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Hybridization of the swarming 
and interior point algorithms 
to solve the Rabinovich–Fabrikant 
system
Zulqurnain Sabir , Salem Ben Said * & Qasem Al‑Mdallal 

In this study, a trustworthy swarming computing procedure is demonstrated for solving the nonlinear 
dynamics of the Rabinovich–Fabrikant system. The nonlinear system’s dynamic depends upon the 
three differential equations. The computational stochastic structure based on the artificial neural 
networks (ANNs) along with the optimization of global search swarming particle swarm optimization 
(PSO) and local interior point (IP) algorithms, i.e., ANNs‑PSOIP is presented to solve the Rabinovich–
Fabrikant system. An objective function based on the differential form of the model is optimized 
through the local and global search methods. The correctness of the ANNs‑PSOIP scheme is observed 
through the performances of achieved and source solutions, while the negligible absolute error 
that is around  10−05–10−07 also represent the worth of the ANNs‑PSOIP algorithm. Furthermore, the 
consistency of the ANNs‑PSOIP scheme is examined by applying different statistical procedures to 
solve the Rabinovich–Fabrikant system.

A noteworthy Rabinovich–Fabrikant system based on the chaotic system was developed by the eminent scientists 
Rabinovich and Fabrikant. This is a condensed version of a nonlinear complex parabolic system that models 
various physical processes, like as wind waves on water, the hydrodynamic flows based on the Tollmien–Schlicht-
ing waves, Langmuir waves in plasma, concentration waves using the chemical reactions with diffusion. First, 
the model’s design is implemented in a physical system, which represent the modulation inconsistency using 
the medium of dissipative non-equilibrium1,2. Currently, it has been acknowledged in the model’s extraordi-
narily high dynamics along with various physical  features3. Notably, the Lorenz and other chaotic models are 
based on the nonlinearities of the second kind. Whereas the Rabinovich–Fabrikant system has the third kind 
of nonlinearities using some remarkable dynamics, that is “virtual” saddles combined with numerous chaotic 
charming characters with distinctive characteristics as well as mysterious chaotic  fascinations4–11. The systems 
having numerous dynamics that can exhibit the chaotic nonlinearities. The chaotic transients are established 
in the model and the chaotic transients have influential consequences for experimentations. To mention few of 
them are radio  maps12,  circuits13,  hydrodynamics14, Lorenz  system15, neural  networks16, and R¨ossler  system17.

A significant challenge for intellectual researchers is provided by using the modelling based on the system 
of nonlinear equations and one of the Rabinovich–Fabrikant  chaotic systems that comprises an ordinary three 
coupled differential equations using the pioneer work of M. Rabinovich and A. Fabrikant, given  as2,18:

The above form of the nonlinear system has a variety of applications in various disciplines of mathematics 
and physics. k1, k2 and k3 are in the initial form of the conditions, where e and f indicate the real finite constant 
values based on the model’s evolution control.

The current research relates to the solutions of the Rabinovich–Fabrikant system using the computational 
stochastic artificial neural networks (ANNs) together with the global search swarming particle swarm optimiza-
tion (PSO) and local interior point (IP) algorithms, i.e., ANNs-PSOIP. Recently, these stochastic performances 
have been represented to solve various nonlinear and stiff natured  models19–25, some of them are automated 
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rail-mounted gantry crane  model26, heterogeneous-vehicle capacitated arc routing  problem27, drone-assisted 
camera  network28, triboelectric sensors for surface  identification29, thermal explosion  system30,31, traffic flow 
 prediction32, biological kind of Leptospirosis  system33,34, high-dimensional expensive  problems35, food chain 
nonlinear differential  systems36–38, vector machine parameter optimization  algorithm39, functional kind of 
 systems40,41, wireless-powered  systems42, singular nature nonlinear  models43–46 and many  more47–50. To inspire 
of these stochastic applications, the authors took keen interest to perform the solutions of the Rabinovich–Fab-
rikant system through the swarming computational procedures. Some innovative features are itemized as:

• The numerical solutions of the Rabinovich–Fabrikant system are presented efficiently by applying the pro-
posed ANNs along with the swarming computational procedure.

• The consistent, trustworthy, and steady outputs of this system authenticate the correctness of the designed 
ANNs together with a swarming computational scheme.

• The small calculate absolute error (AE) performs the accuracy of the ANNs together with the swarming 
computational approach.

• The authentication of the computational ANNs together with the swarming computational approach is 
established by taking three statistical operators with 50 executions to solve the model.

The rest of the presentation of the paper is given as: The procedure of the ANNs together with the swarming 
scheme is given in Section "Proposed ANNs-PSOIP method". The numerical solutions with different plots and 
tables are presented in Section "Result performances". The conclusions are drawn in the last Section.

Proposed ANNs‑PSOIP method
The Rabinovich–Fabrikant system is solved numerically by applying the swarming computational procedures. 
The mathematical neural network formulations are shown as:

where, p, Y present the neurons and activation function, while the unknown weights W, shown as 
W = [Wu, Wv ,Wm] , for Wu = [qu,ωu, ru] , Wv = [qv ,ωv , rv] , and Wm = [qm,ωm, rm] , where

The mathematical form of the transfer log-sigmoid function is given as: Y(θ) =
(

1+ e−θ
)−1.
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(2)
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f + ûc v̂c
)

m̂c

]2
,



3

Vol.:(0123456789)

Scientific Reports |        (2023) 13:10932  | https://doi.org/10.1038/s41598-023-37466-6

www.nature.com/scientificreports/

where ûc = u(θc), v̂c = v(θc), m̂c = m(θc), Nh = 1, and θc = hc.

Optimization schemes. The optimizations through the PSOIP for solving the Rabinovich–Fabrikant sys-
tem are presented in this section.

PSO is a global search neuro swarming scheme introduced by Kennedy and Eberhart in the previous century, 
which works as an alteration of genetic algorithm (GA)51. PSO exhibits the outcomes of multiple intricate systems 
that manage a specific population through the technique of optimum training. PSO works by using the minimum 
storage  capacity52. In recent decades, PSO is used in various submissions, like as mixed-variable optimization 
 systems53, engineering  networks54, multi-objective multimodal  approaches55, solar form of the energy  sets56, 
photovoltaic parameters category based on single, dual and three-ways  diode57, studies of plant  illnesses58, image 
 recognition59, particle filter noise reduction based on mechanical  accountability60, and production systems using 
the green  coal61. These remarkable proposals motivated the authors to operate the swarming approaches for the 
Rabinovich–Fabrikant system.

The global PSO process is considered a slow and sluggish scheme like the GA, which perform rapid con-
vergence with the hybridization of the local search method. Consequently, IP approach is used by taking the 
primary inputs of the global PSO. IP is an outstanding scheme, which is applied to model the unconstrained/
constrained systems. Some important IP applications are the shrinking horizon model predictive control with 
variable discretization  step62, quantum key distribution rate  computation63, parameters estimation using the 
symmetric spinning projectiles based on the maximum likelihood  scheme64, equilibrium problems of the fisher 
market using the kernel  function65, and symmetric cone horizontal linear complementarity model using the 
function of positive-asymptotic  barrier66. The process of the swarming scheme along with a local search method 
to solve the Rabinovich–Fabrikant system is presented in Fig. 1.

Statistical measures. In this section, the statistical performances based on the semi-interquartile range 
(SIR), mean square error (MSE), and Theil’s inequality coefficient (TIC) are shown as:

Result performances
The numerical solutions of the Rabinovich–Fabrikant system (1) are presented by using the swarming comput-
ing procedures. The plots of results overlapping, weights, statistical performances along with the AE are also 
illustrated in this section. The system (1) is updated by using the suitable values as:
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The optimization of objective function given in system (13) is provided by using the ANNs together with the 
swarming computational approach to solve the Rabinovich–Fabrikant system. Ten numbers of neurons along 
with 50 runs have been executed to check the reliability of the procedure. The optimal results based on the weight 
vectors for solving the above system are shown below.

Figure 1.  Designed swarming and local search procedures to solve the Rabinovich–Fabrikant system.
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Figure 2 illustrates the values of the optimal weights along with the result’s assessment for each class of the 
Rabinovich–Fabrikant system. These weights are shown in Fig. 2a–c by applying the ANNs together with the 
swarming computational approach to solve the Rabinovich–Fabrikant system by taking 10 numbers of neurons. 
The correctness of the ANNs together with the swarming and local computational method is examined through 
the best, reference and mean results in Fig. 2d–f. Figure 3 shows the mean and best results based on the AE to 
solve the Rabinovich–Fabrikant system. The best AE measures are performed as  10−04–10−07,  10−05–10−07 and 
 10−06–10−07, while the mean values of the AE are performed as  10−02–10−03,  10−01 to  10−03 and  10−03–10−04 for 
1st–3rd dynamics. These reduceable performances of AE improve the precision of the ANNs. Figure 4 represents 
the performances of TIC that have been calculated based on the Rabinovich–Fabrikant system, which are found 
around  10−06–10−10 for each category. The MSE values are plotted in Fig. 5 to solve the Rabinovich–Fabrikant 
system through the stochastic approach. These performances are described as  10−04–10−10 for the system. The 
optimal statistical performances achieved through the ANNs together with the swarming scheme develop the 
method’s consistency to solve the above system.

Tables 1, 2, 3 shows the statistical operator measures for the minimum (best results), SIR, mean, maximum 
(worst outputs), median, and standard deviation (SD) values. The plots based on the maximum performances 
(bad results) reported as  10−01–10−02 for the first two dynamics of the model, while these values performed as 
 10−03–10−04 for the last dynamic of the model. The mean and SD operator values are  10−02–10−03 and  10−01–10−02 
for the first two dynamics, while these values lie as  10−04–10−05 for the last dynamic of the model. Likewise, the 
median, minimum (best performances) and SIR operator values for each class of the Rabinovich–Fabrikant sys-
tem are found as  10−04–10−05,  10−06–10−07 and  10−03–10−05. Based on these performances, the process of the ANNs 
together with the swarming and local search scheme perform precise to solve the Rabinovich–Fabrikant system.

Conclusions
The current investigations present a stochastic computing reliable scheme based on the swarming computing 
procedure for the numerical solutions of the Rabinovich–Fabrikant system. The system’s dynamic of the nonlinear 
system has three coupled equations. Some of the concluding remarks are itemized as:

• The computing stochastic artificial neural networks along with the global swarming and local search interior 
point algorithms have been presented to solve the differential form of the Rabinovich–Fabrikant system.

• The design of objective function has been presented by using the differential system, while the optimization 
is performed through the local and global search schemes.

• The accuracy of the results has been observed through the achieved and source results performances.
• The log-sigmoid transfer function along with 10 numbers of neurons in the structure of neural network have 

been provided for the solutions of the Rabinovich–Fabrikant system.
• The absolute error has also been achieved around  10−05–10−08, which shows the worth of the ANNs-PSOIP 

algorithm.
• The consistency of the ANNs-PSOIP method has been examined by applying different statistical perfor-

mances to solve the Rabinovich–Fabrikant  system.

In future, the designed ANNs along with the swarming scheme is provided to perform the solutions of the 
biological  system67,68, and fluid dynamical  systems69.

(14)
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Figure 2.  Weights and comparison of solution performances for the Rabinovich–Fabrikant system.
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(a) AE for the class 
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Figure 3.  The values of AE to solve the Rabinovich–Fabrikant system.
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TIC for the Rabinovich–Fabrikant system

(a) Hist (b) Hist (c) Hist ( )u ( )v ( )mθ θ θ

Figure 4.  Performances of TIC along with hist values for the mathematical system.
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MSE for the Rabinovich–Fabrikant system

(a) Hist (b) Hist (c) Hist ( )u ( )v ( )mθ θ θ

Figure 5.  Performances of MSE along with hist values for the mathematical system.

Table 1.  Different statistical measures for the Rabinovich–Fabrikant system (1).

θ

u(θ)

Maximum Mean Median Minimum SD SIR

0 1.05690E−01 6.40790E−03 5.08468E−05 1.20218E−06 2.36816E−02 7.58571E−05

0.05 1.22841E−01 6.98814E−03 4.02634E−05 3.18951E−07 2.57846E−02 6.18554E−05

0.1 1.43050E−01 7.57637E−03 6.17875E−05 1.37938E−06 2.79626E−02 7.98119E−05

0.15 1.66086E−01 8.15105E−03 1.22617E−04 1.77658E−07 3.02299E−02 9.80690E−05

0.2 1.91909E−01 8.69372E−03 1.73347E−04 3.56693E−06 3.26824E−02 1.13967E−04

0.25 2.20686E−01 9.18423E−03 2.17530E−04 1.40996E−06 3.54503E−02 1.42554E−04

0.3 2.52773E−01 9.61410E−03 2.08632E−04 3.07849E−06 3.86938E−02 1.73721E−04

0.35 2.88683E−01 9.97919E−03 1.76354E−04 2.72037E−05 4.26073E−02 2.25364E−04

0.4 3.29034E−01 1.02867E−02 1.96363E−04 6.17216E−06 4.74130E−02 1.49917E−04

0.45 3.74495E−01 1.05397E−02 2.16955E−04 4.38184E−06 5.33532E−02 1.86919E−04

0.5 4.25732E−01 1.11452E−02 2.59888E−04 3.07209E−07 6.05991E−02 2.54918E−04

0.55 4.83354E−01 1.40952E−02 3.45508E−04 6.56680E−07 6.90186E−02 3.67314E−04

0.6 5.47875E−01 1.75133E−02 4.05529E−04 4.48314E−05 7.91777E−02 4.12311E−04

0.65 6.19674E−01 2.14188E−02 4.85687E−04 6.63475E−05 9.12644E−02 4.99647E−04

0.7 6.98962E−01 2.58265E−02 4.88451E−04 5.95039E−05 1.05424E−01 5.17867E−04

0.75 7.85725E−01 3.07458E−02 4.66624E−04 2.26947E−05 1.21745E−01 5.64742E−04

0.8 8.79659E−01 3.61768E−02 4.81259E−04 2.30813E−05 1.40240E−01 5.81885E−04

0.85 9.80067E−01 4.21008E−02 5.43547E−04 4.09488E−06 1.60816E−01 6.03728E−04

0.9 1.08574E−01 4.84540E−02 6.14579E−04 7.74713E−06 1.83256E−01 7.85763E−04

0.95 1.19485E−01 5.51122E−02 7.79590E−04 1.55711E−06 2.07173E−01 6.99057E−04

1 1.30480E−01 6.17905E−02 8.51394E−04 1.89442E−06 2.32010E−01 7.90777E−04
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Table 2.  Different statistical measures for the Rabinovich–Fabrikant system (2).

θ

v(θ)

Maximum Mean Median Minimum SD SIR

0 1.80930E−01 1.05117E−02 1.56302E−04 1.20218E−06 3.85499E−02 2.28766E−04

0.05 2.16171E−01 1.20503E−02 1.78333E−04 3.18951E−07 4.49069E−02 2.85149E−04

0.1 2.49110E−01 1.35299E−02 1.75805E−04 1.37938E−06 5.12729E−02 3.03159E−04

0.15 2.84048E−01 1.50777E−02 1.89514E−04 1.77658E−07 5.80619E−02 3.11228E−04

0.2 3.23084E−01 1.67597E−02 2.18140E−04 3.56693E−06 6.55171E−02 3.24209E−04

0.25 3.65827E−01 1.85756E−02 2.48140E−04 1.40996E−06 7.36480E−02 4.01238E−04

0.3 4.12074E−01 2.05200E−02 2.79358E−04 3.07849E−06 8.24701E−02 4.84476E−04

0.35 4.61942E−01 2.25962E−02 2.83904E−04 2.72037E−05 9.20213E−02 5.49853E−04

0.4 5.15676E−01 2.48089E−02 2.86481E−04 6.17216E−06 1.02348E−01 6.16102E−04

0.45 5.73546E−01 2.71609E−02 3.19916E−04 4.38184E−06 1.13500E−01 5.65715E−04

0.5 6.35804E−01 2.96547E−02 2.79361E−04 3.07209E−07 1.25519E−01 6.06080E−04

0.55 7.02671E−01 3.23225E−02 3.10564E−04 6.56680E−07 1.38442E−01 8.43722E−04

0.6 7.74346E−01 3.51264E−02 3.57440E−04 4.48314E−05 1.52317E−01 9.45295E−04

0.65 8.51024E−01 3.80537E−02 4.28832E−04 6.63475E−05 1.67193E−01 1.03409E−03

0.7 9.32931E−01 4.10722E−02 5.16832E−04 5.95039E−05 1.83134E−01 1.12184E−03

0.75 1.02040E−01 4.41658E−02 5.67579E−04 2.26947E−05 2.00230E−01 1.20797E−03

0.8 1.11397E−01 4.73450E−02 5.75595E−04 2.30813E−05 2.18615E−01 1.26351E−03

0.85 1.21454E−01 5.17237E−02 5.70407E−04 4.09488E−06 2.38257E−01 1.33663E−03

0.9 1.32354E−01 5.70127E−02 5.87427E−04 7.74713E−06 2.59548E−01 1.46495E−03

0.95 1.44317E−01 6.29763E−02 6.95371E−04 1.55711E−06 2.83011E−01 1.72981E−03

1 1.57650E−01 6.97606E−02 8.67320E−04 1.89442E−06 3.09254E−01 1.98607E−03

Table 3.  Different statistical measures for the Rabinovich–Fabrikant system (3).

θ

m(θ)

Maximum Mean Median Minimum SD SIR

0 6.58629E−03 2.02783E−04 1.55765E−05 1.20218E−06 9.33476E−04 2.82452E−05

0.05 5.01335E−03 1.63321E−04 3.64540E−05 3.18951E−07 7.04530E−04 3.23278E−05

0.1 3.95453E−03 1.83999E−04 5.27212E−05 1.37938E−06 5.58475E−04 5.83354E−05

0.15 3.17549E−03 1.69807E−04 5.08574E−05 1.77658E−07 4.57572E−04 6.92912E−05

0.2 2.56724E−03 1.31963E−04 2.40379E−05 3.56693E−06 3.77014E−04 4.77252E−05

0.25 2.07883E−03 9.98185E−05 1.84659E−05 1.40996E−06 3.10152E−04 3.22076E−05

0.3 1.68442E−03 8.91099E−05 3.09639E−05 3.07849E−06 2.56272E−04 2.17263E−05

0.35 1.36831E−03 9.03436E−05 3.79007E−05 2.72037E−05 2.13215E−04 2.64122E−05

0.4 1.11868E−03 8.42805E−05 2.71341E−05 6.17216E−06 1.80472E−04 3.13689E−05

0.45 9.25173E−04 7.17091E−05 2.33858E−05 4.38184E−06 1.54250E−04 2.63757E−05

0.5 7.77852E−04 6.60226E−05 2.41276E−05 3.07209E−07 1.28257E−04 2.95578E−05

0.55 6.68033E−04 6.31421E−05 3.93428E−05 6.56680E−07 1.05745E−04 2.73639E−05

0.6 5.87681E−04 5.76348E−05 3.32827E−05 4.48314E−05 9.08890E−05 2.44285E−05

0.65 5.29980E−04 5.17476E−05 2.58827E−05 6.63475E−05 8.24802E−05 2.16873E−05

0.7 4.89313E−04 5.16222E−05 3.40469E−05 5.95039E−05 7.67325E−05 2.12499E−05

0.75 4.61136E−04 4.97995E−05 2.54209E−05 2.26947E−05 7.96171E−05 1.61246E−05

0.8 4.41978E−04 5.43080E−05 1.88782E−05 2.30813E−05 8.53107E−05 2.74754E−05

0.85 4.29426E−04 6.73073E−05 3.04463E−05 4.09488E−06 8.79037E−05 3.25790E−05

0.9 4.21844E−04 7.54484E−05 4.33264E−05 7.74713E−06 9.04288E−05 3.38840E−05

0.95 4.18417E−04 7.30378E−05 4.63993E−05 1.55711E−06 9.43253E−05 2.54015E−05

1 4.19007E−04 6.14300E−05 1.74213E−05 1.89442E−06 1.04388E−04 2.89049E−05
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