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Effect of the molar ratio of  (Ni2+ 
and  Fe3+) on the magnetic, 
optical and antibacterial 
properties of ternary metal oxide 
CdO–NiO–Fe2O3 nanocomposites
Asma A. A. Al‑Mushki 1, Abdullah A. A. Ahmed 1*, A. M. Abdulwahab 1, Salem A. S. Qaid 1,2, 
Nasser S. Alzayed 2, Mohammed Shahabuddin 2, Jameel M. A. Abduljalil 3 & Fuad A. A. Saad 3

In this work, the effect of the molar ratio of  (Ni2+ and  Fe3+) on the properties of CdO–NiO–Fe2O3 
nanocomposites was investigated. The synthesis of CdO–NiO–Fe2O3 nanocomposites was carried 
out by self‑combustion. XRD, UV–Vis, PL and VSM were used to describe the physical properties of 
the materials. The results showed significant progress in structural and optical properties supporting 
antibacterial activity. For all samples, the particle size decreased from 28.96 to 24.95 nm with 
increasing  Ni2+ content and decreasing  Fe3+ content, as shown by the XRD pattern, which also shows 
the crystal structure of cubic CdO, cubic NiO, and cubic γ‑Fe2O3 spinel. The  Ni2+ and  Fe3+ contents 
in the CdO–NiO–Fe2O3 nanocomposites have also been shown to enhance the ferromagnetic 
properties. Due to the significant coupling between  Fe2O3 and NiO, the coercivity  Hc values of the 
samples increase from 66.4 to 266 Oe. The potential of the nanocomposites for antibacterial activity 
was investigated against Gram‑positive (Staphylococcus aureus) and Gram‑negative (Pseudomonas 
aeruginosa, Escherichia coli, and Moraxella catarrhalis) bacteria. Comparison of P. aeruginosa with 
E. coli, S. aureus and M. catarrhalis showed that it has a stronger antibacterial activity with a ZOI of 
25 mm.

The synthesis of nanomaterials is at the heart of the current research field of nanotechnology, which offers a 
wide range of interesting applications, e.g. in the fields of electrochemistry, biomedicine, catalysis, cosmetics, 
electronics, optics and optical devices, energy science, mechanics, food technology, healthcare, sensors, textile 
technology, space technology and  pharmaceuticals1–8.

CdO is a well-known n-type semiconductor with piezoelectric properties and polycrystalline  nature4,9. As a 
result, cadmium oxide nanoparticles (CdO NPs) are extensively used in various applications, including photovol-
taic cells, photodiodes, transparent electrodes, gas sensors, infrared detectors, liquid crystal displays, antireflective 
coatings, and solar  cells10–13. CdO is an excellent photocatalyst for photocatalytic applications due to its ability 
to absorb visible light and its high carrier  mobility14,15. Due to their unusual physiochemical properties, CdO 
NPs are effective against malaria, bacteria, tuberculosis, and  cancer4,9,16.

Fe2O3, an environmentally friendly semiconducting oxide material, is widely used in biomedicine, cata-
lysts, and batteries. Apart from these applications,  Fe2O3 is a promising candidate for a variety of technologi-
cal  applications17.  Fe2O3 has shown promise for applications such as drug delivery, organic impurity removal, 
and MRI  imaging18,19. Due to its high surface-to-volume ratio,  Fe2O3 with nanometric dimensions exhibits 
modified  properties20,21. Due to their superparamagnetic properties, nontoxicity, and biocompatibility, they are 
becoming increasingly popular. It is promising as catalytic material, absorbent, magnetic recording device, ion 
exchanger, gas sensor and other applications. Iron oxide is the most stable and environmentally friendly oxide 
in the  world22–24.
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NiO is one of the most important transition metal oxides with a wide range of properties when reacting with 
polar surface materials and is used in a variety of applications due to its excellent chemical and thermal stability, 
antibacterial activity, environmental friendliness and industrial  use25.

The capabilities of the individual metal oxides have been greatly enhanced by combining them into innovative 
nanocomposites, opening up new possibilities for applications in photocatalysis, electro- and optoelectronics, 
and  biology26.

The synthesis of CdO–NiO–ZnO nanocomposites for photocatalytic and antibacterial properties was dis-
cussed by Karthik et al. Together with tested foodborne pathogens, the nanocomposite showed strong anti-
bacterial  activity27. Karthik et al. have reported CdO–NiO nanocomposites. The composite showed significant 
antibacterial activity against foodborne  pathogens28. Tushar et al. reported the antibacterial activity of α-Fe2O3-
ZnO in the core  shell29. Balamurugan et al. reported the preparation of CdO-Al2O3-NiO nanocomposites for 
photocatalytic and magnetic properties. The composite exhibited weak ferrimagnetic assemblies, making it 
suitable for magnetic  applications30. Gnanamoorthy et al. have reported rGO/ZnCo2O4 nanocomposites and 
x-CuTiAP nanospheres for antimicrobial applications. The nanocomposites showed antimicrobial  activity31,32.

This work aims to investigate the effects of the conditions for the preparation of CdO-NiO-Fe2O3 nanocom-
posites by the self-combustion method on the structural, optical, magnetic and antibacterial activity.

Experiment
Materials. Cadmium nitrate tetrahydrate (Cd(NO3)2·4H2O, Scharlau, 99%), nickel nitrate hexahydrate (Ni 
 (NO3)2·6H2O, Fluka, 98%), iron nitrate nonahydrate (III) (Fe  (NO3)3·9H2O, Scharlau, extra pure), polyvinyl 
alcohol cold water soluble ((–CH2CHOH–)n, HIMEDIA, 99.99%), and deionized water (DW) were used for the 
present work. The chemical materials were used in this work without further purification.

Sample preparation. The CdO–NiO–Fe2O3 nanocomposites were prepared by the self-combustion 
 method33. Briefly, dissolve 5 g of PVA in 200 ml of DW, followed by vigorous stirring for 2 h at 50 °C. The PVA 
solution was obtained as a gel-like and homogeneous solution. This solution was donated by solution A. Differ-
ent ratios of nickel and iron, while cadmium was kept constant (Table 1), was prepared separately in 3 solutions. 
At room temperature, the solution was stirred for 10 min to obtain a homogeneous transparent solution. The 
solutions of Ni nitrate, Fe nitrate and Cd nitrate were mixed with constant stirring for another 10 min at room 
temperature. The product solutions were mixed with solution A for 20 min with constant stirring. The stirred 
solutions were placed in the drying oven for 3 h at 80 °C. The crushed products were calcined at 500 °C for 2 h.

Characterizations. X-ray diffraction (XRD) was used to investigate the structural features of the fabricated 
samples (XD-2 X-ray diffractometer with Cu Kα (λ = 1.54 at 36 kV and 20 mA, China). A UV–Vis spectropho-
tometer (SPECORD 200) was used to measure the absorption spectra of the samples in the range of 190–1100 nm 
at room temperature. A spectrofluorometer (RF-5301PC; Shimadzu) with an excitation wavelength of 325 nm, 
an excitation and emission gap of 5 nm, an average scanning speed, and high sensitivity was used to record the 
photoluminescence spectra (PL) of the fabricated samples. The physical property measurement system (PPMS), 
QUANTUM DESIGN (MODEL6000), was used together with the attached vibrating magnetometer (VSM) to 
obtain the magnetic hysteresis (M-H) loops. The solvent for the prepared samples used to measure the absorp-
tion and photoluminescence spectra was dilute sulfuric acid  (H2SO4).

Antibacterial activity. The modified Kirby-Bauer disk diffusion test of the European Committee for 
Antimicrobial Susceptibility Testing was used to investigate the antibacterial activities of CdO–NiO–Fe2O3 
nanocomposites against Gram-positive (Staphylococcus aureus) and Gram-negative (Pseudomonas aeruginosa, 
Escherichia coli, and Moraxella catarrhalis)  bacteria34. Biochemical assays were used to further verify the iden-
tity of the isolates before testing the nanocomposites. The nanocomposites were serially diluted twice from the 
75 mg/ml stock solution and suspended in sterile distilled water. The disks were impregnated with four differ-
ent working dilutions. 450, 225, 112.5, and 56.25 μg/disk were prepared by impregnating a sterile filter paper 
disk (6 mm diameter) with 12 μl (6 μl on each side) for dilution. The plates were inoculated with swabs to form 
a uniform bacterial lawn on the agar surface. Using sterile forceps, the plates were positioned on the infected 
agar surface and incubated for 18–20 h at 37 °C. After completion of the incubation period, the diameters of the 
inhibition zones were measured to the nearest millimeter. In addition to the disks containing azithromycin as a 
positive control, a blank disk consisting solely of distilled water was used as a negative control.

Table 1.  Samples code at various molar ratio of  Ni2+ and  Fe3+.

Sample code

Molar ratio of salts 
(M)

Weight of salts (g) at 
100 ml of DW Molar ratio of PVA

(g/ml)Cd2+ Ni2+ Fe3+ Cd2+ Ni2+ Fe3+

CNF1 0.2 0.05 0.15 4.6 1.1 4.6 0.025

CNF2 0.2 0.1 0.1 4.6 2.2 3.03 0.025

CNF3 0.2 0.15 0.05 4.6 3.3 1.52 0.025
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Result and discussion
XRD analysis. The crystal structure of the CdO–NiO–Fe2O3 nanocomposite was investigated using the 
XRD technique. In Fig. 1, the XRD patterns of the prepared nanocomposites show only the crystalline phase 
of CdO, NiO and  Fe2O3 for all samples. The patterns show the face-centered cubic structure of CdO and NiO, 
while  Fe2O3 exhibits pure maghemite (γ-Fe2O3 phase with a cubic spinel crystal structure). The CdO patterns at 
2θ and its crystal plane at 33°(111), 38.3°(200), 55.34°(220), 65.94°(311), and 69.34°(311) correspond to JCPDS 
Map No. 00-005-064035. The NiO patterns at 2θ and its crystal plane at 37.18°(111), 43.30°(200), and 63.04°(220) 
are consistent with JCPDS Map No. 47-104936. The patterns of the γ-Fe2O3 phases at 2θ and their crystal plane 
at 30.2°(206), 35.5° (119), and 57.2°(115) are consistent with JCPDS Map No. 00-025-140237. It is clear that the 
intensity of the peaks of γ-Fe2O3 decreases with decreasing Fe content, while the intensity of the peaks of NiO 
increases with increasing Ni content.

The XRD data obtained indicate that an increase in  Ni2+ and a decrease in  Fe3+ content causes a change in 
crystal lattice parameters and a decrease in crystallite size, as indicated in Table 2.

The Scherrer  equation38–43 is used to calculate the average crystal size of nanocomposites in the crystal plane 
of CdO (111), which can be given as follows:

where K is the dimensionless form factor (K = 0.9), λ is the X-ray wavelength (= 0.1540 nm), β is the full width 
at half maximum (FWHM), and θ is the Bragg diffraction angle.

The microstrain (ε) of a nanocrystal is caused by defects in the nanocrystal, such as distortions and imperfec-
tions. The microstrain can be calculated using the following equation (ε)43–45:

the dislocation density can be described by the following equation (δ)39,43,45,46:

As seen in Table 2, the particle size decreased from 28.96 to 24.95 nm with increasing  Ni2+ and decreasing  Fe3+ 
content. The decrease in particle size of nanocomposites is attributed to the difference between the ionic radii of 

(1)D =

K�

β cosθ

(2)ε =

β

4 tanθ

(3)δ =
1

D2

Figure 1.  XRD patterns of CdO–NiO–Fe2O3 nanocomposites at various molar ratio of  Ni2+ and  Fe3+. The figure 
exhibited the crystallization of the oxides an increase as the molar ratio different from CNF1 to CNF3.

Table 2.  The Unit cell parameter (a), average crystalline size (D), lattice strain (ε) and the dislocation density 
(δ) of CdO–NiO–Fe2O3 nanocomposites at various molar ratio of  Ni2+ and  Fe3+.

Samples

Unit cell parameter, a (nm)

D (nm) ε ×  10−3 δ ×  10−3  (nm−2)CdO [fcc] NiO [fcc] Fe2O3 [fcc]

CNF1 0.4697 0.4173 0.834 28.95 4.22 1.19

CNF2 0.4690 0.4176 0.835 26.89 4.54 1.38

CNF3 0.4690 0.4175 0.834 24.94 4.90 1.61
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Ni (0.074 nm), Cd (0.097 nm) and Fe (0.055 nm)47. The dependence of particle size on dislocation density and 
microstrain. The values of microstrain and dislocation density increase due to the large effect of particle size on 
the comprehensive stress of the  nanocomposite48.

Optical properties. Absorption spectra. The absorption spectra of CdO–NiO–Fe2O3 nanocomposites at 
different molar ratios of  Ni2+ and  Fe3+ were studied in the wavelength range of (200–800 nm) as shown in Fig. 2. 
The absorption peaks observed at 213–260 nm are attributed to the absorption band of CdO, while the absorp-
tion peaks observed at 310–320 nm are attributed to the absorption band of NiO in the  nanocomposite46. In 
special CNF1 samples, a tiny absorption band at 530 nm was observed for  Fe2O3. This absorption band is caused 
by the absorption of  Fe2+ and  Fe3+ ions of iron  oxide49.

Band gap energy (Eg). As seen from Table 3 and Fig. 3, the optical band gap ( Eg ) of the samples is between 
NiO (3.6 eV)50, CdO (2.5 eV)51,52 and  Fe2O3 (2 eV)53. For the samples, the optical band gap ( Eg ) increased with 
increasing  Ni2+ content and with decreasing  Fe3+ content. The decrease in band gap is related to the grain size. As 
localized energy states emerge and approach the conduction band, the energy band gap decreases in nanocom-
posites with a high content of  Cd+246,48.

PL study. Figure 4 shows the PL spectra of CdO-NiO-Fe2O3 nanocomposites at 325 nm and room temperature. 
The near band edge (NBE) emission of NiO nanoparticles in a nanocomposite matrix was responsible for the 
observed UV emission peak at 359  nm54. Radiative recombination is responsible for the NBE peak in NiO in the 
exciton-exciton collision  process55. The trapped electrons migrating into the valence band at the Ni interstitial 
are thought to be responsible for the strong violet emission peaks at 408 and 423  nm40. In CdO–NiO–Fe2O3 
nanocomposites, band gap defects such as oxygen vacancies were responsible for the weak blue emission peaks 
between 463 and 494  nm56,57.

Magnetic properties. VSM was used to analyze the magnetic properties of CdO-NiO-Fe2O3 nanocom-
posites at room temperature. Using a magnetic field of 10,000 Oe, magnetic hysteresis measurements were per-
formed on CdO-NiO-Fe2O3 nanocomposites. As shown in Fig. 5, all samples exhibit ferromagnetic properties, 
which can be attributed to the presence of  Fe2O3 in all three samples. The CdO-NiO-Fe2O3 nanocomposites 
showed weak ferromagnetism as the measured particle size was above the critical value (10 nm)58,59. The values 
of saturation magnetization  (MS) decrease from 0.482 to 0.060 emu with increasing  Ni2+ content and decreasing 
 Fe3+ content in the samples due to the antiferromagnetic property of NiO and ferromagnetic nature of  Fe2O3

60,61. 
The coercivity  Hc of the samples increases from 66.4 to 266 Oe, which can be attributed to the strong coupling 

Figure 2.  Absorbance spectra of CdO–NiO–Fe2O3 nanocomposites at various molar ratio of  Ni2+ and  Fe3+. The 
figure showed the absorption peaks for oxides.

Table 3.  Optical band gap energy measurements of CdO–NiO–Fe2O3 nanocomposites at various molar ratio 
of  Ni2+ and  Fe3+.

Samples
Energy band gap, Eg
(eV)

CNF1 2.71

CNF2 2.74

CNF3 2.87
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between  Fe2O3 and  NiO62. It has been shown that the content of  Ni2+ and  Fe3+ in the CdO–NiO–Fe2O3 nanocom-
posites increases the ferromagnetic properties. The ferromagnetism of the CdO–NiO–Fe2O3 nanocomposites 
was increased at room temperature by replacing the nonmagnetic Cd with the magnetic transition metal ions 
 Ni2+ and  Fe3+. Moreover, the ferromagnetism of the nanocomposites increased when oxygen vacancies were 
formed in  them15,63. Thus, the causes of the ferromagnetic properties of the metal oxides are the presence of 

Figure 3.  Optical band gap of CdO–NiO–Fe2O3 nanocomposites at various molar ratio of  Ni2+ and  Fe3+.

Figure 4.  PL spectrum of CdO–NiO–Fe2O3 nanocomposites at various molar ratio of  Ni2+ and  Fe3+.
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unpaired electron spins arising from surface effects, oxygen/cation vacancies on the surfaces of the samples, and/
or the presence of a secondary/impure  phase15,58. The magnetic parameters ( Hc ,Mr , andMS) are listed in Table 4.

Antibacterial activity. The antibacterial properties of the CdO–NiO–Fe2O3 nanocomposites were investi-
gated against Gram-positive bacteria (S. aureus) and Gram-negative bacteria (M. catarrhalis, E. coli, and P. aer-
uginosa) (see Figs. 6, 7). The CdO-NiO-Fe2O3 nanocomposites are present at concentrations ranging from 56.25 
to 450 µg/ml. The zone of inhibition (ZOI), which illustrates how the CdO–NiO–Fe2O3 nanocomposites affect 
bacterial growth, is shown in Figs. 6 and 7. The dramatic effects at 450 µg/ml were clearly visible. The ZOI of the 
CdO–NiO–Fe2O3 nanocomposites against the bacterial strains E. coli, P-aeruginosa, S. aureus and M. catarrhalis 
is 14, 25, 20 and 22 nm, respectively. In reality, the metal nanoparticles bind to the proteins and DNA of the 
pathogens by interacting with vital components such as the phosphorus (P) and sulphur (S) groups of bacterial 
DNA. As a result, bacterial DNA replication is  destroyed64. One possible mechanism for the antibacterial effect is 
the production of free radicals. Through the damaged surface, the  Cd2+,  Ni2+ and  Fe3+ ions in the nanocompos-
ites penetrate the cell walls of the pathogens. Reactive oxygen species (ROS) are formed when ions are released 
from the nanoparticles. Superoxide radicals, hydroxyl radicals, singlet oxygen, and hydrogen peroxide are just 
some of the ROS components that have significant bactericidal  activity65–71. The ZOI in this study compared with 
other studies is shown in Table 5.

Conclusion
In conclusion, the preparation of CdO–NiO–Fe2O3 was successful, and its physical and antibacterial properties 
were studied. The molar ratio of  Ni2+ and  Fe3+ can affect the average crystallite size  (Dav), dislocation density (δ) 
and microstrain (ε). In particular, the results showed that the coupling of CdO with NiO and  Fe2O3 improved the 
magnetic properties of CdO. At room temperature, the ferromagnetism of the CdO–NiO–Fe2O3 nanocomposites 
was enhanced, making them suitable for magnetic applications. According to the results, the grown nanocom-
posite showed high performance as antibacterial activity for various Gram-negative and positive bacteria, which 
could be a strong candidate for bacterial disinfection.

Figure 5.  Magnetic hysteresis curves of CdO–NiO–Fe2O3 nanocomposites at various molar ratio of  Ni2+ and 
 Fe3+. The figure showed variation of the coercivity ( Hc ), and saturation magnetization ( MS ) as the molar ratio 
different from CNF1 to CNF3.

Table 4.  Magnetic coercivity ( Hc ), remanent magnetization ( Mr ), and saturation magnetization ( MS ) of 
CdO–NiO–Fe2O3 nanocomposites at various molar ratio of  Ni2+ and  Fe3+.

Sample
Coercivity
(Oe)

Remanent
(emu)

Saturation magnetization
(emu)

CNF1 66.4 0.0632 0.482

CNF2 176 0.0511 0.238

CNF3 266 0.0140 0.060
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Figure 6.  Antibacterial activity of CdO–NiO–Fe2O3 nanocomposites against bacteria: (M. catarrhalis), (E. coli), 
(S. aureus) and (P. aeruginosa). (1) 56.25, (2) 112.5, (3) 225 and (4) 450 μg/ml per disk of nanocomposites, (5) 
Azithromycin antibiotics (positive control) and (6) distilled water (negative control). 



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:9021  | https://doi.org/10.1038/s41598-023-36262-6

www.nature.com/scientificreports/

Figure 7.  ZOI against (a) E. coli, (b) Moraxella, (c) P. aeruginosa, and (d) S. aureus bacterial strains in the 
presence of CNF1, CNF2 and CNF3 nanocomposites. The figure showed specialty of prepared nanocomposites, 
the CNF2 has a significant impact on bacteria compared to CNF1 and CNF3.

Table 5.  A comparison of antibacterial activity of CdO–NiO–Fe2O3 nanocomposites with some other metal 
oxide nanocomposites, metal oxides and compounds.

Nanoparticles (NPs) Assessment method

Target bacteria

ReferencesEscherichia coli Staphylococcus aureus Pseudomonas aeruginosa Moraxella catarrhalis

CuO–MgO–ZnO ZOI (mm), 1 mg/µL 26 19 22 – 72

CeO2–CuO–ZnO ZOI (mm), 50 µg/µL 10 14 12 – 73

CdO–ZnO–MgO ZOI (mm), 100 µg/mL 23 – 22 – 35

CdO–NiO–Fe2O3 ZOI (mm), 450 µg/ml 13 25 25 25 67

CdO–NiO–Fe2O3 ZOI (mm), 450 µg/ml 18 23 25 25 68

Ag–CuO ZOI (mm), 20 µg/mL 2.1 0.75 – 74

AgI–CdO ZOI (mm), 50 mg/ml 20 20 29 – 75

CS-MgO MIC 11.9 µg/mL 9.8 µg/mL – 76

CS-NiO MIC 3.86 µg/mL 2.11 µg/mL – 76

MgO ZOI (mm), 20 µg/mL 6.8 7.2 – – 65

NiO ZOI (mm), 1 mg/mL 17.2 16.5 18.2 – 77

Polyoxotungstate (POT) MIC – – – 1 µg/mL 78

Aristolochia bracteolate ZOI (mm) – – – 12 79

CdO–NiO–Fe2O3 ZOI (mm), 450 µg/ml 14 25 20 22 Present work
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