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Interaction of various‑sized 
particles in river flow
Niannian Fan 1,2*, Qiang Zhong 3,4, Ruihua Nie 1 & Xingnian Liu 1

Sediment transport is essential to the source-sink systems; however, the interaction between two 
complex multiscale nonlinear systems, turbulence of the river flow and wide size sediment, has 
heretofore restricted our understanding of sediment motion. We have conducted flume experiments 
deploying a video-based technique that records sediment transport rate of each particle size at 1 s 
resolution. The observations reveal detailed interactions between flow and particles of sizes ranging 
from 0.5 to 32 mm, such that small suspended particles (< ~ 5 mm) keep swirling in the wake vortices 
of the keystones (larger than 20 mm) until large to very-large-scale coherent structures destroy the 
wake vortices and bring the small particles downstream. Keystones destabilize consequently as the 
surrounding small and intermediate particles move, and in turn, a group of sheltered particles is 
entrained following the dislodging of the keystones. This heuristic model highlights the interactions of 
turbulence and different-sized particles.

In total, the rivers of the earth deliver more than 20 billion tons sediment to the oceans annually1. Sediment 
provides the major process linkage between hydrological factors2, channel bed roughness3, river channel 
morphology4,5 and sedimentation archives6. All modern aspects of habitat restoration, infrastructure planning, 
and pollution remediation require knowledge or prediction of the response of sediment to flooding7. Current 
sediment transport models attempt to predict transport rates from average descriptors of flow and bed material, 
such as the time-averaged shear stress and bulk grain size distribution, without explicit scale correlations8–12. 
Problematically, sediment transport, especially for river beds composing of poorly sorted particles, is a stochastic 
process13, and fluctuations of sediment transport rates orders larger than the mean have been shown in both 
field14 and experimental observations15. Highlighting that at timescales approximating the duration of a single 
flood these models fail to capture integral aspects of the transport process, in particular local interactions between 
flow and bed roughness elements.

Consider a short section of nearly flat channel with a bed comprising poorly sorted natural sediment of 
mixed sizes exposed to a transporting flow (Fig. 1). At this scale, local interactions between near-bed turbulent 
structures and individual grains determine the entrainment behavior of particles14,16–18. This results in complex 
interactions between the flow and different-sized grains in transport, which may be described qualitatively using 
our conceptual model as Fig. 1. A large particle (> D84), which requires energetic flow to mobilize it, generates a 
downstream wake. The large particle shelters smaller particles, which are often trapped in small-scale turbulent 
vortices behind the large grain (Fig. 1a), seldom leave the wake flow area until a large coherent turbulent structure 
comes (Fig. 1b). As the intermediate particles become entrained (Fig. 1c), the large particle becomes unstable 
and is dislodged. As a result, particles immediately upstream of the large particle are mobilized (Fig. 1d). In this 
conceptual model, the cascade of interactions between stream flow and mixed-size particles determine the sedi-
ment transport processes, and temporal variability in sediment transport rates for each size group. As a result, 
we expect differently sized particles to show distinct time-dependent patterns of transport.

To characterize the impact of the interactions between particles of various sizes in the proposed conceptual 
model, we conducted flume experiments with poorly sorted natural sediments (0.5–32 mm). The flume had a 
varying width (0.38–0.80 m) to force pool-riffle development19, in order to more closely recreate natural river 
conditions. Moreover, our experiment is unique in that a time series of sediment transport rates were measured 
for individual size classes from a video based light table at a 1 s temporal resolution (see Figs. 2b, 3 and Supple-
mentary Information Fig. 2). Details of the experimental conditions are available in Methods. We hope this study 
sheds light on the direction of mixed-size sediment transport and provides further impetus for both theoretical 
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and experimental studies. The particle individual or collective motion of various sizes were studied. In addition, 
the interactions of various-sized particles and turbulence flow structures were also discussed.

Results
Various sized sediment transport rates.  Figure 3a displays the time series of bulk sediment transport 
rates at sampling intervals of 1 s, 8 s, 1 min and 6 min, respectively, along with the time-averaged mean. Fig-
ure 3b–f shows the sediment transport rates for each grain size subdivided into 0.5φ intervals (e.g., 1.4–2 mm, 
2–2.8 mm, 2.8–4 mm, 4–5.6 mm…, 22.6–32 mm). The results show two distinct parts. First, as the sampling 
interval increases, the variability in sediment transport rate decreases. Second, larger particles show more inter-
mittent transport characteristics, with the largest particles experiencing long periods of little motion followed by 
short lived periods of transport (see Fig. 3f).

As a stochastic time series, the variance of the sediment transport rates reflects the fluctuation magnitude, 
which decreases monotonically as the sampling interval increases. In our experiments, we expect that if each 
particle moves independently, a plot of variance and sampling interval in double-log space will have a slope of 
− 18,15,20. Over a sampling interval in which particles movements are correlated (e.g. due to collective entrain-
ment), a slope closer to 0 appears15. As a result, for a variance-sampling interval plot in log–log space, a change 
in slope reflects a changing pattern of motion across timescales. In addition, those plots differ for each particle 
size group, thus a cascade of interactions between each particle size group can be revealed. Moreover, if the 
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Figure 1.   Sketch of flow and particle interactions in mixed size sediment transport. Flow is from left to right 
and the particles are grouped as small (pink), intermediate (yellow) and large (green) ones. (a) Small particles 
swirl in the lee of a large particle (key stone). (b) A group of small particles leaves the wake flow area in the lee 
of a key stone when a large to very-large-scale coherent flow structure passes by. (c) The intermediate particles 
are apt to be mobilized. (d) Intermediate and small particles supported by the keystone are mobilized after the 
keystone has become dislodged.
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timescales of a turbulence structure coincides with an observed time scale of particle motion it suggests this 
turbulence structure drives that pattern of particle motion.

Figure 4a–f displays the relation between variance (scaled by the power of the mean value of sediment trans-
port rate) and the sampling interval for the bulk and grain-size specific sediment transport rates. In Fig. 4a, the 
bulk transport rates can be divided into three distinct sampling interval ranges using the slope of the variance. At 

Figure 2.   Overview of the experiment. (a) Image of the flume. The length of the flume was 18 m in total, but we 
had stitched photographs of only the middle 15 m. (b) Light table and basket at the outlet of the flume. (c) Size 
distribution for subsurface and feeding sediment (solid black line), transported sediment (solid red line), surface 
in riffle (dashed green line) and pool (dashed blue line) at the end of experiment.
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Figure 3.   Time series of sediment transport rates collected for 4 h at sampling interval of 1 s, 8 s, 1 min and 
6 min shown in grey, red, yellow and black solid lines respectively. The mean value is indicated as a black dashed 
line, note that y-axis scale varies for each plot. Subplot (a) is for the bulk sediment, and Subplots (b, c, d, e and f) 
are for particle size groups of 1.4–2 mm, 2.8–4 mm, 5.6–8 mm, 11.3–16 mm and 22.6–32 mm, respectively. Note 
that the longer the sampling interval, the smoother the sediment transport rates show.
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small sampling intervals, the variance decays approach a slope of − 1, suggesting that particle motions are indi-
vidual and independent without correlation, which we define as individual time scale. In intermediate sampling 
intervals (2–400 s), however, the variance remains almost constant, particle motion is dominated by collective 
entrainment events, resulting in highly correlated sediment transport rates which we define as the collective 
timescale. At longer timescales, so many collective entrainment events occur that the memory between each 
event vanishes, we term this as the memoryless timescale. The time scale-variance relation could be fit using 
Eq. (1) (see “Methods” Section for details). Demarcating these timescales are two critical times, tic (separating 
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Figure 4.   Normalized variance of sediment transport rates at different time scales. Subplot (a) is for the bulk 
sediment and Subplots (b–f) are for particle size groups of 1.4–2 mm, 2.8–4 mm, 5.6–8 mm, 11.3–16 mm and 
22.6–32 mm, respectively. Two critical times, tic (red dashed line) and tcm (blue dashed line) define the three 
regimes for variance decays at a slope of − 1, 0 and − 1 respectively. (g) Relations between critical times (tic, red 
dots and tcm, blue dots) and particle sizes summarized from subplot (a–f), time scales of turbulence structures 
also show.
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individual and collective time scales) and tcm (separating collective and memoryless time scales) (See Eq. 1 in 
“Methods” Section), marked as the red and blue dashed lines respectively.

Interactions of turbulence and particles.  Figure  4b–f allow for the comparison of these timescales 
across grain size classes, note that the 1 s sample time normalized variance for keystone (Fig. 4f) is at least one 
order larger than other particles (Fig. 4b–e). Figure 4g displays the relationship between particle size and the 
critical times (tic and tcm). It needs to note that, D50 plotted with both tic and tcm for the bulk sediment fits the 
general trend of individual sediment size classes, which might support the convention that although the detailed 
transport processes for poorly sorted particles are more complex than for uniform particles21–23, D50 could serve 
as a proxy for the size of bulk sediment24.

Discussion
As Fig. 4g, the relationship of tic and particle size shows two distinct segments with critical size of ~ 5 mm, 
corresponding to be the critical size boundary (4.4–5.4 mm) for suspended load and bed load (see “Methods” 
Section). tic keeps almost constant values (~ 0.4 s) for suspended load, which is in the range between Tl ~ 0.25 s 
and Tv ~ 2 s (Fig. 4g), supporting that large- to very-large-scale coherent flow structures (LSMs to VLSMs, in the 
order of 1 to 10 times the flow depth25) displace the suspended particles in the lee of keystones collectively14. 
Meanwhile, the relative weak wake vortices of the keystones, if drive downstream motion of suspended particles, 
only occasionally move them downstream individually, contributing individual motion scale smaller than tic 
(see “Methods” Section).

Figure 4g also shows the weak relationship between tcm (separating collective and memoryless time scales) and 
particle size, which is interpreted to result from that following the dislodging of a keystone, a group of particles 
ranging over a wide size range sheltered by the keystone entrained simultaneously and collectively. However, 
keystones, the largest particles on the bed, are not sheltered by any larger particles, therefore tic and tcm emerges, 
such that keystones do not experience collective entrainment.

The increasing of tic with the particle size for bed load illustrates the complex flow-particle and various-sized 
particle interactions. Firstly, the probability of occurrence of higher impulse events that can move larger par-
ticles decreases rapidly with the increasing of the particle size21. Secondly, particles interact with each other by 
granular contact network supported force chains26,27; with larger particles having more effective force chains28. 
The combination of these two factors may lead to the exponential growth of tic.

It is important to address that the turbulence structure and mix-sized grain interactions we studied here is 
in a much smaller time scale than morphology adjustment or motion of bed forms22. For example, the periodic 
filling and eroding of pool-riffle morphology is in the scale of ~ 20 h (Supplementary Information Fig. 1), two or 
three orders longer than tcm (order of 100 s). Nevertheless, the ways that particles interact at smaller spatial and 
temporal scales to drive riverbed morphology adjustments at larger scales warrants further study.

The results observed in this experiment are similar to the conceptual model elucidated in Fig. 1. Although 
our heuristic model is likely invalid during strong flow conditions capable of mobilizing all particle sizes, it is 
applicable for sediment transport in most gravel-bed alluvial rivers as shear stress during floods is usually only 
slightly larger than the critical shear stress for entrainment29. Exceptions to this generalization include outburst 
floods from dam breaks30 or very high sediment supplied conditions31, for those two conditions, we expect that 
particles move collectively and individual-grain transport does not exist.

Conclusion
In this study, we observed poorly sorted sediment transport from flume experiments for steady transport condi-
tion. Size-specific transport rates at a temporal resolution of 1 s were obtained, allowing us to reveal grain/grain 
interactions and where possible, to reveal grain/turbulence flow interactions.

From the variation of the time series of size-specific sediment transport rates, we revealed both individual 
and collective motions at certain time scales. For smaller, suspendable sizes, the time scale boundary between 
individual and collective (tic) corresponds to the time scale of large to very large turbulent fluctuations. For larger 
sizes in the mixture, tic increases with grain size. The upper limit of the collective transport time scale (tcm) is 
defined by the upper limit for individual transport of the coarsest grain size, suggesting that the time scale for 
the occasional entrainment of these keystone clasts defines the longest time variation of the bed, transport at 
longer time scales is uncorrelated and independent (memoryless) of shorter time scales. This time scale (roughly 
500 s in our experiment) can be used to define the smallest time scale appropriate for modeling using transport 
formulas based on mean flow and bed properties.

We acknowledge that the time scales for turbulence flow structure were calculated from the flow condition, 
instead of direct measurement. Detailed in situ observations of turbulence and grain motion at various flow 
and sediment conditions (e.g., armoring and aggrading), or considering the sediment shape32 are required in 
future studies.

Methods
Experimental procedure.  The flume19,33 is 18 m long with the bed inclined at a 1.5% slope. The width is 
variable, ranging from 0.38 to 0.80 m (Fig. 2a), allowing for morphodynamic development in different flume sec-
tions. The particle size distribution of the initial bed and the feeding sediment was the same, which was poorly 
sorted natural sand and gravel with sizes ranging from 0.5 to 32 mm, with a D50 of 8.4 mm. The sediment was 
sieved at 0.5φ intervals (e.g., 1.4–2 mm, 2–2.8 mm, 2.8–4 mm, 4–5.6 mm…, 22.6–32 mm), and different size 
classes were painted with different colors. Water was recirculated and discharge was controlled by a variable 
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frequency pump, while sediment was fed to the flume inlet by a conveyor belt and collected with a basket trap at 
the flume outlet. See Table 1 for the brief information of the flume experiment.

Flow discharge was kept constant at 50 Liters/s. Riffles (in the wide sections) and pools (in the narrow sec-
tions) were formed from an initially levelled bed, after running the flume for 81 h without sediment feed until 
sediment load transport rate was very low (0.079 g/s). After these low transport rates were achieved (indicating 
a stable bed), sediment with a rate of 10.9 g/s (dashed line in Supplementary Information Fig. 1) was fed at the 
flume inlet and these conditions were run for 68.5 h (Supplementary Information Fig. 1). At approximately 36 h, 
the sediment transport rate became equivalent to the feeding rate indicating that quasi steady-state conditions 
had been reached. Detailed sediment transport rates were obtained from a video-based light table34 (see Sup-
plementary Information Fig. 2, the interval of 42.5–46.5 h marked grey in Supplementary Information Fig. 1), 
at time scales of 1 s for different sizes at 0.5φ interval. Although the cutoff value of the smallest particle sizes was 
0.5 mm, transport rate data from the light table were not reliable for particles < 1 mm20 so they were not used 
for further analysis.

From 42.5 to 46.5 h, the total sediment mass from the video-based method was calculated as 109.4 kg, while 
110.7 kg of sediment was collected from the basket at the outlet of the flume, indicating a very small (1.2%) 
under-estimation bias. Also, the particle size distributions derived from the video-based method and sieving 
from basket collected sediment are very close (Supplementary Information Fig. 3), indicating that the video-
based method performed well.

Model for fitting the three ranges of variance–time relations.  Rearranging from the model shown 
in reference15, Eq. (1), the function between time scale and (normalized) variance of sediment transport rate, 
was obtained as:

where the variance (Var) was normalized by the square of the mean (Mean) value, tic and tcm are the critical times 
dividing individual, collective and memoryless time scales, respectively. a is a constant coefficient for calibration.

We acknowledge that for particles smaller than 5.6 mm, the tic are smaller than the resolution of sediment 
transport rate time series in our experiment (1 s) as shown in Fig. 4b–c, and thus the values of tic are obtained by 
extension of the model as Eq. (1). However, the trends for − 1 slope when time scales approach to 1 s are obvious 
as Fig. 4b and c, as a result, we consider the calibrated values of tic from Eq. (1) are reliable.

Estimation of flow structure time scales.  The period of the very-large-scale coherent structures, Tv, is 
calculated as reference35

where B, h and u are the channel width, depth and average cross-section velocity, respectively. In pool and riffle 
sections, the values of B are 0.38 and 0.80 m and the value of h are 13.5 and 8.4 cm, the values of u are calculated 
to be 0.97 and 0.76 m/s, respectively from the constant discharge Q = 50 L/s. As a result, Tv is calculated to be in 
the range of 1.5–2.4 s.

The period of the large-scale coherent structure is calculated as reference17

and Tl is calculated to be in the range of 0.22–0.27 s.
The period of wake vortices shedding of the keystones is calculated as36,37

where Dk is the dimension of keystones (~ 25 mm), St is the Strouhal number, and here St = 0.19 as the keystone 
Reynolds number Red is in the range of 1.8–2.5 × 104. As a result, Tw is calculated to be in the range of 0.11–0.14 s.

Estimation of size boundary for bed load and suspended load.  The threshold for sediment suspen-
sion was calculated based on the ratio of shear velocity u* and particle terminal settling velocity ws as u*/ws = 0.4, 
particles were suspended load or bed load if u*/ws > 0.4 or < 0.4, respectively38, given u* = 11.5–12.9 cm/s in our 
experiment, we calculated the particles in the threshold for suspension had ws in the range of 28.8–32.2 cm/s.ws 
was the function of particle size D as reference39

(1)Var/Mean
2(�t) =

a

�t

{

2tcm

tic

[

1−
tcm

�t

(

1− e−
�t
tcm

)

]

+ 1

}

(2)Tv = 5.7B0.6h0.4/u

(3)Tl = 2h/u

(4)Tw = Dk/(Stu)

Table 1.   Brief information of the flume experiment.

Width (cm) Depth (cm) Slope Flow rate (L/s) Reynold number (104) Froude number Sediment size (mm)
Sediment feed 
rate (g/s)

38–80 3.4–11 1.5% 50 6.26–13.2 1.56–3.19 0.5–32 10.9
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where R is submerged specific gravity (1.65 for the particles in our experiment), g is gravitational acceleration, 
which equals to 9.81 m/s2, C1 = 20 and C2 = 1.1 are constants for natural particles, and ν is the kinematic viscosity 
of water, which equals to 10–6 m2/s.

Then critical size for particle suspension in our experiment was calculated to be in the range of 4.4–5.4 mm.

Data availability
All data are available in the main text and the Supplementary Material.
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