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Physicochemical features partially 
explain olfactory crossmodal 
correspondences
Ryan J. Ward 1,2*, Sophie M. Wuerger 4, Maliha Ashraf 4 & Alan Marshall 3

During the olfactory perception process, our olfactory receptors are thought to recognize specific 
chemical features. These features may contribute towards explaining our crossmodal perception. 
The physicochemical features of odors can be extracted using an array of gas sensors, also known 
as an electronic nose. The present study investigates the role that the physicochemical features of 
olfactory stimuli play in explaining the nature and origin of olfactory crossmodal correspondences, 
which is a consistently overlooked aspect of prior work. Here, we answer the question of whether 
the physicochemical features of odors contribute towards explaining olfactory crossmodal 
correspondences and by how much. We found a similarity of 49% between the perceptual and the 
physicochemical spaces of our odors. All of our explored crossmodal correspondences namely, 
the angularity of shapes, smoothness of textures, perceived pleasantness, pitch, and colors have 
significant predictors for various physicochemical features, including aspects of intensity and odor 
quality. While it is generally recognized that olfactory perception is strongly shaped by context, 
experience, and learning, our findings show that a link, albeit small (6–23%), exists between olfactory 
crossmodal correspondences and their underlying physicochemical features.

Crossmodal correspondences are the consistent associations between stimulus features in different sensory 
modalities1. A large body of work has found consistent mappings between odors and different stimuli (i.e., 
the angularity of shapes2, fabric softness3, the smoothness of texture4, colors5,6, pitch7, and musical genres8). 
The underlying mechanisms behind crossmodal correspondences have a diverse characterization in the litera-
ture, with the most frequently concluded being hedonics2,9–12 with emotions8,13 being particularly important, 
semantics1,5,8,11,14–16, and natural co-occurrence1,15,17,18. These correspondences are also influenced by culture 
(i.e.,19–21). Olfactory perception occurs when volatile molecules enter the nasal cavity and are transduced by 
the olfactory receptors22. A neural signal is then transmitted to the olfactory system; at this stage, a neural 
representation of the perceptual and physical characteristics is formed23 and can be described semantically24 by 
many types of perceptual qualities (e.g., woody, floral, minty, etc.). The olfactory system also shares a common 
neural substrate with the limbic system, which plays a vital role in mood and emotional evaluation25, namely the 
amygdala. The bindings between odorous molecules and the olfactory receptors are thought to recognize specific 
chemical features26. For instance, odors with low molecular weight or low structural complexity or containing 
sulfur are often perceived to be unpleasant24,27–29. Humans possess thousands of olfactory receptors which enable 
us to finely discriminate a wide range of odors. Bushdid et al.30 controversially31,32 claim that humans are capable 
of discriminating up to a theoretical trillion odors. Some odors e.g. ethyl mercaptan can be detected as low as 
one part per billion33. The human sense of smell is remarkable for the detection of hazardous compounds33 but 
is flawed for identification even for commonly encountered odors in the absence of visual or contextual cues34–37. 
Odor naming can be difficult task due to the “tip of the nose” phenomenon36; however Jönsson et al.35 suggest 
that the “tip of the nose” phenomenon may not exist. They claim that this is not due to the commonly suggested 
weak connection between odors and their respective names, but rather a failure to know what the specific odor is. 
This f﻿lawed identification of odors may also be attributed to ecological, cultural, or genetic factors; for example, 
languages with elaborate smell lexicons demonstrate improved odor identification (see38 for a review).

A notable part of human olfaction is hedonics; pleasantness plays a notable role in olfactory perception. 
All humans can say invariably about odors is whether they are pleasant or not39; this may also extend to 
edilbility40,41. When ordering a set of odorants based on the variance (principal component scores) of the odors 
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physicochemical descriptors (i.e., fruity, floral, and aromatic), they also end up relatively ordered in terms of 
pleasantness42. This allowed Khan et al. to predict (r ≈ 0.5; p ≈ 0.004) the perceived pleasantness of > 50 mol-
ecules that were not part of their models42. Pleasantness has also emerged as a dominant dimension in the mul-
tidimensional analyses of perceptual odor spaces42,43. Most literature converges and suggests that pleasantness 
is a primary perceptual dimension of olfaction. Similarly, in olfactory crossmodal correspondences, a critical 
mediating factor is assumed to be hedonics2,9–12, and when considering semantic involvement, knowing what 
the odor is or not will increase the perceived pleasantness44–47. In other words, the primary dimension in both 
crossmodal correspondences and human olfaction is suggested to be hedonics and therefore implying a com-
mon denominator. Odor intensity is correlated with quality48 and hedonic strength49, suggesting a link between 
olfactory perception and the physicochemical aspects of odors.

There have been attempts to characterize a physicochemical odor space28,42,50; classically, molecules’ physi-
cal or chemical features often come from online datasets or specialized software and are coupled with semantic 
descriptors, such as “minty” or “sweet” and are usually provided to the participants for rating instead of being 
generated by the participants. The physical, chemical and/or molecular features have been linked to different 
aspects of human perception, namely the perceived pleasantness42,51, participant ratings of semantic descriptors50, 
similarity52,53, and “brightness”54. “Brightness” was once considered an amodal dimension shared across sensory 
experiences; however, today, it is considered a visual property. A long-standing suggestion is that the perceived 
brightness or intensity of the stimuli may be used to make crossmodal matches1,54. von Hornbostel believed that 
”brightness” was a characteristic of all sensory modalities and suggested that these “brightness” judgments in 
the visual dimension were related to the molecular structure54.

The “chemical footprint” of odors can be transduced via an electronic nose (e-nose). Like the human olfactory 
system, an e-nose consists of an array of gas sensors, each with a limited detection capability, and relies on the 
quantity of sensors for specificity. This makes an e-nose a cost-effective and feasible solution for transducing the 
physicochemical features behind different gaseous compounds in the vapor phase55. E-noses can generally detect 
odors more efficiently than the human nose but only for odors which they were designed to detect. They are 
often fine-tuned to pick up on chemical properties of interest (i.e., essential oils28,51,56–60, TCA wine cork taint61, 
and even diabetes detection62). Sarno and Wijaya used a series of gas sensors to target carbon monoxide, carbon 
dioxide, acetone, and volatile organic compounds, which are biomarkers for diabetes in human breath62. E-noses 
have been linked to different aspects of human perception (i.e., perceived pleasentness51,63, perceived intensity64, 
color58, and perceptual descriptors65). The physicochemical properties of odors are a consistently overlooked 
aspect of prior work and are the primary motivation behind this research. We use the term physicochemical 
to refer to both the chemical (presence and quantity of specific gases) and physical (temperature, pressure, and 
humidity) features of our olfactory stimuli.

One of the major unresolved problems in olfaction research is the relation of olfactory perception to the 
physicochemical features of the stimuli. The present study was designed to investigate if the physicochemical fea-
tures of odors are a contributory factor towards explaining olfactory crossmodal correspondences. Two different 
brands of olfactory stimuli were selected to give chemical diversity to the underlying physicochemical features, 
thereby demonstrating the robustness of their contribution. The stimuli set and the perceptual dimensions used 
were initially reported in our prior work4. Our first hypothesis is that a reasonable degree of similarity will be 
obtained between our olfactory stimuli in the physicochemical and perceptual space. Our second hypothesis is 
that the physicochemical features of odorous stimuli will contribute towards explaining the nature and origin 
of olfactory crossmodal correspondences. In our prior work66, we predicted the crossmodal correspondences 
of odors. Here, we build upon these findings by probing the relationship between the physicochemical features 
of odors and olfactory crossmodal correspondences and uncovering the extent of how much they contribute 
towards explaining olfactory crossmodal correspondences.

Materials and methods
Perceptual data.  We used the perceptual data collected in our prior work4, which explored an aggregate 
of olfactory crossmodal correspondences between olfactory stimuli and the angularity of shapes, smoothness of 
textures, perceived pleasantness, pitch, musical, and emotional dimensions. Five of the olfactory stimuli (black 
pepper, lavender, lemon, orange, and peppermint) were made by Miaroma™. The other five (caramel, cherry, cof-
fee, freshly cut grass, and pine) were created by Mystic Moments™. The perceptual information gathered relates 
to the crossmodal correspondences between the odors and respective associations listed above. The results 
were obtained from 68 participants (45 females and 23 males, mean age of 26.75 years, standard deviation of 
12.75 years) in a controlled environment (lightproof anechoic chamber equipped with an overhead luminaire 
(GLE-M5/32; GTI Graphic Technology Inc., Newburgh, NY)). The essential oils were placed in clear test tubes 
numbered 1 through 10 randomly and covered in white tape to avoid any associations between the color of the 
oil and potential crossmodal correspondences. The olfactory stimuli were presented to the participants in ran-
dom order. Participants had to smell each odor at least once at the first instance of its involvement in the experi-
ment; optionally, they could smell it again if they felt like they needed to. There was no limit imposed for the 
duration in which they could smell the essential oil. For more information about the underlying perceptual data 
including significance tests see4. The underlying perceptual data is shown in Fig. 1. Sections "Shape stimuli"–
"Color stimuli" covers the specifics of how each perceptual dimension was collected.

Shape stimuli.  A nine-point Likert scale was used with the images of “kiki” (angular shape) and “bouba” 
(rounded shape) images on the scales left and right sides (see2). The scale’s midpoint was reserved for neutral 
(no opinion), see Fig. 2A.
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Texture stimuli.  A nine-point Likert scale was used with the words “rough” and “smooth” on the left and right-
hand sides of the scale, respectively. Participants were presented with physical representative textures to aid them 
in their decision, with sandpaper representing “rough” and silk representing “smooth”. The participants had to 

Figure 1.   Underlying perceptual data. (A–C) Shows the mean scores for the angularity of shapes, smoothness 
of textures, and perceived pleasantness. (D) Shows log

2
 of the mean pitch scores. (E–G) Shows the median 

values for the color dimensions L*, a*, and b*, respectively. Errors bars denote a 95% confidence interval.
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feel the representative textures at least once during the question’s first appearance. The middle of the scale was 
reserved for neutral (no opinion). A Likert scale anchored with words was used for this task to align with prior 
literature3.

Pleasantness ratings.  A nine-point Likert scale was used with the words “unpleasant” and “pleasant” on the left 
and right-hand sides of the scale, respectively. The midpoint of the scale was reserved for neutral (no opinion).

Pitch stimuli.  A scale was constructed with the words “lower pitch” and “higher pitch” of the left and right-
hand sides, respectively. The lower end of the scale was 20 Hz, the higher end was 20 kHz. Each time the slider 
was adjusted, a sinusoidal tone lasting 1 s in length was presented to the participant at the specified frequency, 
indicated by the slider’s position expressed in a linear fashion. To reduce the number of potential selections, 
participants were played a sample from each end of the scale followed by a sample halfway between the two. The 
lower end was incrementally increased, and the higher end was incrementally decreased until the participants 
could hear the tone. The participants responded with higher or lower, and the respective sample was played 
between the last played sample and the previous played upper or lower bound. When the participant felt like 
the pitch matched the odor, the last played frequency was saved. The experimenter adjusted the slider for this 
task the upper and lower positions were played only for the first odor or if the participant felt like they needed 
to hear it again.

Color stimuli.  All visual stimuli, including the color stimuli, were presented on a calibrated EIZO ColorEdge 
CG243W monitor. Participants could slide through the L*a*b* color space by adjusting the L* (perceptual light-
ness) value, all a* (red-green) and b*(blue-yellow) colors that fit into the sRGB color gamut were displayed for 

Figure 2.   Scales used to collect olfactory-visual associations. (A) The scale that was used to rate the association 
of each odor with a round or angular shape. (B) Graphical user interface used to collect the color associated to 
each of the odors. The number in the top left refers to the odor to be presented to the participant.
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the currently selected L* value. Participants could freely choose a color from the current slice; once the color 
was selected, a sample color patch was displayed in the corner, see Fig. 2B. The participant’s final color selection 
was saved.

Electronic nose.  An electronic nose (e-nose) was used for extracting a subset the physicochemical features 
from the odors. An e-nose was chosen as it is low-cost, portable, and capable of transducing the physicochemical 
features of the odors. An e-nose uses an array of semi-selective gas sensors to determine the underlying phys-
icochemical characteristics67. The e-nose initially presented in56 and modified in58 was used to record the odors. 
The sensors used in the e-nose, along with their specifications, are shown in Table 1. The e-nose was developed 
at the University of Liverpool’s Immersive Reality Laboratory, see58 for more information about the operating 
principles of the e-nose. The e-nose handles numerous gases using several sensors by utilizing cross-reactivity, 
where gaseous mixtures (essential oils) will produce variable responses across the sensor array. The differen-
tiation of gases is determined by the amplitude of the sensor responses. The caveats of using an e-nose would 
be that they are usually designed to detect specific compounds of interest meaning there could be potentially 
important compounds that are not being detected and therefore analyzed. Another disadvantage in our case is 
that some of the values obtained from the e-nose are qualitative and not quantitative. See68 for the strengths and 
weaknesses of using e-noses. An e-nose would only capture aspects relating to the physical and chemical fea-
tures of given odors. Linking features from an e-nose to human perception would require a relationship to exist 
between the physicochemical features of the odor and the odors corresponding perception. The linking would 
also require an accompanying pattern recognition system55 to recognize regularities and patterns in the data. In 
Table 1 “Gas” represents total volatile organic compounds, “Air Quality” is a measure of a series of harmful gases, 
“Temperature” refers to the temperature in °C, “Pressure” refers to barometric pressure and is captured in kPa, 
and “Humidity” is captured as a relative % (0–100%).

Odor recordings.  Odors were prepared and presented to the e-nose in the same manner as presented to 
the participants in our prior work4. This was done because consistent crossmodal correspondences can occur 
between odors because of intensity2,18,46, and temperature21,69. We wanted to collect physicochemical features in 
a manner that best represented the stimuli as they were initially presented to the participants. Odors were placed 
in the e-nose, sealed inside, and left recording for 10 min. This was repeated ten times for each of the ten odors 
(black pepper, caramel, cherry, coffee, freshly cut grass, lavender, lemon, orange, peppermint, and pine); a total 
of 100 recordings were prepared for the experiments. As the odor recordings were in a time series format, the 
recordings were pre-processed before the analysis to reduce dimensionality and remove some sensor noise from 
the underlying signals. First, the mean was calculated for each sensor over 1-s intervals, resulting in a 600 × 9 
matrix; each sensor’s signal was then smoothed by applying a three-point centered moving average filter. Each 
column in this matrix is the physicochemical features (air quality, temperature, pressure, humidity, gas, MQ3, 
MQ5, MQ9, and HCHO), and the rows correspond to a time point between 1 and 600 s. After filtering, each 
sensor’s median value was added to the dataset, generating a 100 × 9 dataset for the physicochemical features. 
Each feature’s mean value was then calculated independently for each odor, resulting in a 10 × 9 dataset; these 
are the physicochemical values used in all statistical analyses. Each row in this matrix corresponds to an odor, 
and each column is a different physicochemical feature. The mean physicochemical features were then repeated 
sixty-eight times (the number of participants) so that the physicochemical features could be aligned with the 
perceptual responses.

Statistical analyses.  The analysis was performed using the Statistics Toolbox of MATLAB R2018b.

Ethics statement.  This study was conducted in accordance with the Declaration of Helsinki and had ethi-
cal approval from the Department of Psychology at the University of Liverpool. The ethics committee / institu-
tional Review Board of the Department of Psychology at the University of Liverpool approved all experimental 

Table 1.   Sensors used in the e-nose with their range (ppm) and detectable gases. It is important to note that 
the sensors may respond to gases not included in this table.

Sensor name Detection range (ppm) Subset of detectable substances Sensor output name

MP503 10–1000 Carbon monoxide, alcohol, acetone, HCHO 
(formaldehyde) Air quality

BME680 0–500 Volatile organic compounds Temperature, humidity, pressure and gas

MQ3 0.05–10 Alcohol, benzine, methane, hexane, liquefied petro-
leum gases and carbon monoxide MQ3

MQ5 200–10,000 Liquefied petroleum gases, natural gas, town gas, 
alcohol and smoke MQ5

MQ9 10–1000 CO
100–10,000 Gas Carbon Monoxide, Coal Gas & Liquefied Gas MQ9

WSP2110 1–50 HCHO (formaldehyde), toluene, methanol, ben-
zene and alcohol HCHO
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protocols. All participants provided informed written consent, and a fraction of the participants received course 
credit in exchange for their participation.

Results
Exploratory analysis.  Two datasets were constructed to test our hypotheses, one for the perceptual and the 
other for the physicochemical. To construct the perceptual dataset, the colors were first converted to the L*a*b* 
color space70 (chosen for its approximate perceptual uniformity). They were then coupled with the raw values 
for the angularity of shapes, smoothness of textures, perceived pleasantness, and pitch ratings. The physico-
chemical dataset consists of the mean physicochemical features collected by the e-nose (air quality, temperature, 
humidity, pressure, gas, MQ3, MQ5, MQ9, and HCHO) for each odor. Principal component analysis (PCA) was 
first conducted on the mean perceptual and physicochemical data to visualize the interrelationship between 
the odors in the two spaces. To prepare the datasets for PCA, both the pitch ratings and color dimensions were 
rescaled between 1 and 9. Z-score normalization was then conducted on both datasets separately; the popula-
tion standard deviation and mean of all the dataset was used for the perceptual dataset. For the physicochemical 
dataset, the z-score normalization used the population standard deviation and the mean of the columns. The 
distance between two points indicates how similar two odors are in their respective space, with the closer points 
indicating a higher degree of similarity. Based on inspection of the scree plots, the first two components for 
both the perceptual and physicochemical data were kept; no rotations were performed as we wanted to keep the 
two spaces as comparable as possible. The perceptual dataset’s first two components explain 79.13% of the total 
variance, 48.15%, and 30.98%, respectively, as shown in Fig. 3A. The first two components for the physicochemi-
cal dataset explain 74.03% of the total variance, 48.99%, and 25.04%, respectively, as shown in Fig. 3B. For the 
perceptual space we can see that that the angularity of shapes explains the most variation on the x axis and the 
b* color dimension explains the most variation on the y axis (see Fig. 3C). For the physicochemical space we 
can see that the MQ3 response explains most variation on the x axis with humidity explaining the most on the 
y axis (see Fig. 3D).

To determine the groups that archived similar perceptual/physicochemical scores, k-mean cluster analysis 
was conducted on all the principal component scores. This process produces clusters based on feature similar-
ity, where each cluster contains similar principal component scores across all dimensions. From Fig. 3A, we can 

Figure 3.   Principal components score plots. Principal components in (A) perceptual space, (B) 
physicochemical space and their loadings in (C), and (D) respectively. Both score plots are based on the PCA 
correlation matrix.
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see that (caramel, coffee, and cherry), (orange and lemon), and (freshly cut grass, lavender, pine, peppermint, 
and black pepper) obtained comparable scores making them perceptually similar. From Fig. 3B, we can see that 
(coffee and caramel), (peppermint and lemon), and (black pepper, lavender, freshly cut grass, orange, pine, and 
cherry) obtained comparable scores, making the odors in the vapor phase similar both physically and chemically. 
Comparing the cluster groupings from Fig. 3A with Fig. 3B, we can see moderate overlap in the physicochemi-
cal and perceptual spaces with (coffee and caramel), and (lavender, freshly cut grass, pine, and black pepper) 
are in the same cluster in both cases. Therefore, showing a moderate overlap between odors in the perceptual 
and physicochemical spaces implying that a reasonable degree of similarity exists between these two spaces. To 
analyze the true extent of this overlap, we decided to continue with a Procrustes analysis71,72.

Procrustes analysis.  A Procrustes analysis was performed to quantify how much overlap there is between 
the odors in the physicochemical and perceptual space. That is, how well do these two spaces fit together by 
transforming the shapes of the physicochemical and perceptual spaces to archive a maximal superimposition. 
The Procrustes analysis is a rigid shape analysis that finds the “best” fit between two or more multidimensional 
shapes using isomorphic scaling, rotation, and translation. The physicochemical and perceptual space was fit-
ted to the physical space via the Procrustes function in MATLAB71. The algorithm fits the points between the 
perceptual and physicochemical space using the best shape-preserving Euclidean transformations matching the 
physicochemical and perceptual spaces to the physical space. As multidimensional scaling (MDS) provides rela-
tive points in space, a Procrustes analysis can be performed on the resulting matrix71,72 with the goodness of fit 
criterion defined as the sum of squared errors. The output consists of the distance of points in space where lesser 
values indicate a better fit, with zero being a perfect fit and one being entirely dissimilar. The dataset was pre-
processed in the same manner as performed in the exploratory factor analysis above. A scree plot showing ordi-
nation stress was constructed to determine how many dimensions are required to explain the data sufficiently 
(Fig. 4A). This revealed that the first two dimensions are sufficient for visualization for both the physicochemical 
and perceptual dimensions. Therefore, we decided to plot the MDS maps in two dimensions. Looking at both the 
PCA scores plots (Fig. 3A,B) and the MDS maps (Fig. 4C,D), we can see that the perceptual and physicochemi-
cal spaces are visually similar. One thousand simulations from a random location with uncorrelated coordinates 

Figure 4.   Procrustes analysis plots and multidimensional scaling representations. (A) Ordination stress 
scree plot. (B) Histogram plot of 1000 generated Procrustes values using a random location with uncorrelated 
coordinates and from a scaled p-dimensional normal distribution. The vertical dashed lines indicate a 
95% confidence interval. (C) Example MDS plot of the perceptual space. (D) Example MDS plot of the 
physicochemical space. The shape of the MDS plots will vary based on the initial random start location.
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and an appropriately scaled p-dimensional normal distribution were run using the first three dimensions to 
determine how similar these two spaces are. The goodness of fit was calculated for each pair of MDS solutions 
(mean = 0.51, min = 0.43, max = 0.60, see Fig. 4B), where a value of 0 indicates a perfect alignment. This revealed 
a 49% (1–0.51 * 100) similarity on average between the physicochemical and perceptual spaces in the physical 
space, meaning that perceptually similar odors are also similar in the physicochemical space to 49%.

Canonical correlation analysis.  A canonical correlation analysis was conducted to explore the relation-
ship between the perceptual and physicochemical features. The analysis produced seven functions, with the 
first five being statistically significant, and have Wilks’s lambdas of 0.36 (p < 0.0001), 0.57 (p < 0.0001), 0.80 
(p < 0.0001), 0.91 (p < 0.0001), and 0.96 (p < 0.05), respectively. The canonical correlations for the functions are 
0.60, 0.54, 0.35, 0.23, and 0.18, as shown in Fig. 5A. Based on inspection of Fig. 5A, we decided that the first two 
dimensions were sufficient as their correlation coefficient were greater than the cutoff value of 0.45 which has 
been considered as “fair”73. Figure 5B shows the loadings of the first two dimensions.

From Fig. 5B we can see that the physicochemical features contribute towards the perceptual dimensions. The 
“Air Quality” sensor detects a wide range of harmful gases for indoor air conditions. The “Gas” feature represents 
air quality that is mainly affected by volatile organic compounds. Based on the loadings of either “Air Quality” 
and/or “Gas” on the angularity of shape, pitch, L*, smoothness of texture, and a*, it could be concluded that the 
quality of the stimuli has an influence on crossmodal correspondences. The loading of “HCHO” on the same 
perceptual dimensions suggests that the chemical compound formaldehyde may be responsible. Temperature, 
humidity, and pressure will interact in complex ways to determine the intensity of the odor. It is important to 
note it is not possible to rule out the involvement of other physicochemical features in contributing to intensity 
(i.e., the concentration of specific chemicals). This manuscript will focus on the physical temperature, humidity, 
and pressure as aspects of intensity, as these three features would be a constant underlying all odors. Based on 
the loadings of either “Temperature”, “Pressure”, and/or “Humidity” onto all of the perceptual dimensions, albeit 
weakly in some cases, suggests that intensity also plays a contributory role in explaining the nature and origin of 
crossmodal correspondences. However, the lack of loadings on the pleasantness and b* dimension suggests that 
they are more robust against the physicochemical features contribution. The physicochemical features provided 
by the e-nose are a composite of the entire smell; therefore, it would be ideal to see how the physicochemical 
features impact olfactory crossmodal correspondences as a whole instead of its individual elements; consequently, 
we proceeded to create generalized linear mixed-effects models.

Generalized linear mixed‑effects model results.  The generalized linear mixed-effects models (GLME) 
were created using the raw perceptual ratings as the dependent variable and the mean physicochemical features 
for each odor as the independent. The physicochemical features used in this analysis are air quality, temperature, 
pressure, humidity, gas, MQ3, MQ5, MQ9, and HCHO. Each model was only fitted to one perceptual dimension 
at a time resulting in seven different models. First, multicollinearity was tested in the physicochemical dataset. 
This revealed multicollinearity between Air Quality (VIF = 16.8302) and MQ3 (VIF = 17.0148); therefore, we 
decided to remove the MQ3 feature from the dataset. The VIF values were rechecked after removing the MQ3 
feature revealing no multicollinearity (all VIF values are less than 5) in the physicochemical dataset. We then 
proceeded to fit the GLME’s (Bonferroni corrected for the number of fixed effects coefficients (α = 0.0062)), 
treating the participants and the odors as a random factor. Coefficients with a p-value greater than our Bonfer-
roni corrected alpha were not included in Table 2. Full details for each model can be found in the supplementary 
materials (Table S1).

The results from Table 2 confirm the findings from the canonical correlation analysis and tell us that phys-
icochemical features are a contributory factor towards explaining people’s crossmodal correspondences. That is, 
when treating the participants and the olfactory stimuli as a random effect, significant coefficients were found 
in all of the generated models. These models also show that between 6–23% variance is explained by the fixed 

Figure 5.   Canonical correlation results. (A) Canonical correlations for the seven canonical variable pairs. ** 
denote p < 0.0001, * denotes p < 0.05. (B) Canonical correlation loadings plot showing the first two dimensions.
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effects (physicochemical features). Specifically, it shows that the perceptual dimension for the angularity of 
shape is affected by an aspect of intensity (temperature). The smoothness of texture, perceived pleasantness, and 
pitch are affected by odor quality (gas and/or HCHO), and the color dimensions (L*, a*, and b*) are affected by 
aspects of odor quality (air quality, gas, and/or HCHO) and intensity (temperature, pressure, and/or humidity).

Discussion
The results from the present study introduced the concept that the physicochemical features of odors play a role 
in explaining olfactory crossmodal correspondences, which has been a consistently overlooked aspect in prior 
work. Other influential factors towards explaining the nature and origin of olfactory crossmodal correspondences 
include hedonics2,9–12, semantics1,5,8,11,14–16, and natural co-occurrence1,15,17,18. We use the term physicochemical 
features to refer to our olfactory stimuli’ (essential oils) physical and chemical characteristics. Here we show that 
the underlying attributes of odorous stimuli contribute to the crossmodal correspondences between odors and the 
angularity of shapes, smoothness of textures, perceived pleasantness, pitch, and color dimensions (L*, a*, and b*). 
Olfactory perception is modulated or influenced by several factors, such as expectations75, context76, multisensory 
convergence77, in utero neuroanatomical development78, and is a heavily learned process79. It is important to note 
that the dominant aspects of olfactory perception, such as context, will not be reflected in the physicochemical 
features42,51. Our findings are in alignment with the concept that hedonic perception is a very influential factor 
in olfactory perception. We found significant predictors from aspects of intensity and/or odor quality in all of 
our explored modalities (the angularity of shape, the smoothness of texture, perceived pleasantness, pitch, and 
colors). Moreover, recent lines of research suggest that hedonic perception is partly innate29,42,51,80,81, which is in 
contrast to the popular view that hedonic aspects are only shaped by experience. Nevertheless, the link between 
the physicochemical features and this partially innate and hardwired link of percept remains elusive and sugges-
tive. This could be because olfactory stimuli do not vary continuously in stimulus space, and the dimensionality of 
the olfactory perceptual space is unknown43,50,82. The human olfactory system has multiple levels of plasticity83,84 
that reflect a beneficial evolutionary mechanism to reject hazardous compounds. For instance, the odor ethyl 
mercaptan is often added to propane as a warning agent33,39. Rats bred for several generations are averse to the 
smell of predators even if raised in a predator-free enviroment85. The hedonic perception of odors is a complex 
process that involves learned and controversially innate components (see39 for further discussion).

Our first hypothesis was that there is a reasonable degree of similarity between our olfactory stimuli in 
the physicochemical and our crossmodal perceptual space. A Procrustes analysis with 1000 simulations was 
conducted on our physicochemical and perceptual spaces in the physical space revealing an average similarity 
rating of 49%. The finding that the physicochemical and perceptual spaces are similar corroborates the findings 
of Koulakov et al., where a smooth curved surface with a small dimensionality can approximate the responses 

Table 2.   GLME results for all perceptual dimensions. The degrees of freedom for all coefficients in 
the table is 671 with the exception of the pitch model, where the degrees of freedom is 591. Marginal 
R2 is the variance explained by the fixed factors, and conditional R2 is the variance explained by 
the entire model74. The Wilkinson model formula that was used is: Perceptual dimension ~ 1 + Air 
Quality + Temperature + Pressure + Humidity + Gas + MQ5 + MQ9 + HCHO + (1 | Participant ID) + (1 | Odor 
ID).

Model

Model fit statistics 
(Akaike information 
criterion (AIC), 
Conditional R2 (C-R2), 
Marginal R2 (M-R2))

Coefficients name (estimate, SE, t-stat, p-value)AIC C-R2 M-R2

Angularity of shape 3118.9 0.18 0.18 Temperature (− 1.30, 0.22, − 5.87, p < 0.0001)

Smoothness of texture 2986.5 0.10 0.06 Gas (0.65, 0.22, 2.88, p = 0.0040)

Perceived pleasantness 2953.4 0.20 0.10
Gas (1.21, 0.21, 5.67, p < 0.0001)
MQ5 (1.37, 0.22, 6.29, p < 0.0001)
HCHO (1.07, 0.21, 5.19, p < 0 .0001)

Pitch 11,906 0.36 0.09 HCHO (1989.6, 485.74, 4.09, p < 0.0001)

L* 5931 0.25 0.16

Air Quality (8.43, 1.99, 4.23, p < 0.0001)
Pressure (− 6.83, 1.31, − 5.21, p < 0.0001)
Gas (11.36, 1.91, 5.95, p < 0.0001)
MQ5 (− 16.60, 1.94, − 8.57, p < 0.0001)
MQ9 (7.03, 2.16, 3.26, p = 0.0012)
HCHO (13.13, 1.84, 7.14, p < 0.0001)

a* 6521.2 0.22 0.17
Temperature (12.09, 2.76, 4.39, p < 0.0001)
Humidity (14.79, 3.61, 4.10, p < 0.0001)
Gas (10.23, 2.99, 3.42, p = 0.0007)

b* 6703.4 0.25 0.23

Air Quality (25.87, 3.61, 7.18, p < 0.0001)
Temperature (14.70, 3.18, 4.62, p < 0.0001)
Gas (21.63, 3.46, 6.26, p < 0.0001)
MQ5 (− 38.48, 3.50, − 10.98, p < 0.0001)
MQ9 (− 19.69, 3.90, − 5.05, p < 0.0001)
HCHO (15.28, 3.33, 4.59, p < 0.0001)
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of human observers for monomolecular odors. Snitz et al. proposed a quantitative and robust method for meas-
uring intricacy that depends on more intricate stimuli evoking a larger variance in the perceptual responses of 
participants86. The notion of intricacy and complexity of the stimuli could be embedded in both the physico-
chemical features87 and the perceptual ratings86 provided by the participants and is another plausible reason for 
explaining the findings reported in this study. Less chemically complex odors would have produced a simpler 
response in the electronic nose88. Comparatively, if less intricate stimuli produced less variance in the perceptual 
data, this may be a means of mapping the olfactory stimuli from one space to another. It is important to note 
that involvement from other mechanisms cannot be ruled out; for example, results from our GLMEs revealed 
that there could be contributions from the quality of the olfactory stimuli and intensity. Moreover, it has been 
demonstrated that the characteristic response patterns provided by an electronic nose can encapsulate aspects 
of perceived intensity64,89, which could also be reflected in the participant’s crossmodal ratings. For instance, 
more intense odors are associated with darker colors90,91 and more angular shapes2,5. Our findings can, at least 
in part, corroborate these claims, as aspects of intensity ("Temperature” or “Pressure”) is a significant predictor 
with our perceptual dimensions for the angularity of shapes and the lightness of color (L*).

Our second hypothesis was that odorous stimuli’ physicochemical features would contribute to explaining 
the nature and origin of olfactory crossmodal correspondences. GLMEs were created using the raw perceptual 
data and the mean physicochemical features revealing that the models captured 10–36% (conditional R2) of the 
total variance and between 6–23% (marginal R2) of variance is explained by the fixed effects, therefore, support-
ing our second hypothesis. Spence stated that crossmodal correspondences might occur at a low-level (amodal 
stimulus properties, such as duration) and at a high-level (semantics and hedonics)1. Here we claim that the 
physicochemical features are also a contributory factor, albeit weakly but contributory non the less. In our prior 
work58,66, we found that crossmodal correspondences were predictable using the underlying physicochemical 
features, consequently presenting a suggestive relationship between the two. Here we confirmed this relation-
ship and uncovered the degree in which the physicochemical features contribute towards explaining olfactory 
crossmodal correspondences (6–23% dependent on the respective crossmodal correspondence); which is the 
novel contribution of the work conducted in this manuscript. Recent studies support a relationship between 
hedonic perception and their physicochemical features or molecular structure39,42,51,63,80. This link between the 
physicochemical features and hedonic perception may be attributed to various factors including but potentially 
not limited to—intensity50,64,92, complexity or intricacy10,29,86,93, and odor quality7,94–96. The perceived intensity 
of the stimuli can be expressed as a logarithmic function of stimuli concentration97. In the case of hedonic 
mediation, a few studies have linked the molecular properties29,42 and the physicochemical features51,63 of odors 
to their perceived pleasantness. The work presented in Khan et al. provided a new view that the pleasantness of 
unfamiliar and monomolecular odors could be partly explained by the physicochemical properties of the odors 
molecules42, indicating that olfaction may not be as subjective as previously believed.

Hanson-Vaux et al.’s results suggest that more intense odors were associated with a more angular shape2. 
However, it is important to note that the different physical characteristics of odors will interact in complex ways 
to determine the intensity of odor. For example, consider the interaction between temperature, humidity, and 
pressure. The GLME for the angularity of shapes captured “Temperature” as a significant predictor indicating 
that the intensity of the odor could have played a role in the angularity of shapes associations.

Most of the work relating the physicochemical51,63 or molecular features29,42 to human perception has focused 
on perceived pleasantness. Haddad et al. showed it was possible to link the physicochemical features provided 
by an electronic nose to the perceived pleasantness using an artificial neural network with a singular hidden 
layer and five neurons51. They suggested that their findings were attributed to a partly hard-wired and innate link 
in olfactory perception and not due to intensity. Khan et al. linked descriptors provided by Dravnieks’ Atlas of 
Odor Character Profiles, where ≈ 150 olfactory experts ranked 160 odors against 146 verbal descriptors42. They 
found that when ordering physicochemical properties based on their variance (principal component scores), 
they also get roughly ordered by perceptual pleasantness. This, in turn, allowed them to predict the pleasantness 
of molecules similar to the work presented by Haddad et al. they also claim that olfactory pleasantness is partly 
innate42. We also found that the perceived pleasantness can be linked to the physicochemical features of the 
odors. Our pleasantness model captured significant predictors on the “Gas,” “MQ5,” and “HCHO” components 
indicating that a relationship exists between the physicochemical features and their perceived pleasantness, and 
in turn, suggesting they can be predicted, which corroborates the findings of our prior work66. However, our 
perceived pleasantness model captured the second lowest amount of explained variance captured by the whole 
model, indicating that in terms of prediction, it may be one of the most challenging dimensions to model in 
comparison to our other olfactory crossmodal correspondences (i.e., auditory pitch).

Olfactory-pitch correspondences have been shown to be affected by the quality of the odor rather than 
pleasantness or intensity7,10. For instance, Belkin et al.’s results suggest that odor-pitch correspondences were 
matched based on perpetual features as opposed to perceived pleasantness and intensity7. Crisinel and Spence’s 
results suggest that their odor-pitch correspondences are influenced by both pleasantness and complexity, but not 
intensity10. Essential oils can create secondary air pollutants which are caused by a reaction to the air that affect 
air quality. Air quality is one of the factors that explain the nature and origin of odor-pitch correspondences7,10. 
It has also been shown that essential oils can have a negative impact on air quality due to these secondary 
organic aerosols (see98 for a review). Formaldehyde (HCHO) is one of the secondary organic aerosols that can 
be created99 and was also transduced by our e-nose. The finding that “HCHO” is a significant predictor for pitch 
further supports that odor quality is a contributory factor for odor-pitch correspondences. Temperature-based 
crossmodal correspondences have also been documented, namely between color and pitch (see69 for a review on 
temperature-based crossmodal correspondences). Wang and Spence demonstrated the existence of crossmodal 
correspondence between pitch, tempo, and temperature (imagined or physically present)100. They found that an 
imagined cold drink was associated with a higher pitch soundtrack and a significantly faster tempo. They also 
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found similar results with physically hot, room temperature, and cold drinks. However, here we did not find 
that temperature is a significant predictor for pitch, which could suggest a more perceptual relationship rather 
than a physical.

There is no shortage of literature documenting consistent olfactory-color correspondences (see6 for a review). 
However, the dominating aspect that has arisen from the literature relates to the familiarity and identifiability 
(semantics) of the odors4,6. Emotional mediation can also play a part in the case of unfamiliar odors, such as 
perfumes13. Gilbert et al. showed that color selections differed significantly as a function of emotion and indicated 
that the expectations of color for beverages could be elicited based solely on a verbal descriptor101. Although we 
could not directly compare if the color selections in the L*a*b* color space are more dependent on the physico-
chemical features or emotions, it would be an exciting topic for future work. Kemp et al. investigated the effects 
of perceived intensity on color correspondences90. They have shown that the stronger the odor’s perceived 
intensity, the darker the color associated with it. Although we cannot conclude the directionality (more or less 
intense) with our data, “Pressure” was found to be a significant predictor for the L* (lightness of color) channel 
indicating involvement from intensity.

The hue-heat hypothesis states that color influences temperature perception102. However, the inverse effect 
is noticed here where the physicochemical property “Temperature” was a significant predictor for the a* and b* 
color channels models but not the L* channel suggesting that the physical temperature of the odor affects the hue 
associations but not how light the color association is. It is worth noting that the current literature describing 
crossmodal correspondences has portrayed these associations as bidirectional; the finding that “Temperature” 
is a significant predictor with both a* and b* models provides further evidence of this. A patent developed at 
Lorraine University, France (patent FR no. 1255688) uses an artificial neural network to generate chromatic 
cards using the chemical composition and a library of sensory descriptors. Our findings can corroborate this 
and suggest that olfactory-color correspondences can still be predicted, at least in part, without the need for 
sensory descriptors. Jacquot et al. used these chromatic cards to convey the odors of cucumber, lavender, and 
peppermint91. British and French participants were shown these cards and asked to associate one of these three 
odors. The results revealed that the cards evoked the appropriate odor in both populations. Ho et al. demon-
strated that color (red vs. blue) could modulate temperature judgments. Their findings are in contrast with the 
popular notion that red colors are warm and blue colors are cold and show the opposite. In the L*a*b* color 
space, L* is the lightness value where a decrease in this value would result in a darker color, a*axis is green–red, 
and the b* represents blue–yellow. “Temperature” in our case is a significant predictor in our a* and b* models 
but not our L* model. Ward et al. demonstrated that the physicochemical features could predict the crossmodal 
correspondences of odors including odor-color correspondences58,66. Here we provide supporting evidence for 
this claim as between 10–36% of the variance was explained by the whole models for our perceptual dimensions.

Michael et al. state that visual cues may dominate and guide temperature-related responses103. Michael et al. 
go on to explain that this may be attributed to lateralized patterns. That is, red-warming associations are more fre-
quently reported after stimulation to the left nostril, and green-cooling associations are more frequently reported 
after stimulation to the right104. However, this lateralized pattern is only present when the olfactory stimuli are 
coupled with colors103,104. The essential oils, in our case, were wrapped in white tape to avoid any undesirable bias 
induced by the color of the oil. The participants also were not asked to rate the temperature of the stimuli, yet 
the absolute temperature of the stimuli is a significant predictor in our models for the angularity of shapes, a*, 
and b*color dimensions. One plausible explanation for this and indeed all temperature-based findings reported 
in this study is that temperature is a key factor towards the intensity of the odor. One of the issues researchers 
are working on is whether temperature-based correspondences are innate or acquired through experience69.

Although these findings help to explore the link between the physicochemical features of odors and cross-
modal correspondences, the extent still remains to be investigated. In particular, a larger sample size of odors, 
including novel odorants and more crossmodal correspondences would need to be explored to determine the true 
extent that the physicochemical features contribute to our crossmodal perception. A 49% overlap was observed 
between the physicochemical and perceptual spaces in the physical space. However, the similarity between these 
two spaces will most likely increase with novel odors. In other words, the less familiarity the odor has in the 
general population, the greater the variation that the physicochemical features can theoretically explain. This 
should allow for more variation to be captured with predictive models. An important caveat of our findings is 
the relatively simple nature of our predictive model. Although a GLME helps simplify a complex problem and 
accounted for between 10–36% (conditional R2) of the explained variance of the whole models. More advanced 
prediction algorithms could better capture the relationship in the underlying data, for example, Gaussian Process 
Regression58,66 or an Artificial Neural Network63. In our prior work66, we predicted the crossmodal correspond-
ences of odors. Here we show that this link is still there when the underlying data was not processed to maximize 
the predictive capabilities. We also quantified the relationship between the physicochemical features of odors 
and their respective crossmodal correspondences while uncovering which physicochemical features contribute 
towards olfactory crossmodal correspondences (see Table 2). Finally, here we delve into the possible reasons 
why this link may exist. Future work could include investigating the extent that crossmodal interactions can 
be predicted (i.e., can odor-temperature correspondences be predicted using the underlying physicochemical 
features?). This would involve training and testing a regression model, such as Gaussian Process Regression using 
a leave one odor out approach to determine if crossmodal correspondences can still be predicted even if the 
odors are unseen to the generated models (see 58,66). The role that the physicochemical features play in explain-
ing olfactory crossmodal correspondences could be explored further by characterizing the olfactory stimuli 
directly before or after presenting them to the participant; therefore, including environmental parameters (i.e., 
room temperature) in the generated signals. Moreover, the role of physicochemical features in explaining other 
crossmodal interactions could also be explored; this could include musical notes10, tempo100, and the perceived 
masculinity/femininity18 of odors.
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Conclusion
The nature and origin of olfactory crossmodal correspondences have largely been characterized as originating 
from hedonics, semantics, and natural co-occurrence. Here, we found a small link between the physicochemical 
features of odors and crossmodal correspondences, with 6–23% of variance being explained by the physicochemi-
cal features. This link may be attributed to intensity, odor quality, and/or the complexity/intricacy of the stimuli 
which could be embedded in the underlying physicochemical features transduced by our electronic nose and 
expressed in the collected perceptual ratings. Overall, our results show that the physicochemical features of odors 
contribute, at least in part, towards explaining the nature and origin of olfactory crossmodal correspondences.
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