
1

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11568  | https://doi.org/10.1038/s41598-023-38768-5

www.nature.com/scientificreports

Genome‑wide polygenic risk 
score for type 2 diabetes in Indian 
population
Sandhya Kiran Pemmasani *, Shravya Atmakuri  & Anuradha Acharya 

Genome-wide polygenic risk scores (PRS) for lifestyle disorders, like Type 2 Diabetes (T2D), are 
useful in identifying at-risk individuals early on in life, and to guide them towards healthier lifestyles. 
The current study was aimed at developing PRS for the Indian population using imputed genotype 
data from UK Biobank and testing the developed PRS on data from GenomegaDB of Indians living 
in India. 959 T2D cases and 2,818 controls were selected from Indian participants of UK Biobank to 
develop the PRS. Summary statistics available for South Asians, from the DIAMANTE consortium, 
were used to weigh genetic variants. LDpred2 algorithm was used to adjust the effect of linkage 
disequilibrium among the variants. The association of PRS with T2D, after adjusting for age, sex and 
top ten genetic principal components, was found to be very significant (AUC = 0.7953, OR = 2.9856 
[95% CI: 2.7044–3.2961]). When participants were divided into four PRS quartile groups, the odds of 
developing T2D increased sequentially with the higher PRS groups. The highest PRS group (top 25%) 
showed 5.79 fold increased risk compared to the rest of the participants (75%). The PRS derived using 
the same set of variants was found to be significantly associated with T2D in the test dataset of 445 
Indians (AUC = 0.7781, OR = 1.6656 [95%CI = 0.6127–4.5278]). Our study demonstrates a framework to 
derive Indian-specific PRS for T2D. The accuracy of the derived PRS shows it’s potential to be used as a 
prognostic metric to stratify individuals, and to recommend personalized preventive strategies.

Type 2 diabetes (T2D) is one of the largest health emergencies in developing countries, and is considered as an 
avoidable pandemic of the twenty-first century1,2. According to the 2021 estimates of International Diabetes 
Federation (IDF), China and India have the highest numbers of people with diabetes3. It is further estimated 
that by 2045 the number of people with diabetes will have increased by 46%, with highest growth in middle-
income countries. Economic development, urbanization and changed food habits could be the reasons for these 
increased numbers. In addition to that, genetics also plays a major role in increasing the prevalence of the disease. 
Several studies indicate that South Asians, in particular Asian Indians, are more susceptible to insulin resistance 
compared to other ethnic groups2,4,5. Even the migrant Indians living in different parts of the world were found 
to have higher diabetes rates6,7.

Genome-wide association studies (GWAS) done so far on different populations have identified several single 
nucleotide polymorphisms (SNPs) associated with T2D. Odds ratios or effect sizes obtained from those studies 
are used to estimate the cumulative effect called polygenic risk score (PRS). It is a weighted sum of risk alleles and 
their estimated effect sizes8. Thus estimated PRS can be used to stratify the individuals into different risk groups, 
and to identify at-risk individuals. For the accurate estimation of PRS, effect sizes should be taken from GWAS 
done on the specific population under study. Due to lack of Indian-specific effect sizes, earlier research relied 
on European data. Recently, Mahajan et al.9 provided effect sizes, in terms of summary statistics, for different 
populations through DIAMANTE (DIAbetes Meta-ANalysis of Trans-Ethnic association studies) consortium. 
Their South Asian-specific summary statistics can be used to estimate PRS for the Indian population.

Before calculating a genome-wide PRS, effect sizes of SNPs are adjusted for linkage disequilibrium (LD) 
among them. LD is calculated by taking a reference dataset that is as close as possible to the population used to 
derive the summary statistics. Though large sample sizes are recommended for such a reference dataset, 1000 
Genomes Phase 3 data with 489 South Asian individuals can be used for adjusting SNP effect sizes in the South 
Asian population. LDpred2 is a popular program to adjust effect sizes using LD reference panel, and to calculate 
genome-wide PRS10. It uses a Bayesian algorithm to estimate posterior mean effect sizes from prior effect sizes 
of GWAS summary statistics. The ‘auto’ option of LDpred2 does not require any validation datasets to estimate 
the best-performing hyper-parameters. PRS thus calculated can further be utilized to build regression models 
that can predict an individual’s genetic predisposition to the phenotype of interest.

OPEN

Mapmygenome India Limited, Hyderabad, India. *email: drsandhyakiran@mapmygenome.in

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-38768-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2023) 13:11568  | https://doi.org/10.1038/s41598-023-38768-5

www.nature.com/scientificreports/

In this study, we have developed genome-wide PRS of T2D for the Indian population of UK Biobank using 
South Asian summary statistics11. The developed PRS was tested on an independent dataset from GenomegaDB 
of Mapmygenome12. To our knowledge, this is the first study to systematically evaluate the utility of South Asian-
specific summary statistics of T2D on the Indian population. The developed PRS can be used as a prognostic 
metric to identify high risk individuals early on in life, and to recommend personalized preventive measures.

Methods
Study participants.  UK Biobank.  UK Biobank is a large, population-based prospective study, with over 
500,000 participants, aged 40–69 years when recruited in 2006–2010, living in the United Kingdom11. Extensive 
phenotypic and genotypic data of the participants was collected across four assessment visits. Data of 3,983 Indi-
an participants (Field ID#: 20115) were used in the present study to build polygenic risk scores for T2D. Partici-
pants were excluded based on—mismatch between reported sex and genetic sex; sex chromosome aneuploidy; 
excessive or low heterozygosity; outliers based on 3 standard deviations from the mean of top 3 principal com-
ponents; and relatedness with kinship coefficient > 0.08813. Diabetic cases were identified based on International 
Classification of Diseases (ICD) codes 9 and 10, self-report, doctor diagnosis, HbA1C levels and medication for 
diabetes. Data fields and codes are given in Table 114–16. Individuals with type 1 diabetes (self-reported code 1222 
without mention of 1223 or ICD10 code E10 without mention of E11) were excluded from the analysis. Age at 
diagnosis of T2D was taken as earliest of doctor diagnosed age (Field ID#: 2976), self-reported age (Field ID#: 
20009), first in-patient diagnosis in ICD10 records (Field ID#: 41280), ICD9 records (Field ID#: 41281) and age 
at assessment of initiating medication (Field ID#: 21003). Individuals were excluded if the age at diagnosis of 
T2D was less than 30 years or information was not available on age at diagnosis.

GenomegaDB.  GenomegaDB of Mapmygenome is a genotype and phenotype database of Indians living in 
India. Genotype data was generated using Illumina’s HumanCoreExome-12 (HCE-12), HumanCoreExome-24 
(HCE-24) and Infinium Global Screening Array-24 (GSA-24). Phenotype data was collected through a printed 
questionnaire that included individual clinical history, operative procedures, medications, family history, coun-
try of birth, among others. Written informed consent, including the consent to use data for research, was taken 
from each individual. In the current study, samples processed on GSA-24 arrays version 1.0, 2.0 and 3.0 were 
considered. Standard QC on samples included—removing samples with low call rate (< 95%), gender mismatch, 
extreme heterozygosity, relatedness or that were outliers in principal component analysis (PCA). Diabetic cases 
and controls, aged more than 30 years, were selected based on self-reported clinical history and medications.

Genotype data.  UK Biobank.  UK Biobank v3 imputed data, available in BGEN v1.2 format, was used in 
the analysis (Field ID#: 22,828). Only the variants that overlap with the ones present on GSA chips were consid-

ered (Fig. 1). QCTOOL v217 was used to retrieve the samples and variants of interest. Further filtration was done 
for INFO score >  = 0.3 and minor allele frequency (MAF) >  = 0.05. MAF filter not only helps to maintain good 
genotyping and imputation quality28,29, but also to have presence of polymorphism across the datasets.

GenomegaDB.  625,922 autosomal bi-allelic SNPs that were genotyped across the three versions of GSA chip 
were considered in the analysis. Genotypes were phased using SHAPEIT v2.1518, and missing ones were imputed 
with IMPUTE v2.3 software19, using 1000 Genomes Phase 3 data of South Asians as reference (Fig. 1).

Table 1.   Selection of T2D cases from UK Biobank.

Field name Field ID Code

Diabetes diagnosed by a doctor 2443 1—Yes; 0—No; –1/–3/NA—Missing

Self-reported 20002 1220, 1223, 1276, 1468, 1607

HbA1c 30750  >  = 48 mmol/mol; NA—Missing

Medication for cholesterol, blood pressure, diabetes, or take exogenous hormones 
[Female Question] 6153 3

−1/−3/NA—Missing

Medication for cholesterol, blood pressure, diabetes [Male Question] 6177 3
−1/−3/NA—Missing

Treatment/Medication 20003

1140857494, 1140857496, 1140857500,1140857502, 1140857506, 1140857584, 
1140857586, 1140857590, 1140874646, 1140874650, 1140874652, 1140874658, 
1140874660, 1140874664, 1140874666, 1140874674, 1140874678, 1140874680, 
1140874686, 1140874690, 1140874706, 1140874712, 1140874716, 1140874718, 
1140874724, 1140874726, 1140874728, 1140874732, 1140874736, 1140874740, 
1140874744, 1140874746, 1140883066, 1140884600, 1140921964, 1141152590, 
1141153254, 1141153262, 1141156984, 1141157284, 1141168660, 1141168668, 
1141169504, 1141171508, 1141171646, 1141171652, 1141173786, 1141173882, 
1141177600, 1141177606, 1141189090, 1141189094

ICD10 41270 E11–E14

ICD9 41271 250



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:11568  | https://doi.org/10.1038/s41598-023-38768-5

www.nature.com/scientificreports/

In the calculation of PRS, we restricted the analysis to 1,444,196 Hapmap3 + variants, as recommended by 
authors of LDpred220. 158,181 SNPs that overlapped with GSA chips, UK Biobank imputed data, South Asian 
summary statistics of DIAGRAM consortium and Hapmap3 + variants were considered in the analysis.

Summary statistics.  Summary statistics from South Asian-specific GWAS meta-analysis released by 
Mahajan et al., with 16,540 cases and 32,952 controls, were obtained from DIAMANTE consortium9. QC on 
summary statistics was done as per the method proposed by Prive et al.21. Effective sample size (neff) was calcu-
lated as 4/((1/ncases) + (1/ncontrols)). Then, standard deviation of genotypes (sd_ss) was calculated as 2/sqrt(neff * 
beta_se^2 + beta^2)), where ‘beta’ is the effect size and ‘beta_se’ is the standard deviation of effect size. Standard 
deviation from the allele frequencies (sd_af) was calculated as sqrt(2*f*(1−f)), where ‘f ’ is the effect allele fre-
quency given in summary statistics. Variants were filtered out if sd_ss < (0.5 * sd_af) or sd_ss > (sd_af + 0.1) or 
sd_ss < 0.1 or sd_af < 0.05. Variants were also filtered out if the absolute difference in allele frequencies of the UK 
Biobank data and the frequencies given in summary statistics was > 0.1.

LD reference panel.  1000 Genomes Phase 3 data in PLINK format was obtained through PLINK2 
resources22. To increase the predictive power of PRS, the South Asian panel (SAS), composed of 489 individuals, 
was considered.

Polygenic risk scores (PRS).  Polygenic risk scores were generated using the LDpred2 algorithm imple-
mented in ‘bigsnpr’ package (version 1.11.6) of R23,24. The ‘auto’ option, which directly estimates the model 
parameters from the data without the requirement of training data, was used along with shrink_corr = 0.95 and 
allow_jump_sign = FALSE, as per the procedure recommended by LDpred2 authors25. PRS were normalized to 
have mean zero and standard deviation one.

Prediction of type 2 diabetes.  To understand the association of PRS with T2D, logistic regression model 
was built with age, sex and top 10 principal components of genotype data as covariates. Model accuracy was 
assessed using standard receiver operating curves (ROC). Analyses were done with R v4.2.

Figure 1.   Flowchart depicting the SNP selection.
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Results
Out of 4161 Indian participants of UK Biobank, genotype data was available for 3983 participants. After the 
initial QC, 3777 participants were included in the final analysis, of whom 959 were T2D cases and 2818 were 
controls. In the case of GenomegaDB, 327 cases and 396 controls were selected based on availability of genotype 
data. After sample QC, we were left with 194 cases and 251 controls. Table 2 gives information on characteristics 
of participants included in the analysis from UK Biobank and GenomegaDB. Mean age of participants of UK 
Biobank was higher compared to that of GenomegaDB.

597,940 autosomal SNPs, with INFO score >  = 0.3, and overlapping with SNPs of Illumina’s GSA arrays ver-
sions 1.0, 2.0 and 3.0, were considered in the analysis. South Asian specific GWAS summary statistics obtained 
from the DIAMANTE consortium contains information on 10,401,621 SNPs. QC on summary statistics and 
UK Biobank genotype data resulted in 290,515 SNPs, out of which 158,181 Hapmap variants were finally used 
in developing genome-wide PRS (Fig. 1).

The LDpred2 algorithm, along with the South Asian 1000 Genomes LD Reference panel, was used to correct 
the effect sizes given in summary statistics. PRS for each sample was calculated as a sum of the number of risk 
alleles weighted by the adjusted effect sizes. Figure 2A shows the distribution of normalized PRS in cases and 
controls.

Addition of PRS to the logistic regression model with age, sex and top 10 principal components of genotypes 
improved the accuracy of T2D risk prediction, increasing the AUC from 0.6901 to 0.7953 (Table 3 and Fig. 3). 
PRS showed an adjusted odds ratio of 2.9856 (95% CI: 2.7044–3.2961). When samples were divided into PRS 
quartiles, and the lowest quartile was taken as reference, all sequential PRS groups showed high risk of develop-
ing T2D (Table 4). The risk of developing T2D after adjusting for age, sex and top 10 principal components of 
genotype data was 9.82 fold higher in the participants of the fourth quartile (top 25%) when compared with the 
participants of the first quartile (bottom 25%). The risk was 5.79 fold higher when the top 25% of participants 
were compared with the rest of 75%.

In order to test the performance of PRS in an independent dataset, 194 cases and 251 controls were selected 
from GenomegaDB of Mapmygenome. Figure 2B shows the distribution of normalized PRS in cases and controls 
of GenomegaDB. Addition of PRS to the model with age, sex and top 10 principal components of genotypes 
improved the accuracy of T2D risk prediction, with AUC changing from 0.7574 to 0.7781. The risk of develop-
ing T2D was 2.85 fold higher in samples of the fourth quartile (top 25%) when compared with samples of the 
first quartile (bottom 25%).

Discussion
In this study, we derived genome-wide PRS of T2D for the Indian population, using Indian case–control samples 
available at UK Biobank. LDpred2 algorithm, with weights extracted from South Asian summary statistics of 
DIAMENTE consortium, gave PRS that was significantly associated with T2D (AUC: 0.7953). Participants in 
the fourth PRS quartile (top 25%) showed 5.79 folds increase in genetic risk compared to the rest of 75%, after 
adjusting for age, sex and top 10 genetic principal components. There was no significant difference in first and 
second quartiles. Data from GenomegaDB was used to validate the PRS, and to replicate the association. In spite 
of smaller sample size, the developed framework proved the significance of PRS in identifying T2D incidence 
(AUC: 0.7781). It showed 2.27 fold increased risk of diabetes in the top quartile (top 25%) compared to the rest 
of 75%. There was 2.85 fold increased risk in top quartile (top 25%) compared to bottom quartile (bottom 7%). 
This indicates the importance of PRS in stratifying the individuals into different risk groups.

The biggest hurdle in developing genome-wide PRS for the Indian population is lack of summary statistics 
for SNP associations with T2D. Predictive ability of PRS is compromised if the effect sizes and frequencies are 
taken from other population groups. Earlier study done by Lamri et al.26 on prediction of gestational diabetes in 
South Asian women showed that the accuracy of PRS was higher with mutli-ethnic summary statistics, which 
includes South Asian samples, than that of European. Similar results were observed by Hodgson et al.27 while 
constructing T2D PRS for British Pakistanis and Bangladeshis. Now, the availability of South Asian summary 
statistics from the DIAMENTE consortium facilitated the development of a framework for accurate estimation 
of PRS for the Indian population. This PRS showed superior performance compared to that of multi-ethnic and 
European summary statistics [in-house unpublished results].

LDpred2-auto method makes the construction of PRS an easy process compared to its counter-methods 
LDpred2-inf and LDpred2-grid which need validation data to estimate the hyper-parameters. The recent pub-
lication from Prive et al.24 gave many suggestions on improving the performance of the algorithm. Especially, 

Table 2.   Characteristics of participants from UK Biobank and GenomegaDB.

UK Biobank GenomegaDB

Number of participants 3777 445

Number of T2D Cases, n (%) 959 (25.4%) 194 (43.6%)

Age, mean (SD) 56.7 (8.5) 48.4 (11.3)

Male, n (%) 1916 (50.7%) 294 (66.3%)
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quality control on summary statistics improves the predictive performance of PRS. Though LD metrics calculated 
from South Asian samples of 1000 Genomes project were used in this study, a bigger dataset is recommended. 
Restricting the analysis to Hapmap3 + variants resulted in smaller set of variants being considered, but may be 
justified due to the advantage it brings in stability of the analysis.

Assessment of UK Biobank participants was done at four different time points. Availability of follow-up data, 
along with data from different questionnaires and biochemical assays, allowed the reliable detection of diabetic 
patients. In the case of GenomegaDB, controls were much younger than that of UK Biobank, with a potential 
to become diabetic cases in future. Also, assessment of T2D status was purely based on self-report, which 
might result in a few misclassifications. In spite of lacking follow-up data, GenomegaDB has the advantage of 
coming from Indians living in India. For lifestyle disorders, like diabetes, it is preferable to take data from the 
native population having the same lifestyle and environment to that of the population for which inferences are 
made. Also, the present study included age, sex and PRS as risk factors in developing predictive models for T2D. 
But including the other clinical and lifestyle variables, such as BMI, HDL, LDL, physical activity, sleep duration, 
smoking and alcohol consumption will improve the prediction accuracy of the models.

In conclusion, Indian-specific PRS developed by us showed high accuracy in predicting the risk of develop-
ing T2D. Results from UK Biobank and GenomegaDB datasets indicated that genome-wide PRS holds strong 
potential to be adopted in clinical care to identify high risk individuals and in early intervention to guide towards 
healthier lifestyles.

Figure 2.   Distribution of normalized PRS. (A) UK Biobank Indian (B) GenomegaDB.

Figure 3.   AUCs of PRS developed on data from Indian samples of UK Biobank (A) and GenomegaDB (B).
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Data availability
This research has been conducted using the UK Biobank Resource under Application Number 81481. UK 
Biobank data is available to researchers by registration through https://​www.​ukbio​bank.​ac.​uk/​enable-​your-​resea​
rch/​regis​ter. GenomegaDB is available on research collaboration with Mapmygenome India Limited by contact-
ing anu@mapmygenome.in.
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