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Identification of potentially 
relevant metals for the etiology 
of autism by using a Bayesian 
multivariate approach for partially 
censored values
Bertil Wegmann 1*, Patricia Tatemoto 2, Stefan Miemczyk 3, Johnny Ludvigsson 4 & 
Carlos Guerrero‑Bosagna 5*

Heavy metals are known to be able to cross the placental and blood brain barriers to affect critical 
neurodevelopmental processes in the fetus. We measured metal levels (Al, Cd, Hg, Li, Pb and Zn) in 
the cord blood of newborns and in the serum of the same children at 5 years of age, and compared 
between individuals with or without (controls) autism spectrum disorder (ASD) diagnosis. The samples 
were from a biobank associated with the All Babies in Southeast Sweden (ABIS) registry. We proposed 
a Bayesian multivariate log-normal model for partially censored values to identify potentially relevant 
metals for the etiology of ASD. Our results in cord blood suggest prenatal Al levels could be indicative 
of later ASD incidence, which could also be related to an increased possibility of a high, potentially 
toxic, exposure to Al and Li during pregnancy. In addition, a larger possibility of a high, potentially 
beneficial, exposure to Zn could occur during pregnancy in controls. Finally, we found decisive 
evidence for an average increase of Hg in 5-year-old ASD children compared to only weak evidence for 
controls. This is concordant with previous research showing an impaired ability for eliminating Hg in 
the ASD group.

Autism spectrum disorders (ASD) represent a group of disorders that includes five diagnostic subtypes1: (i) 
Autism, (ii) pervasive developmental disorders not otherwise specified (PDD-NOS), (iii) Rett’s disorder, (iv) 
child disintegrative disorder, and (v) Asperger’s disorder. ASD are usually regarded as neurodevelopmental dis-
orders in which affected children develop impairments in communication and social interaction, together with 
restricted and repetitive behaviors1. ASD are estimated to affect 1 in 100 children worldwide, according to the 
World Health Organization2. Both genetic and environmental factors are shown to contribute to the pathogenesis 
of ASD1. Findings from identical twin and sibling studies indicate a strong genetic component contributing to 
the prevalence of ASD3,4. Since the first diagnosis of ASD, a 5–10 fold increased prevalence of ASD has been 
reported5. This drastic increase can only partially be attributed to improved diagnostics1.

In recent years, neurodevelopmental disorders in general, and ASD in particular, have been related to heavy 
metals exposure6–8, particularly during early development6,9. In a recent review,10 emphasize that although stud-
ies on toxic elements have been largely limited by their design, enough evidence exists associating heavy metals 
(notably mercury and lead) and ASD to justify research on the topic.

Parental exposures occurring before or during pregnancy could influence the capacity of children to detox 
heavy metals, leading to their accumulation, which could then affect brain development. Heavy metals are known 
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to be able to cross the placental and blood brain barriers and then potentially affect critical neurodevelopmental 
processes in the fetus11. Toxicity of heavy metals can occur via different molecular mechanisms, such as the 
interaction of metal ions with neurotransmitters, receptors, ion pumps, biological calcium, enzymes as well as 
functional groups of certain amino acids12,13.

In the present paper, we have investigated the presence of heavy metals in the cord blood of newborns and 
then in the serum of these children at 5 years of age. We compared samples from children with ASD diagnosis 
to samples from children without ASD diagnosis (controls) to identify whether some of these metals could be of 
relevance for ASD etiology. The study employed samples from a biobank related to the All Babies in South Sweden 
(ABIS) registry. Levels of aluminum (Al), cadmium (Cd), mercury (Hg), lithium (Li), lead (Pb) and zinc (Zn) 
were measured both in the cord blood of newborns and in their serum at 5 years of age. For the identification 
of the heavy metals that could be relevant for the etiology of autism, we have employed a Bayesian multivariate 
log-normal model that accounts for censored metal values in each of the experimental groups.

Material and methods
All methods were performed in accordance with the relevant guidelines and regulations.

Origin of samples.  The samples are part of the biobank associated to the ABIS (All Babies in Southeast 
Sweden) registry. The samples are stored at the Division of Pediatrics of the Department of Biomedical and 
Clinical Sciences, Linköping University. The original goal of the ABIS study was to investigate the emergence 
of Type 1 diabetes and other immune mediated diseases in Swedish children14. Informed consent was obtained 
from the legal guardians of all participating children. In this context cord blood, breastmilk, hair of the mother 
was collected at birth, while blood, urine, stool, and hair were obtained from children at the ages of 1, 3 and 
5 years. The ABIS cohort comprised male and female children born between Oct 1997 and Oct 1999 in the 
Swedish counties of Östergötland, Öland, Blekinge, and Småland, which are followed prospectively. Using this 
cohort, we have recently reported associations between blood heavy metals in children and Type 1 diabetes15 
and autoimmunity16.

Database employed for diagnosis.  The categorization of the samples as coming from children with 
or without ASD diagnosis was performed by different medical doctors across Sweden and incorporated into 
The Swedish National Patient Register. This population-based register was launched in 1964 and is currently 
maintained by the Swedish National Board of Health and Welfare (http://​www.​socia​lstyr​elsen.​se/​engli​sh). Over 
99% of all somatic and psychiatric hospital discharges, as well as outpatient visits from both private and public 
caregivers, are recorded in this register. The recorded items are based on the International Classification of 
Diseases (ICD) codes, and associate with the personal identity number (a unique 10-digit number) assigned to 
all Swedish residents (http://​www.​socia​lstyr​elsen.​se/​engli​sh). Over 99% of all somatic and psychiatric hospital 
discharges, as well as outpatient visits from both private and public caregivers, are recorded in this register.

Analysis of metal levels.  The samples were analyzed for the concentration of aluminum (Al), cadmium 
(Cd), mercury (Hg), lithium (Li), lead (Pb) and zinc (Zn). For cord blood, 20 samples were randomly selected 
and analyzed from ASD diagnosed children and 40 from the control group. For the serum from 5-year-old chil-
dren, 11 samples were analyzed from ASD diagnosed children and 24 from the control group. The analysis of 
metal levels was performed by ALS Scandinavia AB (Luleå, Sweden) using the ‘ultrasensitive inductively coupled 
plasma sector field mass spectrometry method’ (ICP-SFMS)17 after acid digestion with HNO3, according to the 
standards ISO 17294-118 and ISO 17294-219, and the EPA Method 200.820. Most metal levels were lower than 
the detection level of each metal, which refers to censored metal levels from above, and a few metal values were 
not recorded (missing data). In the next section, we incorporate these features of our data into our Bayesian 
modeling of metal values.

Ethical approval.  The study was approved by the Research Ethical committee, Linköping university (Dnr: 
M138-09 and Dnr: 2016/515-31).

Bayesian modeling of metal values
The Bayesian approach formulates a prior distribution for all model parameters, and then updates this prior 
distribution with observed data through the likelihood function to a posterior distribution. The goal of a Bayes-
ian analysis is to make inference on the posterior distribution of all model parameters.

Likelihood function.  Let x =
(
x1, x2, . . . , xJ

)
 be the vector of values for the J different metals of any indi-

vidual in one of the groups. Assume for each of the groups that

where µ is the mean vector and � is the covariance matrix for that group. This implies that x follows a multivari-
ate log-normal distribution with mean for each metal j given by

and covariance matrix for elements j and k as

(1)ln x ∼ N(µ,�),

µxj = exp

[
µj +

1

2
�jj

]

http://www.socialstyrelsen.se/english
http://www.socialstyrelsen.se/english
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for any types of metals j and k. Let y = ln x and partition y as y =
(
y1, y2

)
, where y1 is the vector of observed val-

ues and y2 is the vector of censored values for any individual i. Similarly, partition the mean vector µ = (µ1,µ2) 
and covariance matrix

where �12 = �21 by symmetry. Then, it follows that the marginal distribution of y1 is given by

and the conditional distribution of y2|y1 becomes21

Let fy1
(
y1
)
 be the probability density function of y1and let Fy2|y1(c2) denote the cumulative distri-

bution function of y2|y1 evaluated at c2 . The likelihood function Li for any individual i becomes 
L

(
µ,�|yi1, yi2

)
= fy1

(
yi1|µi ,�i

)
Fy2|y1(ci2|µi ,�i), where the elements of y2 are censored at ci2 from above. 

Then, the likelihood function for n individuals in a group becomes

Bayesian inference.  The posterior distribution of (µ,�) is given through Bayes’ theorem by

where L
(
µ,�|y1, y2

)
 is the likelihood function in Eq. (2) above and p(µ,�) is the prior distribution of (µ,�) . 

Following22, we estimate the posterior distribution of (µ,�) using the default Markov chain Monte Carlo 
(MCMC) algorithm for K = 1 mixture component in the R package mixAK. This R package allows for censored 
values y2 , which is an inherent feature of our data (see Section Analysis of metal levels), where these values are 
lower than the detection level of the measuring device. We also use the feature of interval-censored values in 
mixAK for the non-recorded values (missing data) specified on reasonable intervals.

As a standard of comparison, we use the weakly informative prior distributions in mixAK. Weakly informative 
priors are often considered in Bayesian inference for two reasons: to obtain stable estimation of the posterior and, 
at the same time, carry very little prior information in such a way that these priors are essentially non-informative 
prior distributions. Convergence of the MCMC algorithm in mixAK is monitored using the convergency meas-
ures R̂ and n̂eff  in23. The convergency measure R̂ is approximately equal to the square root of the variance of the 
mixture of all the chains divided by the average within-chain variance and n̂eff  is the number of efficient draws as 
an estimated number of independent posterior draws. We estimated all models such that R̂ < 1.1 and n̂eff > 100 . 
This suggested good convergence to the posterior with well-mixed chains.

Classification.  We obtain a posterior distribution for the probability that each observation yi for individual 
i belongs to one of the two groups using a Leave-One-Out Cross-Validation (LOOCV) procedure. Given each 
observation yi , we estimate the model for each group using all other observations y−i than yi as training data. 
The probability of being in the autism group (here class C = c1 ) instead of the control group (here class C = c2 ) 
for an individual i can be written by reverting Bayes Theorem as (similarly to naive Bayes classification, see e.g.24)

We assume equiprobable classes apriori such that p
(
Ci = c1|y−i

)
= p

(
Ci = c2|y−i

)
= 1

2 for any observation i, 
which simplifies the probability expression to

In addition, the odds for an individual i being in the control group also simplifies to

�xjk = exp

[
µj + µk +

1

2

(
�jj +�kk

)](
exp

[
�jk

]
− 1

)

� =
(
�11 �12

�21 �22

)
,

y1 ∼ N(µ1,�11),

y2|y1 ∼ N
(
µ2 +�21�

−1
11

(
yi1 − µ1

)
,�22 −�21�

−1
11 �12

)
.

(2)L
(
µ,�|y1, y2

)
=

n∏

i=1

fy1
(
yi1|µi ,�i

)
Fy2|y1(ci2|µi ,�i).

p
(
µ,�|y1, y2

)
∝ L

(
µ,�|y1, y2

)
p(µ,�),

p
(
Ci = c1|yi , y−i

)
=

p
(
yi|y−i ,Ci = c1

)
p
(
Ci = c1|y−i

)

p
(
yi|y−i

)

=
p(Ci = c1)

∫
p
(
yi|µc1 ,�c1

)
p
(
µc1 ,�c1 |y−i

)
dµc1d�c1

∑2
j=1 p

(
Ci = cj

) ∫
p
(
yi|µcj ,�cj

)
p
(
µcj ,�cj |y−i

)
dµcj d�cj

.

p
(
Ci = c1|yi , y−i

)
=

∫
p
(
yi|µc1 ,�c1

)
p
(
µc1 ,�c1 |y−i

)
dµc1d�c1

∑2
j=1

∫
p
(
yi|µcj ,�cj

)
p
(
µcj ,�cj |y−i

)
dµcj d�cj

.

p
(
Ci = c2|yi , y−i

)

p
(
Ci = c1|yi , y−i

) =
p
(
yi|y−i ,Ci = c2

)

p
(
yi|y−i ,Ci = c1

) .
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Results
The results of the model parameters µ and � in Eq. (1) are shown in the first subsection for the data on metal 
values in the cord blood. Differences in µ and � between the ASD and control groups for 5-year-olds are shown 
in the second subsection. Group comparisons between metal values in the cord blood and in 5-year-olds are 
shown in the third subsection. Finally, classification results are presented in the fourth subsection. Throughout 
this section, let µA = EA[x],µC = EC[x] be the expected values of x and σA =

√
VarA[x], σC =

√
VarC[x] be 

the standard deviations of x for the ASD and control groups, respectively.

Metal values in the cord blood.  Figures  1, 2, 3, 4, 5 and 6 show the posterior distributions of 
µA,µC ,µA − µC , σA, σC , σA/σC and the posterior probabilities P(µA > µC) , P(σA > σC) for each of the met-
als Al, Cd, Hg, Li, Pb and Zn. To a large extent, the expected values µ and standard deviations σ for metals Al, 
Hg, and Li, are higher in the ASD than in the control group. The opposite holds for metal Pb, where expected 
values and standard deviations tend to be higher for the control group, and for metal Zn, where standard devia-
tions tend to be higher for the control group. No differences between the groups in expected values and standard 
deviations are apparent for metal Cd. However, visual inspections from the figures can be more precisely quanti-
fied and interpreted using the calculated probabilities P(µA > µC) and P(σA > σC) (shown in the figures). The 
posterior odds in favor of µA is given by

Analogously to the interpretation of the Bayes factor in25, we provide similar interpretations of K in Table 1.
The probabilities for P(µA > µC) and P(σA > σC) from Figs. 1, 2, 3, 4, 5 and 6 can be extracted and combined 

with the interpretations of the posterior odds K from Table 1. Differences between the autism and control groups 
in µ and σ for each metal are given in Table 2. There is strong evidence that the mean and standard deviation of 
Al are higher in the ASD group than in the control group. There is also strong evidence that the standard devia-
tion of Pb is higher in the control group and that the standard deviation of Li is higher in the ASD group. There 
is decisive evidence that the standard deviation of Zn is higher in the control group compared to the ASD group.

In order to identify if linear associations between the metals would be relevant for the ethiology of ASD, we 
performed inference on pairwise correlations of the metals. These were extracted from the posterior inference 
of the elements in � for each group. Table 3 shows that especially Pb tends to be associated with other metals. 
There is decisive evidence that a linear association between Pb and Al is larger in the control group than in the 
ASD group. Likewise, there is strong evidence of a higher linear association between Pb and Hg in the autism 
group, and of a higher linear association between Pb and Li in the control group. In addition, there is strong 

K = P(µA > µC)

P(µC > µA)
.

Figure 1.   Posterior distributions of µA − µC (top left), µA and µC (top right), σA
σC

 (bottom left), and σA and σC 
(bottom right) for metal Al.
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Figure 2.   Posterior distributions of µA − µC (top left), µA and µC (top right), σA
σC

 (bottom left), and σA and σC 
(bottom right) for metal Cd.

Figure 3.   Posterior distributions of µA − µC (top left), µA and µC (top right), σA
σC

 (bottom left), and σA and σC 
(bottom right) for metal Hg.
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Figure 4.   Posterior distributions of µA − µC (top left), µA and µC (top right), σA
σC

 (bottom left), and σA and σC 
(bottom right) for metal Li.

Figure 5.   Posterior distributions of µA − µC (top left), µA and µC (top right), σA
σC

 (bottom left), and σA and σC 
(bottom right) for metal Pb.
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evidence of a higher linear association between Al and Hg, Al and Zn, and Zn and Cd in the control group. 
Figure 7 confirms this view as the majority of the histograms of correlations for the control group are shifted 
more to the right compared to the corresponding histograms of the ASD group.

Metal values for 5‑year olds.  Table 4 shows a strong evidence for higher average metal values of Hg in the 
ASD group compared to the control group. Strong evidence also exists for the standard deviation being higher 

Figure 6.   Posterior distributions of µA − µC (top left), µA and µC (top right), σA
σC

 (bottom left), and σA and σC 
(bottom right) for metal Zn.

Table 1.   Interpretation of the posterior odds K in favor of either µA or µC.

K P(µA > µC) or P(µC > µA) Strength of evidence for µA > µC or µC > µA

1 to 3.2 0.5 to 0.762 Not worth more than a bare mention (No)

3.2 to 10 0.762 to 0.909 Weak (Wk)

10 to 100 0.909 to 0.990 Strong (Str)

> 100 > 0.990 Decisive (Dec)

Table 2.   Probabilities and strength of evidence for the mean and standard deviation of the metal values in the 
cord blood, respectively, being higher in one of the groups.

Metal P(µA > µC) Strength of evidence P(σA > σC) Strength of evidence

Al 0.953 Str: µA > µC 0.961 Str: σA > σC

Cd 0.698 No 0.524 No

Hg 0.837 Wk: µA > µC 0.816 Wk: σA > σC

Li 0.750 No 0.981 Str: σA > σC

Pb 1− 0.895 Wk: µC > µA 1− 0.932 Str: σC > σA

Zn 1− 0.697 No 1− 0.995 Dec: σC > σA
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Figure 7.   Histograms of posterior correlations between the metals for the control group (black) and ASD group 
(blue).

Table 3.   Probabilities and strength of evidence for the pairwise correlations of metals being higher in one of 
the groups.

Metal P(ρA > ρC)

Al Cd Hg Li Pb Zn

Al 0.656 0.910 1-0.572 0.998 0.974

Cd No 1-0.642 1-0.551 0.904 0.940

Hg Str: ρC > ρA No 1-0.555 1-0.980 1-0.755

Li No No No 0.922 0.665

Pb Dec: ρC > ρA Wk: ρC > ρA Str: ρA > ρC Str: ρC > ρA 1-0.721

Zn Str: ρC > ρA Str: ρC > ρA No No No

Table 4.   Probabilities and strength of evidence for the mean and standard deviation of metal values for 
5-year-olds, respectively, being higher in one of the groups for each metal.

Metal P(µA > µC) Strength of evidence P(σA > σC) Strength of evidence

Al 1− 0.718 No 1− 0.547 No

Hg 0.988 Str: µA > µC 0.810 Wk: σA > σC

Li 1− 0.709 No 1− 0.938 Str: σC > σA

Zn 0.817 Wk: µA > µC 0.936 Str: σA > σC
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for Li in the control group and Zn in the autism group. No decisive evidence was found for any of the metals in 
5-year olds.

Group comparison between metal values in the cord blood and for 5‑year olds.  Table 5 shows 
decisive evidence for the means and standard deviations of almost all metal values being higher in 5-year-olds. 
One exception was Zn, where the evidence is decisive for both the mean and standard deviation being higher 
in the cord blood than for 5-year-olds. Another exception was Hg, where the evidence is only weak for both the 
mean and standard deviation being higher in 5-year-olds in the control group and where no evidence exists for 
the standard deviation in the ASD group being higher in either the cord blood or in 5-year-olds.

Classification results.  In order to evaluate the ability of our cord blood data to predict future ASD inci-
dence, we performed an analysis of the strength of evidence for an observation to belong to either the ASD or 

Table 5.   Probabilities and strength of evidence for the mean and standard deviation of the ratios RASD =

X
(5)
Aut

X
(0)
Aut

 

and RControl =
X
(5)
Control

X
(0)
Control

 being higher for 5-year-olds compared to metal values in the cord blood, where X(0)
Control

 
and X(0)

ASD
 denote the metal values in the cord blood and X(5)

Control
 and X(5)

ASD
 the metal values for 5-year olds in 

the control and ASD groups, respectively.

Metal P(µR > 1) Strength of evidence P(σR > 1) Strength of evidence

ASD

Al 1 Dec: µR > 1 1 Dec: σR > 1

Hg 1 Dec: µR > 1 1− 0.687 No

Li 1 Dec: µR > 1 1 Dec: σR > 1

Zn 1− 0.990 Dec: µR < 1 1− 1 Dec: σR < 1

Control

Al 1 Dec: µR > 1 1 Dec: σR > 1

Hg 0.853 Wk: µR > 1 0.844 Wk: σR > 1

Li 1 Dec: µR > 1 1 Dec: σR > 1

Zn 1− 1 Dec: µR < 1 1− 1 Dec: σR < 1

Figure 8.   Histograms for the posterior probability that each actual ASD or control individual belongs to either 
the ASD or control group using 10000 posterior draws of (µ, σ).
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the control group (as described in Section Classification). Figure  8 shows the posterior distributions (using 
100000 posterior draws) of p

(
Ci = c1|yi , y−i

)
 for each individual i. Of the classified individuals, all but one were 

correctly classified to one of the groups. However, for this individual the average posterior probability, 
mean
µ,σ

p
(
Ci = c1|yi , y−i

)
= 0.938 , is actually the lowest average probability for all the 11 individuals in the figure. 

The individuals in Fig. 8 show at least strong favor to one of the groups according to our following definition:

The remaining 49 individuals can not be classified according to this definition (Table 6).
When employing a more conservative rule, by changing the threshold above from 0.909 to 0.990, all 5 indi-

viduals were correctly classified with at least decisive favor to one of the groups, see Table 7.

Posterior predictive distributions and posterior odds for each type of metal values.  In order 
to predict possible metal values for a new individual, we obtained the posterior predictive distribution, p(x̃|x), 
for future values x̃ given observed values x for each type of metal in each of the ASD and control groups. Inves-
tigating group differences of the posterior predictive distributions further, we generalized the odds, defined in 
Section Classification for an individual i, to the following odds for any future value x̃ of a metal belonging to the 
control group:

Hence, the odds for any metal value x̃ is given by the ratio of the posterior predictive densities. Figure 9 shows 
the posterior predictive distribution p(x̃|x) for each type of metal and group. The distributions of the groups 
for each metal overlap to a certain degree. However, for all metals but Pb and Zn the distribution for the autism 
group attains, in general, larger values in long and thick tails of the distribution. Hence, an extreme value for 
each type of metal can possibly be used as a biomarker for an individual belonging to either group. By marking 
out thresholds of metal values in the tails of p(x̃|x) in Fig. 9 that correspond to considerably low or high values 
of the odds OControl |x̃, x , the more extreme metal values beyond each threshold can be used as a biomarker for an 
individual with such a value to belong to either group. Table 8 shows the values of the marked thresholds in Fig. 9.

This complements the previous classification results in Tables 6 and 7, where the whole vector of metal values 
for an individual was used to classify each individual to either group. However, tail distributions are known to be 
sensitive to outliers in particularly small datasets. Therefore, we need to interpret such a biomarker with caution 
in our relatively small dataset and be aware of the fact that more data can change tail distributions dramatically. 
Figure 10 shows the posterior odds as a function of values for each type of metal. For large values of Al, Cd, Hg 
and Li, the odds for being in the control group declines towards 0. This is in contrast to large values of Pb and 
Zn, where the odds for being in the autism group declines towards 0 instead.

Discussion
In this study, we investigate the presence of heavy metals in the cord blood of newborns and in the serum of the 
same children at five years of age. To identify the relevance of specific metals (in these two stages of development) 
for the etiology of ASD, we used a Bayesian multivariate log-normal modeling that accommodates censored val-
ues. In cord blood, we found strong evidence for higher Al levels in the ASD compared to the control group. The 
role of Al as a neurotoxic and neuroinflammatory agent, and its synergistic interaction with Hg, has previously 
been reported26. In addition, Al has been shown to be strongly linked to ASD, with the severity of behavioral 

mean
µ,σ

p
(
Ci = c1|yi , y−i

)
> 0.909 ⇔ at least strong favor to groupCj .

OControl |x̃, x =
p
(
Cx̃ = c2|x̃, x

)

p
(
Cx̃ = c1|x̃, x

) =
p
(
x̃|x,Ci = c2

)

p
(
x̃|x,Ci = c1

) .

Table 6.   Confusion matrix for the classified 11 individuals with at least strong favor to one of the groups.

Confusion matrix

Predicted class (classified)

Not classifiedControl Autism Total

Actual class

Control 8 0 8 32

Autism 1 2 3 17

Total 9 2 11 49

Table 7.   Confusion matrix for the classified 5 individuals with at least decisive favor to one of the groups.

Confusion matrix

Predicted class (classified)

Not classifiedControl Autism Total

Actual class

Control 3 0 3 37

Autism 0 2 2 18

Total 3 2 5 55
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Figure 9.   Posterior predictive distributions for each type of metal value in the control (black) and autism group 
(blue). The metal values x are simulated from taking the exponential of the multivariate normal realisations ln x , 
conditional on the posterior draws of µ and � . The 1% most extreme metal values are not shown for each metal 
type due to poor visualization of the whole distribution from showing the characteristic thick and long tails in 
the log-normal distribution. The solid vertical lines show thresholds of strong evidence that an individual with 
more extreme values belongs to the ASD group for metals Al, Cd, Hg, Li, and to the control group for metals Pb 
and Zn. The dashed lines show corresponding thresholds of decisive evidence.

Table 8.   Threshold values for strong and decisive evidence of a metal value x belonging to the ASD (in bold) 
and control (in italics) groups.

Metal Strong evidence Decisive evidence

Al x > 22.89 x > 23.21

Cd − −

Hg x > 0.812 x > 0.823

Li x > 1.448 x > 1.485

Pb x > 1.093 x > 1.123

Zn x < 547.5, x > 1608.5 x < 302.4, x > 1633.6
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symptoms being correlated to Al levels in the hair27. To date, however, no study has suggested that higher levels 
of Al in the cord blood can be indicative of future ASD diagnosis, as our data indicates. The potential of prenatal 
Al levels to indicate later ASD incidence needs to be further investigated.

We also found strong evidence for larger standard deviations of Al and Li in the ASD group, as well as for a 
larger standard deviation of Zn in the control group. Figure 11 summarizes our findings by using the posterior 
modes as Bayesian point estimates of the mean and standard deviation for each metal. For Al and Li this may 
indicate higher possibilities of a high, potentially toxic, exposure to these metals during pregnancy. To the best of 
our knowledge, no study has investigated the role of prenatal exposure to Li in relation to ASD. For Zn, in turn, 
our findings of decisive evidence for a higher standard deviation in the controls compared to ASD in cord blood 
samples suggests that the ASD population is exposed to less nutritional options providing Zn as a micronutrient 
than the control population. Zn is an important micronutrient whose deficiency during critical fetal periods 

Figure 10.   The posterior odds for each metal value belonging to either the control (black) or the autism (blue) 
group.

Figure 11.   The interval µ̂x ± σ̂x for each cord blood metal value in each of the ASD and control groups, where 
µ̂x and σ̂x are the posterior modes as Bayesian point estimates from the posterior distributions of µx and σx , 
respectively.
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is thought to contribute to the development of ASD28. Concordant with this idea, low hair Zn levels in infants 
are indeed associated with ASD28. Additionally, we found decisive evidence for higher average Zn levels in the 
cord blood compared to 5-year-olds in both experimental groups. Our combined evidence on Zn suggests the 
importance of Zn as a micronutrient during pregnancy and may indicate higher possibilities of a high, potentially 
beneficial, exposure to Zn during pregnancy in controls. Concordantly, less possibilities of higher Zn exposure 
during pregnancy in ASD might be indicative of lack of this nutrient in crucial early developmental stages. This 
hypothesis needs to be further examined.

We found decisive evidence for higher average levels of Al and Li in 5-year-olds compared to the cord blood, 
both in the control and ASD groups. This is expected, because as the children grew, they increasingly obtained 
these metals via nutrition. The exception was Hg, for which we found decisive evidence of an average increase 
in 5-year-old ASD children, but only weak evidence for an average increase in 5-year-old control children. This 
is concordant with previous research showing an impaired ability for eliminating Hg in relation to ASD. For 
example, newborns later diagnosed with ASD present a 7.7-fold reduction Hg levels in hair, which is one of the 
main pathways of metal excretion29. Such impaired ability to excrete Hg would lead to an increased accumulation 
in the body, which is concordant with a 1.9-fold increase in blood Hg observed in ASD-diagnosed subjects30. 
Another interesting observation in relation to Hg is that the standard deviation is never higher for 5-year-olds 
in the ASD group compared to merely weak evidence for controls. This provides further insight to the idea that 
the increase in Hg levels in 5-year-old ASD children only depends on their impaired metabolic ability to detoxify 
Hg and not on environmental availability.

Moreover, we investigated the ability of our cord blood data to predict future ASD incidence by using clas-
sification. Although only 11 individuals could be classified and 49 could not, all but one (belonging to the con-
trol group) was correctly classified. The predictive power from classifying specific cord blood metal levels can 
certainly be higher for a larger dataset and we believe this approach has good potential for early identification of 
susceptibility to develop ASD. This would be important to develop early interventions, e.g. dietary, to minimize 
exposure to certain metals in individuals with a higher risk of developing ASD later on.

Finally, by using posterior predictive distributions of the metal values, we identified threshold levels for 
specific metals that predict future ASD incidence. Threshold levels could be identified for all metals, except for 
Cd. For Al, Hg, Li and Pb threshold levels were identified for the right tail of the posterior predictive distribu-
tion, where large values for these metals are indicative of a future incidence of ASD. Although these levels are 
only based on our dataset, a similar approach can be employed in future studies that incorporate a larger sample 
of children to examine whether the levels reported here are reliable and how they can be refined. For Zn, we 
identified a potential non-monotonic effect, with values below and above thresholds in both the left and right 
tail of the predictive distribution being related to controls, rather than to ASD incidence. Although it is natural 
that higher cord blood levels of this important micronutrient would relate to the prevention of ASD, it is hard 
to understand how very low levels could do the same. Non-monotonic effects are a contentious topic in envi-
ronmental toxicology, for which the mechanism and real implications are yet to be understood31. However, it 
is important to point out that in vitro non-monotonic effects have been reported for another metal, Copper, in 
Caco-2 cells32. In any case, our study points towards the feasibility of using levels of specific metals in the cord 
blood as a warning signal about future ASD incidence, and as previously mentioned, to prompt early interven-
tions aimed at preventing or minimizing the detrimental effects of ASD in children. Such interventions could, 
for example, involve limiting exposure of susceptible individuals to metals such as Hg. There is accumulating 
evidence of Hg involvement in ASD, both from previous reports and in the present paper. Hg involvement in 
ASD seems to be via accumulation in the body30, which would in turn lead to disrupted neurodevelopment9. 
Thus, limiting Hg exposure/intake by susceptible individuals could in theory help to promote normal neurode-
velopment during key developmental times, notably between birth and the age of six. It is during this age when 
human brain experiences dramatic changes in size, a 4-fold increase, and connectivity, involving processes such 
as neuronal arborization, synaptogenesis, glycogenesis and myelination33.

Data availability
All data analysed during this study are included in this published article as a supplementary file.
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