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Machine learning algorithms 
for identifying predictive 
variables of mortality risk 
following dementia diagnosis: 
a longitudinal cohort study
Shayan Mostafaei 1,2*, Minh Tuan Hoang 1,2, Pol Grau Jurado 1, Hong Xu 1, 
Lluis Zacarias‑Pons 1,3,4, Maria Eriksdotter 1,5, Saikat Chatterjee 6 & Sara Garcia‑Ptacek 1,5*

Machine learning (ML) could have advantages over traditional statistical models in identifying risk 
factors. Using ML algorithms, our objective was to identify the most important variables associated 
with mortality after dementia diagnosis in the Swedish Registry for Cognitive/Dementia Disorders 
(SveDem). From SveDem, a longitudinal cohort of 28,023 dementia-diagnosed patients was selected 
for this study. Sixty variables were considered as potential predictors of mortality risk, such as age 
at dementia diagnosis, dementia type, sex, body mass index (BMI), mini-mental state examination 
(MMSE) score, time from referral to initiation of work-up, time from initiation of work-up to diagnosis, 
dementia medications, comorbidities, and some specific medications for chronic comorbidities (e.g., 
cardiovascular disease). We applied sparsity-inducing penalties for three ML algorithms and identified 
twenty important variables for the binary classification task in mortality risk prediction and fifteen 
variables to predict time to death. Area-under-ROC curve (AUC) measure was used to evaluate the 
classification algorithms. Then, an unsupervised clustering algorithm was applied on the set of twenty-
selected variables to find two main clusters which accurately matched surviving and dead patient 
clusters. A support-vector-machines with an appropriate sparsity penalty provided the classification 
of mortality risk with accuracy = 0.7077, AUROC = 0.7375, sensitivity = 0.6436, and specificity = 0.740. 
Across three ML algorithms, the majority of the identified twenty variables were compatible with 
literature and with our previous studies on SveDem. We also found new variables which were not 
previously reported in literature as associated with mortality in dementia. Performance of basic 
dementia diagnostic work-up, time from referral to initiation of work-up, and time from initiation 
of work-up to diagnosis were found to be elements of the diagnostic process identified by the 
ML algorithms. The median follow-up time was 1053 (IQR = 516–1771) days in surviving and 1125 
(IQR = 605–1770) days in dead patients. For prediction of time to death, the CoxBoost model identified 
15 variables and classified them in order of importance. These highly important variables were age 
at diagnosis, MMSE score, sex, BMI, and Charlson Comorbidity Index with selection scores of 23%, 
15%, 14%, 12% and 10%, respectively. This study demonstrates the potential of sparsity-inducing ML 
algorithms in improving our understanding of mortality risk factors in dementia patients and their 
application in clinical settings. Moreover, ML methods can be used as a complement to traditional 
statistical methods.
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Abbreviations
ML	� Machine learning
SveDem	� The Swedish Registry for Cognitive/Dementia Disorders
BMI	� Body mass index
MMSE	� Mini-mental state examination
AUROC	� Area-under-receiver operating characteristic curve
SVM	� Support-vector-machines
LR	� Logistic regression
NN	� Backpropagation neural networks
SCAD	� Smoothly clipped absolute deviation
MCP	� Minimax concave penalty
CCI	� Charlson comorbidity index
PWD	� Patients with dementia
COX PH	� COX proportional hazard
PDR	� Swedish prescribed drug registry
NPR	� Swedish national patient registry
CCA​	� Complete case analysis
LASSO	� Least absolute shrinkage and selection operator
ACC​	� Accuracy
BER	� Balanced error rate
GHCI	� Gonen and Heller’s Concordance Index
IQR	� Interquartile range
HR	� Hazard ratio
95% CI	� 95% Confidence interval

Dementia is a major and growing public health concern with a substantial increase in prevalence projected in the 
future1,2. Mortality risk is higher in patients with dementia (PWD) compared to dementia-free subjects3. Risk 
factors such as age, Body Mass Index (BMI), sex, Mini-Mental State Examination (MMSE) score, and comor-
bidities are significantly associated with mortality risk in dementia patients4–9. These patients have common 
comorbidities for which treatment could be a critical determinant of survival10,11. Despite decades of research, 
there may be factors related to mortality risk in dementia which remain undiscovered to date. The identification 
of these additional risk factors related to death in dementia and understanding of their prognostic role is essential 
for life and health-care planning and patient care12.

Regularized Machine learning (ML) can handle large-scale data and, if properly trained, can give accurate 
results, especially in a sparse model13. ML algorithms could be applied for prediction of mortality risk and time 
to death and contribute to our understanding of risk factors and their interactions during dementia progression14. 
ML studies can give more accurate results than traditional statistical models since they offer more flexible alter-
natives in handling large-scale and heterogeneous data15. From a clinical viewpoint, achieving a high prediction 
accuracy in and of itself is not the primary goal. Rather, discovering the most important risk factors is often 
the primary clinical question. There are several ML strategies to develop time to death models. A recent study 
showed that Boosted Cox regression outperformed Cox proportional hazards and random forest algorithms for 
early detection and tracking of Alzheimer’s disease16.

Our previous studies using traditional statistical methods (e.g., Cox- proportional-hazards model) on the 
Swedish Registry for Cognitive/Dementia Disorders (SveDem) showed that age, sex, residency, population den-
sity, comorbidity burden, BMI, MMSE score, number of medications used and certain specific medications were 
significantly associated with time to death6–8,10,11,17,18. A limitation to such traditional statistical methods is that 
they do not identify the most important variables among all relevant variables, relying rather on a pre-existing 
suspicion of linear associations or hypothesis and testing only those associations. The ML algorithms can select 
a sub-set of the variables, rank them in order of importance (e.g., Gini coefficient) and then identify associations 
that were not suspected according to a priori hypothesis. The aim of this study was to identify variables associated 
with mortality risk in PWD and rank them in order of importance using sparsity-inducing ML classifiers. The 
aim was also to develop multivariable models using these variables of mortality risk and time to death. We also 
compared the predictive power of the classifiers to find the best model for predicting mortality risk in dementia.

Results
Patients characteristics.  Among 28,023 patients, 16,273 (58.07%) were women, and the mean age and 
BMI at the time of dementia diagnosis were 78.6 (SD = 7.85) years and 24.8 (SD = 4.39), respectively. The most 
common dementia type was Alzheimer’s disease (AD) 14,464 (51.61%, including early and late AD). The median 
MMSE score was 22.0 (Interquartile range (IQR) = 18–25) at the time of the diagnosis. The median time from 
referral to initiation of work-up and from initiation of work-up to diagnosis were 29 (IQR = 14–56) days and 
57 (IQR = 26–100) days, respectively. Cardiovascular disease, cancer, and depression were the most frequent 
comorbidities, present in 69%, 34.1%, and 28.42%, respectively. The median number of medications taken by the 
patients at the time of the diagnosis was 2 (IQR = 1–2). Additionally, cholinesterase inhibitors, statins, diuretics, 
and antidepressants were prescribed in 47.51%, 34.11%, 28.71%, and 27.1% of the included patients, respectively. 
A total of 66.29% (n = 18,576) patients had died by December 31, 2018. The median follow-up time was 1053 
(IQR = 516–1771) days in surviving and 1125 (IQR = 605–1770) days in dead patients (Table 1).
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Variable selection and model development.  After adjusting the effect of the follow up time by the 
statistical control strategy (i.e., including the confounder as control variable in the model), each classifier was 
combined with the three sparsity-inducing penalties (i.e., Elastic-net, SCAD, and MCP penalties). Then, we 
tested the combinations of the three sparsity-inducing penalties and three standard classifiers which resulted in 
nine different combinations to find the best performing models. The heatmap of the area under receiver operat-
ing characteristic curve (AUROC) values for each combination of the feature selection methods and the classi-
fiers is shown in Fig. 1. As illustrated, logistic regression (LR) with Elastic-net sparsity penalty, support vector 

Table 1.   Patient’s characteristics. Continuous variables are presented as mean ± SD or median (IQR: Q1-Q3), 
Categorical variables are presented as N (%).

Characteristics Unit/level Total (N = 28,023) Survivor (N = 9447) Dead (N = 18,576)

Age at diagnosis Years 78.63 ± 7.85 75.53 ± 8.05 80.21 ± 7.26

Sex Male 11,750 (41.92%) 3,561 (37.7%) 8189 (44.1%)

BMI Points 24.85 ± 4.38 25.40 ± 4.43 24.58 ± 4.34

Dementia type

Early Alzheimer’s disease (AD) 7140 (25.47%) 2108 (22.31%) 5032 (27.08%)

Late Alzheimer’s disease (AD) 7324 (26.13%) 2,079 (22%) 5245 (28.23%)

Mixed dementia in AD and 
vascular 6,725 (24%) 2,581 (27.32%) 4414 (22.30%)

Vascular dementia 3044 (10.86%) 549 (5.81%) 2495 (13.43%)

Other dementias 3790 (13.52%) 2,130 (22.54%) 1660 (8.93%)

Type of diagnostic unit
Primary care 22,920 (81.79%) 8,103 (85.77%) 14,817 (79.76%)

Memory clinic 5103 (18.21%) 1,344 (14.23%) 3759 (20.24%)

MMSE Score Points 22 (18–25) 23 (20–26) 21 (18–24)

Time from referral to initiation of 
work-up Days 29 (14–56) 29 (16–56) 29 (13–56)

Time from initiation of work-up to 
diagnosis Days 57 (26–100) 65 (35–111) 55 (21–94)

Physiotherapist assessment Yes 1719 (6.13%) 370 (3.91%) 1349 (7.26%)

Basic dementia diagnostic work-up Number of tests 2 (0–2) 2 (1–2) 2 (0–2)

Charlson comorbidity index Score 2 (1–3) 1 (1–3) 2 (1–3)

Diabetes mellitus Yes 4143 (14.8%) 1195 (12.6%) 2948 (15.9%)

Cancer Yes 9551 (34.1%) 3015 (31.9%) 6536 (35.2%)

Cardiovascular disease Yes 19,341 (69.01%) 6278 (66.45%) 13,063 (70.32%)

Depression Yes 7964 (28.42%) 2645 (28%) 5329 (28.69%)

Atrial fibrillation Yes 5044 (18%) 1328 (14.05%) 3882 (20.9%)

Renal disease Yes 683 (2.44%) 125 (1.32%) 558 (3%)

Acute Kidney Injury Yes 329 (1.17%) 78 (0.82%) 251 (1.3%)

Anemia Yes 1175 (4.19%) 300 (3.17%) 875 (4.71%)

Heart failure Yes 3407 (12.16%) 1083 (11.46%) 2324 (12.51%)

Alcohol related diagnosis Yes 991 (3.53%) 412 (4.36%) 579 (3.12%)

Liver failure Yes 250 (0.89%) 79 (0.83%) 171 (0.92%)

Total number of medications at the 
time of diagnosis Number 2 (1–3) 2 (1–2) 2 (1–3)

Calcium channel blockers Yes 6542 (23.34%) 2120 (22.44%) 4422 (23.8%)

Diuretics Yes 8046 (28.71%) 1861 (19.7%) 6185 (33.3%)

Statins Yes 9561 (34.11%) 3388 (35.86%) 6173 (33.23%)

Antidepressants Yes 7595 (27.1%) 2620 (27.73%) 4975 (26.78)

Cholinesterase inhibitors Yes 13,315 (47.51%) 5153 (54.54%) 8162 (43.93%)

Memantine Yes 3,188 (11.37%) 1117 (11.83%) 2053 (11.05%)

Antipsychotics Yes 1710 (6.1%) 565 (5.98%) 1142 (6.15%)

Classifica�on versus Regulariza�on Elas�c-Net SCAD MCP
14337.083337.055337.0noissergeRcitsigoL

Support Vector Machine 0.73756 0.73758 0.73748
95927.075927.085927.0krowteNlarueN

Figure 1.   Heatmap of AUROC values for combinations of feature selection methods and classifiers. The 
heatmap rows represent three classifiers, whereas the columns depict strategies variable selection/regularization 
methods.
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machines (SVM) with the smoothly clipped absolute deviation (SCAD) sparsity penalty, and the combination 
of backpropagation neural network (NN) with the minimax concave penalty (MCP) resulted in the highest 
performance with AUROC of 0.7336, 0.7376, and 0.7296, respectively. Based on the results of the best algorith-
mic combinations of binary classifiers and sparsity-inducing penalties, 38 associated variables were consistently 
selected and ranked by their importance value using the Elastic net-LR. Twenty-five associated variables were 
identified by the SCAD-SVM, and 40 variables were consistently identified by the MCP-NN algorithm (Table 2). 
Finally, 20 variables were consistently selected by all three algorithms (Fig. 2). Among these 20 variables, age at 
diagnosis, MMSE score, BMI, performance of basic dementia diagnostic work-up, time from referral to initia-
tion of work-up, time from initiation of work-up to diagnosis, and diuretics in the year preceding diagnosis had 
the highest importance value in prediction of mortality risk across the classifiers (100%, 90%, 89%, 85%, 67%, 
64%, and 51%, respectively).

Model performance and comparisons of predictive power.  Three subsets of the selected vari-
ables were used for binary classification of the mortality risk by LR, SVM, and NN with 100-times repetition 
in the testing set. Based on the classification metrics used for evaluating the predictive performance, the clas-
sifiers showed an approximately similar overall performance (Table 3). Accuracy (ACC), balanced error rate 
(BER), AUROC, sensitivity, and specificity were calculated based on the confusion (or classification) matrix 
for each classifier. The Elastic-net logistic regression had average ACC, BER, AUROC, sensitivity, and specific-
ity of 70.09%, 29.91%, 73.35%, 63.58%, and 73.83%, respectively. The same metrics for the SCAD-SVM were 
70.77%, 29.23%, 73.75%, 64.36%, and 74.0%, respectively. In addition, these metrics for MCP-NN were 69.59%, 
31.41%, 72.95%, 63.03%, and 71.96%, respectively. According to these results, the predictive performance of 
the SCAD-SVM was non-significantly better than others. The receiver operating characteristic curve (ROC) of 
different classifiers are provided in Fig. 3. The results of the DeLong test for statistical comparison of AUROCs 
between the classifiers showed no significant difference among the three classifiers based on their AUROC val-
ues (P-value = 0.249, SVM vs. NN; P-value = 0.498, LR vs. NN; P-value = 0.816, LR vs. SVM).

Survival modeling.  The median survival time from diagnosis of dementia was 1096 (IQR = 566–1771) days 
and the censoring (i.e., surviving) rate was 33.71%. Among the twenty selected variables by all three algorithms, 
15 variables were identified as highly important variables to predict time from diagnosis to death using the mul-
tivariable CoxBoost model. Among these variables, age at diagnosis (23%), MMSE score (15%), sex (14%), BMI 
(12%), and Charlson Comorbidity Index (CCI) (10%) were the most frequently selected by the CoxBoost model. 
All fifteen variables had significant effects on survival time among the patients, except atorvastatin and statin 
prescription in the year preceding dementia diagnosis where the p-values did not reach statistical significance. 
A higher age at diagnosis significantly increased the hazard rate of mortality (hazard ratio (HR) = 1.059, 95% CI 
1.056–1.063). In contrast, higher BMI, and MMSE score significantly decreased the hazard rate of mortality in 
patients (HR = 0.967, 95% CI 0.962–0.974 and HR = 0.945, 95% CI 0.941–0.949, respectively). Taking diuretics 
(HR = 0.692, 95% CI 0.657–0.729) and cholinesterase inhibitors (HR = 0.724 95% CI 0.689–0.761) significantly 
decreased the hazard rate of mortality in these patients (Table 4). The C-index and Gonen and Heller’s Concord-
ance Index (GHCI) of the CoxBoost model were 0.6987 and 0.6682, respectively indicating an acceptable fit.

Clustering dementia patients based on the selected variables.  The Rand index was calculated to 
assess discrimination power of the classification models using the unsupervised hierarchical clustering algo-
rithm. Based on similarities in the twenty selected variables associated with the mortality risk, Rand index was 
0.63 and matched well with surviving and dead patient clusters. According to the results of the hierarchical 
clustering, dead and surviving patients, two major clusters among surviving patients and three major clusters in 
dead patients were identified (Fig. 4). Based on the height of dendrograms, heterogeneity among dead patients 
was higher than surviving patients. In more detail, there were significant differences in age at diagnosis, BMI, 
and MMSE score among the three clusters of dead patients (P-values < 0.001). There was no significant differ-
ence between both clusters of surviving patients based on the identified variables. The optimal cut-point of 
dendrograms to find the number of clusters was done by maximizing the variability of the observations between 
clusters. The comparison of the dendrograms between dead and surviving patients showed that there was no 
similarity or correlation between dead and surviving patients based on the twenty selected variables (Cophenetic 
correlation coefficient = −0.00018). Therefore, the results of the clustering confirmed that these selected variables 
could discriminate between dead and surviving patients overall. (Fig. 5).

Sensitivity analysis.  A post-hoc sensitivity analysis was performed to evaluate the robustness of our find-
ings and assess the impact of missing data. This analysis involved examining the effect of different imputation 
methods and assumptions on the results, including last observation carried forward and locally weighted scat-
terplot smoothing. The results of the sensitivity analysis revealed variations in AUROC values across different 
imputation methods and somewhat improved AUROC values relative to the complete-case analysis. However, 
there is no guarantee to ensure that imputation analyses are unbiased. Eventually, the complete-case analysis was 
reported as the main finding in this study due to its simplicity.

Discussion
In this large national cohort study, three standard classification algorithms were applied and evaluated. These 
algorithms used different sparsity-inducing penalties to identify the most important variables associated with 
mortality risk in PWD. The study aimed to identify previously unsuspected variables which were associated 
with mortality risk in these patients, to rank them in order of importance, and to develop models to predict 
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Algorithm Selected variables Normalized importance value % P-value

Elastic net-regularized logistic 
regression (Alpha hyperparam-
eter:0.5, lambda tuning’s param-
eter:0.006196)

Age at dementia diagnosis 100  < 0.001

MMSE score 85  < 0.001

BMI 74  < 0.001

Basic dementia diagnostic work-up 56  < 0.001

Diuretics 45  < 0.001

Time from referral to initiation of work-up 42 0.367

Time from initiation of work-up to diagnosis 37  < 0.001

Atorvastatin 35  < 0.001

Statins 35  < 0.001

Cholinesterase inhibitors 32  < 0.001

Rosuvastatin 32  < 0.001

Heart failure 31 0.012

Charlson comorbidity index 27  < 0.001

Dementia medications 25  < 0.001

Physiotherapist assessment 22  < 0.001

Place of residency 21 0.001

Fluvastatin 21 0.421

Alcohol related diagnosis 17  < 0.001

Renal disease 15  < 0.001

Total number of medications at baseline 14  < 0.001

Municipality 13 0.626

Sex 12  < 0.001

Liver failure 12 0.062

Atrial fibrillation 11  < 0.001

Anemia 11  < 0.001

Ischemic heart failure 10  < 0.001

Dementia type 9  < 0.001

Diabetes mellitus 8  < 0.001

Renin-angiotensin system inhibitors 8 0.635

Renin-angiotensin system inhibitors two or more years before 
dementia diagnosis 8 0.449

Losartan 6 0.001

Antidepressants 3 0.135

Irbesartan 3 0.78

Acute Kidney Injury 2 0.003

Cancer 2 0.002

Stroke 2  < 0.001

Captopril 2 0.038

Calcium channel blockers 2 0.367

SCAD-regularized SVM (Kernel: 
sigmoid, Number of Support 
Vectors: 18,673, lambda tuning’s 
parameter:0.010)

Age at dementia diagnosis 100  < 0.001

MMSE score 90  < 0.001

Basic dementia diagnostic work-up 85  < 0.001

BMI 83  < 0.001

Time from referral to diagnosis 68  < 0.001

Time from referral to initiation of work-up 67 0.367

Time from initiation of work-up to diagnosis 64  < 0.001

Physiotherapist assessment 50  < 0.001

Charlson comorbidity index 39  < 0.001

Diuretics 35  < 0.001

Sex 33  < 0.001

Dementia medications 25  < 0.001

Atorvastatin 25  < 0.001

Heart failure 23 0.012

Care unit (primary care vs specialist care) 22  < 0.001

Rosuvastatin 21  < 0.001

Statins 18  < 0.001

Simvastatin 17 0.722

Continued
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mortality risk. We found that the diagnostic model generated by SCAD-SVM achieved a greater predictive 
performance but the differences were not significant between SCAD-SVM with MCP-NN and Elastic-net LR. 

Algorithm Selected variables Normalized importance value % P-value

Total number of medications at baseline 14  < 0.001

Diabetes mellitus 7  < 0.001

Renin-angiotensin system inhibitors two or more years before 
dementia diagnosis 7 0.449

Hypertension 5  < 0.001

Acute Kidney Injury 3 0.003

Cancer 2 0.002

Liver failure 2 0.062

MCP-regularized Backpropaga-
tion Neural Network (Softmax 
activation function, lambda tun-
ing’s parameter:0.0020)

Age at dementia diagnosis 100  < 0.001

BMI 89  < 0.001

MMSE score 75  < 0.001

Diuretics 51  < 0.001

Time from referral to initiation of work-up 44 0.367

Time from initiation of work-up to diagnosis 42  < 0.001

Atorvastatin 34  < 0.001

Basic dementia diagnostic work-up 30  < 0.001

Sex 25  < 0.001

Charlson comorbidity index 21  < 0.001

Dementia medications 20  < 0.001

Municipality 18 0.626

Total number of medications at baseline 16  < 0.001

Heart failure 16 0.012

Physiotherapist assessment 14  < 0.001

Care unit (primary care vs specialist care) 14  < 0.001

Cholinesterase inhibitors 13  < 0.001

Atrial fibrillation 13  < 0.001

Rosuvastatin 12  < 0.001

Place of residency 11 0.001

Alcohol related diagnosis 10  < 0.001

Renin-angiotensin system inhibitors 9 0.635

Renin-angiotensin system inhibitors two or more years before 
dementia diagnosis 9 0.449

Dementia type 8  < 0.001

Diabetes mellitus 8  < 0.001

Blood tests 7 0.902

Losartan 7 0.001

Statins 7  < 0.001

Antidepressants 4 0.135

Cardiovascular medication at diagnosis 4  < 0.001

Renal disease 4  < 0.001

Cancer 3 0.002

Irbesartan 3 0.78

Liver failure 3 0.062

Captopril 2 0.038

Valsartan 2 0.096

Calcium channel blockers 2 0.367

Heart failure 2 0.359

Fluvastatin 1 0.421

Anemia 1  < 0.001

Table 2.   Selected variables to predict mortality risk based on the training set (N = 18,682) using Elastic-net 
logistic regression (“glmnet” R package), SCAD- support vector machine (“penalizedSVM” R package), and 
MCP- neural network algorithm with repeated tenfold cross-validation in the training set (“neuralnet” and 
“ncvreg” R packages). P-values were reported using simple logistic regression, importance values were reported 
based on Gini index.
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Figure 2.   Heatmap for 45 selected variables based on their normalized importance value (%) in each classifier, 
combined with the three sparsity-inducing penalties. From these variables, twenty variables were consistently 
identified by all three algorithms.

Table 3.   Comparisons of median classification indices between algorithms based on the selected features 
related to mortality status using elastic net-penalized logistic regression (“glmnet” R package), SCAD-
penalized support vector machine with Sigmoid Kernel (“penalizedSVM” R package) and MCP- neural 
networks (“neuralnet” R package) repeated 100 times in the testing set (N = 9341). ACC: accuracy, AUROC: 
area under receiver operating characteristic curve, BER: balanced error rate.

Algorithm Number of selected variables ACC​ BER AUROC Sensitivity Specificity

Elastic-net logistic regression 38 0.7009 0.2991 0.7335 0.6358 0.7383

SCAD-SVM 25 0.7077 0.2923 0.7375 0.6436 0.740

MCP-neural network 40 0.6959 0.3141 0.7295 0.6303 0.7196
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Figure 3.   (A) ROC curve for all selected features by Elastic net-logistic regression classifier for predicting 
mortality risk based on the testing set (AUROC: 73.35%, 95% C.I 72.25–74.36%). (B) ROC curve for all selected 
features by SCAD-SVM classifier for predicting mortality risk based on the testing set (AUROC: 73.75%, 95% 
C.I: 72.64–74.75%). (C) ROC curve for MCP- neural network classifier for predicting mortality risk based on 
the testing set (AUROC: 72.95%, 95% C.I 71.85–73.95%).
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The twenty selected variables were the same in all three algorithms. Both SVM and NN are margin-based clas-
sifiers and can model non-linear decision boundaries. LR had a similar classification performance in our study. 
A previous study found LR to have similar classification performance to NN and SVM in predicting diabetes 
risk19. The predictive power of SCAD-SVM in our study was AUROC = 0.7375 which is higher than the value 
calculated in another study in PWD20. Results of the survival analysis by the CoxBoost model showed fifteen 
variables further selected as highly important predictors for time to death in PWD. Our results from the survival 
model (i.e., C-index = 0.6987) are consistent with previous cohort studies on large-scale populations and our 

Figure 3.   (continued)

Table 4.   Multivariable survival analysis for assessing the effects of the twenty-selected variables by the 
CoxBoost modeling (“CoxBoost”R package) with holdout validation (2/3 training and 1/3 testing samples). 
HR: Hazard Ratio, 95% CI 95% Confidence Interval, adj. P-value: adjusted P-value by Benjamini–Hochberg 
Procedure, Ref.: reference level, selection frequencies were calculated by the cox-boost model, NS: not 
selected by the cox-boost model, NA: not applicable, GHCI: Gonen and Heller’s Concordance Index, C-index: 
Chambless and Diao’s estimator of cumulative/dynamic AUC for right-censored time-to-event data, Number 
of boosting iterations in the CoxBoost model was 100.

Selected variable HR (95% C.I) P-value Adj. P-value Selection frequencies C-index GHCI

Age at dementia diagnosis 1.059 (1.056–1.063)  < 0.00001  < 0.00001 23% 0.6887 0.6682

MMSE score 0.945 (0.941–0.949)  < 0.00001  < 0.00001 15%

BMI 0.967 (0.962–0.974)  < 0.00001  < 0.00001 12%

Basic dementia diagnostic work-up NA NA NA NS

Time from referral to initiation of work-up (days) 1.001 (1.001–1.002)  < 0.00009  < 0.001 3%

Time from initiation of work-up to diagnosis (days) 1.001 (1.001–1.001)  < 0.00001  < 0.00001 2%

Physiotherapist assessment (no-ref.) NA NA NA NS

Diuretics (no-ref.) 0.692 (0.657–0.729)  <  < 0.00001  < 0.00001 6%

Charlson comorbidity index 1.141 (1.127–1.154)  < 0.00001  < 0.00001 10%

Atorvastatin (no-ref.) 0.938 (0.829–1.060) 0.305 0.305 1%

Rosuvastatin (no-ref.) 0.645 (0.473–0.881) 0.005  < 0.01 1%

Statins (no-ref.) 0.959 (0.911–1.011) 0.121 0.211 2%

Sex (female-ref.) 1.252 (1.191–1.314)  < 0.00001  < 0.00001 14%

Heart failure (no-ref.) NA NA NA NS

Cholinesterase inhibitors (no-ref.) 0.724 (0.689–0.761)  < 0.00001  < 0.00001 6%

Total number of medications at the time of diagnosis NA NA NA NS

Liver failure (no-ref.) NA NA NA NS

Diabetes mellitus (no-ref.) 1.298 (1.215–1.387)  < 0.00001  < 0.00001 1%

renin-angiotensin system inhibitors two or more years before dementia diagno-
sis (no-ref.) 1.246 (1.185–1.310)  < 0.00001  < 0.00001 3%

Cancer (no-ref.) 1.311 (1.245–1.379)  < 0.00001  < 0.00001 1%



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9480  | https://doi.org/10.1038/s41598-023-36362-3

www.nature.com/scientificreports/

previous work on SveDem. Previous studies on SveDem showed that age, sex, residency, population density, 
comorbidity burden, MMSE score, BMI, number of medications used, and certain specific medications were 
significantly associated with time to death using Cox-Proportional Hazards model which C-index was between 
0.65 and 0.727,8,10,11,17,18. According to the comparison of the dendrograms between dead and surviving patients, 
there was no correlation between dead and surviving clusters based on the similarities of the selected variables 
(Cophenetic correlation coefficient = −0.00018). This means that these variables (i.e., age at diagnosis, BMI, 
and MMSE score) were significantly different between dead and surviving patients. This unsupervised cluster-
ing algorithm confirmed the discrimination power, validated the findings of the classification algorithms, and 
strengthened the results.

Classification and prediction models play significant roles in data analysis to build a diagnostic or prognostic 
model. There are many algorithms for classification and prediction tasks in the machine learning field. Among 
them, SVM and NN are two standard algorithms for classification in many situations (e.g., handling nonlinear 
classification and high-dimensional data)21,22. The NN algorithm is based on a more powerful and adaptive 
nonlinear equation form and can learn complex functional associations between the input and output data23. 
As a classifier, LR is much more popular than SVM and NN classifiers because it is easier to interpret. However, 
achieving a high prediction performance is not the primary goal, rather, identifying the most relevant variables 
is often the primary computational question. Therefore, variable selection methods (e.g., regularization) could 
be of great help by automatically connecting with many classification algorithms to avoid overfitting24,25. Variable 
selection methods can achieve the best subset of the most relevant variables for prediction and classification. 
As an important phase of classification and prediction, variable selection also improves predictive power while 

Figure 4.   (A) Hierarchical clustering of the surviving patients (n = 9447), (B) Hierarchical clustering of the 
dead patients (n = 18,576) based on the twenty-selected variables to predict mortality risk.
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avoiding overfitting. Wrapper methods evaluate subsets of variables by training and testing the model on different 
combinations of variables. Wrapper methods are computationally expensive because they involve training and 
testing the model multiple times for different variable combinations. They are often used when the number of 
variables is relatively small. On the other hand, embedded methods are a group of variable selection methods car-
rying out variable selection within learning classifiers to achieve better computational efficiency and performance 
compared to wrapper methods. In other words, embedded methods are less computationally expensive and less 
prone to overfitting than the wrapper methods26. Regularization methods are effective embedded variable selec-
tion methods that provide an automatic variable selection within learning classifiers (e.g. LR and SVM)27,28. With 
different penalties, several sparsity variable selection methods can be applied. LASSO as the L1-norm penalty is 
considered as one of the most popular procedures in the class of sparse penalties. However, the result from this 
penalty is inconsistent. To overcome this limitation, Elastic-net penalty, as a convex combination of the LASSO 
and ridge penalty, can be helpful. Experiment and simulation studies have demonstrated that the Elastic-net 
often outperforms the LASSO for variable selection in classification task28,29. The MCP is very similar to the 
SCAD penalty. Both MCP and SCAD are non-convex or concave and enjoy the oracle property and unbiased 
estimates30. MCP performs well when there are many rather sparse groups of predictors. The main limitation of 
MCP and SCAD is when the non-zero coefficients are clustered into tight groups; as they tend to select too few 
groups and make insufficient use of the grouping information31.

Using different machine learning algorithms, we found that sociodemographics, cognition as measured by 
MMSE, comorbidities and drug utilization were the most important predictors of mortality risk. It is perhaps 
simpler to compare the results from the survival algorithm (i.e., CoxBoost) which most closely resemble the 
published literature using Cox-proportional hazards regression. We observed that high age, male sex, low BMI 
and MMSE predicted mortality risk of PWD. This result was in line with previous studies using data from Sve-
Dem, in which higher BMI was significantly associated with lower mortality risk6. This “obesity paradox” or 
reverse epidemiology has frequently been described in dementia and other conditions32. Preceding studies also 
showed that living situation was associated with mortality risk of PWD18. Unsurprisingly, higher MMSE score 
was significantly associated with lower mortality risk, as consistently shown in prior studies on SveDem and 
other cohorts4,33,34. In a previous study on SveDem, MMSE score was a significant predictor of mortality with 
HR = 0.964 (95% CI 0.962–0.967) per point of MMSE (≈4% risk decrease) among PWD registered in primary 
care and HR = 0.952 (95% CI 0.949–0.955) among PWD registered in a memory clinic18. This effect size is the 
same as the one calculated here with the Boosted Cox model (HR = 0.945; 95% CI 0.941–0.949). Comorbidities 
which were significantly associated with time to death in this study included diabetes and cancer. PWD with 
higher CCI also had significantly higher mortality risk with an effect size similar to the one reported by traditional 
multivariable Cox-proportional hazard regression performed on this same cohort18. However, previous stud-
ies found that mortality risk of PWD was higher among PWD suffering stroke35–37, which was identified as an 
important predictor for mortality by the Elastic-net LR algorithm. Despite some of these variables being familiar 
from previous research, the order of importance was sometimes surprising, for example, the high importance 
of BMI relative to other predictors.

Regarding drug utilization among PWD, we observed that the use of diuretics or rosuvastatin (but not 
statins in general or atorvastatin) was significantly associated with lower mortality risk. In another recent study 
using SveDem data, incident users of statins had a significantly lower risk of all-cause death (HR = 0.82, 95% CI 
0.74–0.91) compared to non-users38. That study was propensity-score matched and included a somewhat older 
cohort which might explain the discrepancy. The use of diuretics might reflect comorbidities (e.g., hypertension) 

Figure 5.   Statistical comparison of dendrogram between surviving-patients (right side) and dead-patients 
(left side) (Cophenetic correlation coefficient = −0.00018). This coefficient indicated that there is no similarity 
between dead and surviving-clusters based on the twenty-selected variables.
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which could explain the association. We also found that consuming renin-angiotensin system inhibitors two 
or more years prior to dementia diagnosis significantly increased mortality risk of PWD, which is at odds with 
our expectations. It is possible that in this patient selection, the chronic use of renin-angiotensin inhibitors was 
confounded by the indication for treatment. Different types of drug utilization previously associated with mor-
tality risk of PWD include glucose-lowering drugs, cholinesterase inhibitors, antipsychotics, anticholinergics, 
atrial fibrillation medications, and antidepressants17,39–44. The total number of medications at time of diagnosis 
and number of dementia medications were identified by all three algorithms matched our previous studies4,17.

Dementia type was identified by the Elastic net-LR and MCP-NN as a significant and important predictor 
of mortality risk and was also a strong predictor of mortality risk and survival time in our previous studies4,18.

What is most interesting is that the ML algorithm detected variables which we had not thought to explore 
in our cohort (factors without an “a priori” or pre-specified hypothesis). This was the case for the time between 
referral and initiation of diagnostic work-up and time from diagnostic work-up to diagnosis. These variables 
were identified by the algorithm with 3% and 2% of selection frequencies, respectively, and warrant further 
examination in future studies since they suggest a deleterious effect of long waiting lists on survival. The C-index 
for the CoxBoost model was 0.69 showing acceptable calibration in the testing set. However, a prior study from 
SveDem using forward selection of covariates arrived at a C-index of 0.705 including age, MMSE score, CCI 
score, dementia type, sex, living situation, and drugs in a Cox-proportional hazards model18. The clinical utility 
of this study lies in identifying several new predictors associated with mortality risk and which are potentially 
modifiable, since they are related to waiting lists. Also interesting is the ranking of predictors in order of impor-
tance, which can potentially help prioritize interventions and identify patients at risk. This may be a starting step 
to developing an individual model for each patient, as part of personalized medicine.

The most notable strength of this study was the large size of studied cohort and linkage of national registers. 
SveDem is the largest clinical dementia register in the world45,46. In addition, the Swedish National Patient Reg-
ister (NPR) was also employed which covered all inpatient and specialist medical diagnoses. Furthermore, the 
data on dementia subtypes from SveDem was a unique feature of this study. Using different linear and non-linear 
ML algorithms, reducing omitted-variable bias by application of three different sparsity-inducing penalties and 
confirmation by an unsupervised clustering algorithm are other advantages of this study. However, there are some 
limitations that should not be neglected. Missing data is a weakness of this register-based study. Due to the high 
number of included predictors, only 28,023 patients (out of 80,004 PWD registered in SveDem) had complete 
data on all sixty potentially associated variables. We conducted a sensitivity analysis with different methods of 
imputation. We chose to keep the complete-case analysis as the main finding of the study because of the high 
percentage of imputed values and because the assumption for the imputation were not met, which could intro-
duce bias. The NPR includes all inpatient medical diagnoses and outpatient care in Sweden but does not cover 
diagnoses in primary care. Thus, the prevalence of diseases, as well as the influence of Charlson Comorbidity 
Index on the algorithms might have been underestimated here. Moreover, the Swedish Prescribed Drug Registry 
(PDR) covers all prescription drugs sold in pharmacies in Sweden but does not include over-the-counter drugs 
or those administered during hospitalization.

Conclusion
In this national dementia cohort study (i.e., SveDem), we applied different standard ML classifiers with three 
sparsity-inducing penalties to consistently identify important variables associated with mortality risk. The ML 
algorithms not only replicated some of the previously known findings but also ranked variables by importance, 
showing that higher age, male sex, low MMSE and low BMI were the most important predictors of death. They 
also identified new important variables such as performance of basic dementia diagnostic work-up, time of 
referral to initiation of work-up, time of initiation of work-up to diagnosis, and the use of diuretics. This study 
highlights the value of employing ML algorithms as a valuable addition to our analytical arsenal. ML can comple-
ment traditional statistical methods, particularly when dealing with large-scale, sparse, and heterogeneous data. 
Overall, this study demonstrates the potential of ML algorithms in improving our understanding of mortality 
risk factors in patients with dementia and their potential application in clinical settings.

Methods
Study participants.  The Swedish Registry for Cognitive/Dementia Disorders Registry (SveDem) is a 
national quality-registry established in 2007 with the aim to register all patients with dementia in Sweden at the 
time of diagnosis and conduct follow-ups to improve dementia diagnostics and care47,48. SveDem can be merged 
with other registries using the Swedish unique personal identification number. This study included 60 variables 
potentially related to mortality status from SveDem and other registries and selected from the literature and 
our clinical knowledge and understanding of the registries: information on the patient’s demographics, living 
arrangements, date of diagnosis, co-morbidities, and medications taken at the time of the dementia diagnosis 
(baseline). Medication usage history was obtained from the Swedish Prescribed Drug Registry (PDR). The PDR 
was established in July 2005 and contains data on all prescribed drugs dispensed at pharmacies in Sweden49. 
Comorbidities were obtained from the Swedish National Patient Registry (NPR) which covers data on health 
care episodes in inpatient and outpatient specialist care and includes four different groups of data; demographic/
patient data, geographical data, administrative, and medical data50. The date of death was ascertained from the 
Swedish Cause of Death Registry until December 31, 2018. From 80,004 patients registered in SveDem between 
2007 and 2018, we included 28,023 persons diagnosed with no missing data on any of the sixty potentially 
predictors for a complete case analysis (CCA) in the ML algorithms. To avoid selection bias, missing at random 
was checked (i.e., the chance of data being missing was unrelated to any of the predictors involved in our analy-
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sis). The TRIPOD statement was reported for good reporting of the developing and validating multivariable 
prediction models in this study (Supplementary Information).

Exposures and outcomes.  Based on the literature review, recommendations from the clinicians (SGP 
and ME), and omitting poor quality/bad implementation variables, sixty variables were considered as potential 
predictors of mortality in the ML algorithms. These variables included age at dementia diagnosis, sex, dementia 
types, BMI, MMSE score, living situation (alone vs with another adult), residency (at home vs nursing home), 
performance of the basic dementia diagnostic work-up, types of diagnostic units (primary vs specialist care), 
time from referral to initiation of work-up, time from initiation of work-up to diagnosis, dementia medications 
(e.g., cholinesterase-inhibitors, memantine), total number of medications taken at time of dementia diagnosis, 
Charlson Comorbidity Index (CCI), comorbidities, and some specific medications for chronic comorbidities 
(e.g., antihypertensive, statins). The basic dementia work-up is defined by the Swedish Board of Health and 
Welfare51 and includes a structured clinical interview, an evaluation of the physical and psychological situation 
of the patient, an interview with a knowledgeable informer, MMSE, clock test, blood analyses, and neuroimag-
ing. The last four of these are included as variables in SveDem and combined into the variable “basic dementia 
work-up” to be followed as a quality indicator for care. The study outcome was all-cause death. Patients were 
followed from the dementia diagnosis date to death or the end of follow up (31 December 2018).

Variable selection, classification and evaluation.  For the variable selection process, different spar-
sity-inducing penalties were used to remove irrelevant or redundant variables. There are generally three main 
categories of variable selection methods: wrapper methods, filter methods, and embedded methods. Wrapper 
methods evaluate subsets of variables by training and testing the model on different combinations of variables. 
The wrapper methods are often used when the number of variables is relatively small due to being computa-
tionally expensive. Filter methods assess variables independently of the model and consider their correlations 
with the outcome variable. The main disadvantage of filter methods is that they ignore variable dependencies. 
Embedded methods incorporate the variable selection process into the model building algorithm itself. These 
methods typically use regularization techniques to select the importance of certain variables (e.g., Elastic-net)52. 
To avoid omitted-variable bias (OVB) (i.e., missing out any important variables), regularization methods as 
effective embedded variable selection methods were applied by three different penalties: Elastic-Net, Smoothly 
Clipped Absolute Deviation (SCAD), and minimax concave penalty (MCP). All these overcome the limitations 
of traditional variable selection methods; for example, stepwise logistic regression requires large sample sizes 
and is more computationally expensive than these methods. Elastic-net linearly combines L1 and L2 penalties, 
uniting the strengths of both Least Absolute Shrinkage and Selection Operator (LASSO) (L1) and ridge (L2)28. 
This is important because LASSO penalty is suitable for variable selection but not for group selection and it 
tends to give biased estimations. We suspected that our exposure variables were correlated and LASSO tends 
to select only one among correlated variables. So, group selection methods (e.g., Elastic-net) were important in 
our study28. Elastic-net penalty is suitable for multi-collinearity and grouped selection situations (like ridge-L2 
penalty) and it has good performance for simultaneous estimation and variable selection (similar to LASSO-L1 
penalty)28. Elastic-net penalty has a strictly convex loss function and, therefore, a unique solution/global opti-
mum and parameter estimation (oracle properties)28,53. On the other hand, SCAD and MCP penalties are non-
convex optimizations which means that there are more than one local optimum and they are computationally 
harder than LASSO or Elastic-net. Additionally, we can only obtain a local optimum with these penalties and not 
the global optimum. MCP, SCAD and Elastic-net all assign zero-coefficients to non-identified variables. SCAD 
and MCP have less biased estimates than Elastic-net for the non-zero coefficients, i.e. the selected variables54. 
Moreover, MCP’s advantage over SCAD is giving less biased coefficients in sparse models55. Both MCP and 
SCAD penalties outperform Elastic-net based on their less biased estimation of the coefficients while Elastic-net 
has the advantage of giving a unique parameter estimation. MCP and SCAD penalties suffer when the identified 
variables are clustered into tight groups as they tend to select too few groups and make insufficient use of the 
grouping information31. All these penalties have some tuning parameters. Estimation of the best value for tuning 
parameters is important to decide how many variables are to be selected. We applied 100-times repeated 10-fold 
cross-validation technique to estimate the tuning parameters and establish consistency in the variable selection 
processing in the training set53.

For the binary classification of mortality risk, we used three standard classifiers including LR, SVM, and NN. 
LR is one of the most common classifiers used in epidemiological studies and is based on a linear decision bound-
ary. When non-linear relationships exist, a nonlinear decision boundary may result in better overall performance. 
SVM and NN are designed to generate more complex decision boundaries. In other words, both classifiers can 
detect nonlinear relationships between outcome and predictors. SVM (e.g., sigmoid kernel) has the advantage 
of taking non-linear associations and mapping them into linear boundaries improving interpretability, whereas 
NN has several hidden layers and, hence, interpretation of its classification decision is difficult. NN requires 
more complex computations to train the algorithm compared with LR and SVM. SVM can include varying 
degrees of non-linearity and flexibility by using different kernel functions. Unlike LR and NN, classification 
results of SVM are purely dichotomous whereas LR and NN give a probability of class membership. Overfitting 
is less of an issue in LR because LR is less sensitive to training samples compared to NN and SVM algorithms. In 
contrast, NN is more complex and, thus, more susceptible to overfitting than LR and SVM56. To overcome this 
issue, regularization methods (i.e., sparsity-inducing penalties) could be helpful56,57. Finally, we used sigmoid 
kernel for the SVM and Softmax activation function with one hidden layer and 10 hidden neurons for the NN 
algorithm in this study. Each classifier was combined with all three penalties/regularization methods to perform 
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variable selection and binary classification simultaneously. The importance values in each model were calculated 
based on the Gini index with normalization.

The final step in the mortality classification was to check for overfitting. This was done using the holdout 
method where all samples in the dataset were randomly divided into 66.6% (18,682 samples) and 33.4% (9341 
samples) as training and testing sets, respectively. Accuracy (ACC), balanced error rate (BER), area-under-curve 
measure associated with receiver-operating-curve (AUROC), sensitivity and specificity were reported for the test 
set as the classification metrics of the performance on the testing samples. Statistical comparison of AUROCs 
among the different classifiers was performed by the DeLong test to identify the best algorithmic combinations 
of binary classifiers and sparsity-inducing penalties for the mortality risk prediction58. All statistical analyses 
were performed by “glmnet”, “penalizedSVM”, “neuralnet”, “ncvreg”, and “pROC” R packages21,59–61.

Survival modeling.  CoxBoost was used to develop a robust survival model based on the selected variables 
in all combinations of classifiers and sparsity-inducing penalties (i.e., Elastic net-LR, SCAD-SVM, and MCP-
NN). This survival model can be applied to fit the sparse survival models and this enables us to consider some 
mandatory covariates in the model based on the likelihood-based boosting62,63. Previous studies have shown 
that CoxBoost has a high goodness of fit compared to a Cox proportional hazard model where there are many 
predictors; since it allows mandatory covariates with unpenalized parameter estimates62,64. Boosting is a popular 
iterative technique used in survival analysis with a high flexibility for the selection of the candidate variables 
and ease of interpretation. Boosting is also applicable in many situations where the assumption of proportional 
hazard (PH) does not exactly hold65. In our case, we used “CoxBoost” R package66. The model was trained by 
2/3 samples (18,682 training samples) and tested on 1/3 samples (9,341 testing samples). The concordance index 
(C-index), as an evaluation metric of survival models, is a weighted average of the area under time-specific 
ROC curves (time-dependent AUC)67. The C-index and Gonen and Heller’s Concordance Index (GHCI) were 
reported to assess the performance of the survival model in the testing set68.

Hierarchical clustering.  To validate the identified variables by an unsupervised clustering algorithm, 
agglomerative hierarchical clustering and Rand index were applied to assess discrimination power of the clas-
sifiers that match well with surviving and dead patient clusters69. For clustering of the patients in surviving and 
dead groups, the data were divided into two datasets of surviving and dead patients. Then, the agglomerative 
clustering algorithm was run separately on each dataset to identify clusters of the patients based on the similari-
ties in the identified variables. The clustering results for the surviving and dead patient groups were compared to 
confirm the presence of considerable differences based on the identified variables between dead and surviving 
patients. More technically, this hierarchical clustering algorithm was performed by “binary” distance measure 
and the “ward.D2” method. We compared dendrograms in dead and surviving clusters by the Cophenetic corre-
lation coefficient and permutation test/10-times70. The “cluster”, “dendextend”, and “factoextra” R packages were 
applied for clustering, comparison of dendrograms, and visualization, respectively71.

All statistical analyses were performed using R software version 4.1.1 (The R Foundation for Statistical Com-
puting). The significant level was considered at a level of 0.05. Figure 6 summarizes the different computational 
steps adopted in this study.

Ethical approval and consent to participate.  This project was approved by the Swedish Ethical Review 
Authority with the reference number (#2021–0043) and was performed based on the Declaration of Helsinki 
guidelines. Patients were informed about registration in SveDem at the time of their dementia diagnosis and 

Figure 6.   The flowchart of this study represents the different machine learning steps.
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gave informed consent to obtain information on their registration any time and could withdraw consent later. 
Data were de-identified by Swedish authorities before delivery to the research team.

Data availability
The data are not available for public access following Swedish and EU legislation. Researchers may apply to obtain 
data from Swedish registries after obtaining ethical approval, following the standard rules and regulations, and 
applying to the steering committees of the registries and to the relevant government authorities.
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