different among ρH/μsu0 at B/H = 0.2 to 2.0, which confirms 

Figure 8.  Effect of ΘY on the probability of failure for B/H = 0.25, D/H = 1.0, ρH/μsu0 = 1.0 and (a) COVsu = 25% 
(b) COVsu = 60%.
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that an excavation with a high area has less stability than a narrow area. The effects of the depth of excavation 
ratio D/H on the random stability number is illustrated in Fig. 13. The relationship between μNran versus D/H 
is linear, where an increase in the depth of excavation ratio D/H yields an increase in the excavation stability. 
Hence, the level of the excavation stability would be increased corresponding to the larger value of ρH/μsu0, and 
remain unchanged at a very small value of ρH/μsu0 for any D/H. Finally, the effect of B/H on the probability of 
design failure (Pf) is shown in Fig. 14. The effect of ρH/μsu0 and D/H on Pf is very small and is not presented here 
for brevity. The results in Fig. 14 have shown that for all chosen values of FS from 1.0 to 3.0, an increase in B/H 
causes an increase in Pf. When COV is larger, the value of Pf is also larger for all giving values of FS. Relating to 
practical applications based on the findings in Fig. 14, the failure probability of braced excavation is not affected 
by B/H if the designed FS is great enough value when the depth of excavation is fixed at the site.

Figure 9.  Histogram PDF and CDF for B/H = 1.0, D/H = 1.0, ρH/su0 = 1.0 and COVsu = 60%.
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Conclusion
This study adopted the RAFELA method to investigate the effect of a nonstationary random field of undrained 
shear strength on the failure probability of fully braced excavation. The quantitative findings from this study 
can be highlighted as follow:

1. In comparison to the results obtained from the LEM and FEM, the stability number calculated in the present 
study using the AFELA method was found to be underestimated. Nonetheless, these results align with the 
deterministic analysis conducted in a previous study utilising the FELA method.

2. In general, the mean stability number of stochastic analysis μNran is smaller than the deterministic stability 
number. The larger vertical correlation length leads to a further increase in the mean stability number μNran 
due to the more distributions of smooth spatial variability su were produced by random field theory.

Figure 10.  Distributions of shear dissipation for B/H = 1.0, D/H = 1.0 and ρH/su0 = 1.0.
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Figure 11.  Variation of μNran with different ρH/μsu0 for ΘY = 1.0 and B/H = 4.0.

Figure 12.  Variation of μNran with different B/H for D/H = 1.0, ρH/μsu0 = 1.0 and ΘY = 1.00.

Figure 13.  Variation of μNran with different D/H for B/H = 1.0, ρH/μsu0 = 1.0 and ΘY = 1.00.
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3. Considering probabilistic failure analysis, the more complete failure patterns caused by the smaller vertical 
correlation length would decrease the probability of design failure. The failure probability was not affected 
by simulating the higher values of dimensionless vertical correlation length and B/H. Besides, the increase in 
FS would drastically decrease the failure probability, it is suggested that the FS = 1.6 can guarantee relatively 
high-level safety braced excavation with COVsu = 25% for most cases. The FS should be raised with the greater 
COVsu. For example, FS = 3.0 with COVsu = 60% in this study.

4. Based on the statistical analysis of undrained stability in braced excavations, it can be observed that dis-
regarding the spatial variability of undrained shear strength leads to an overestimation of both the mean 
stability numbers and the probability of designed failures (Pf). Therefore, it becomes essential to consider 
the variability of soil properties for reliable analysis and design of braced excavations, particularly in highly 
non-homogeneous soil conditions. Moreover, the Pf is highly sensitive to variations in different vertical cor-
relation lengths and the FS.

5. The limitation of this study is that only the 2D plane strain condition is employed in the analysis. Hence, 
only the stability solutions of 2D braced excavations are considered in the present study, which differs from 
the real-world case for 3D braced excavations. Future works may include the 3D stability analysis of braced 
excavations in clay considering the nonstationary random field of undrained shear strength.
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Figure 14.  Effect of B/H on the probability of failure for D/H = 1.0, ρH/μsu0 = 1.0, ΘY = 1.00 and (a) COVsu = 25% 
(b) COVsu = 60%.
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