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Numerical simulation 
and mathematical modeling 
for heat and mass transfer in MHD 
stagnation point flow of nanofluid 
consisting of entropy generation
M. Riaz Khan 1*, V. Puneeth 2, Aisha M. Alqahtani 3, Sharifah E. Alhazmi 4*, 
Sid Ahmed Ould Beinane 5, Meshal Shutaywi 6, Sayed M. Eldin 7 & Theyab R. Alsenani 8

The primary goal of this article is to explore the radiative stagnation point flow of nanofluid with cross-
diffusion and entropy generation across a permeable curved surface. Moreover, the activation energy, 
Joule heating, slip condition, and viscous dissipation effects have been considered in order to achieve 
realistic results. The governing equations associated with the modeling of this research have been 
transformed into ordinary differential equations by utilizing appropriate transformation variable. The 
resulting system of equations was solved numerically by using Bvp4c built-in package in MATLAB. The 
impact of involved parameters have been graphically examined for the diverse features of velocity, 
temperature, and concentration profiles. Throughout the analysis, the volume fraction is assumed to 
be less than 5% while the Prandtl number is set to be 6 . In addition, the entropy generation, friction 
drag, Nusselt, and Sherwood numbers have been plotted for describing the diverse physical aspects 
of the underlying phenomena. The major outcomes reveal that the curvature parameter reduces the 
velocity profile and skin friction coefficient whereas the magnetic parameter, temperature difference 
parameter, and radiation parameter intensify the entropy generation.

List of symbols
p	� Dimensional pressure (kg m−1 s−2)
µf ,µs	� Nano particles and base liquid dynamic viscosity (kg m−1 s−2)
µnf 	� Nanofluid dynamic viscosity (kg m−1 s−2)
ρs , ρf 	� Nano particles and base liquid density (kg m−3)
ρnf 	� Nanofluids density (kg m−3)
kf , ks	� Base liquid and nano particles thermal conductivity (W m−1 K−1)
knf 	� Nanofluids thermal conductivity (W m−1 K−1)
νs, νf 	� Nano particles and base liquid kinematic viscosity (m2/s)
νnf 	� Nanofluid kinematic viscosity
(

ρCp

)

f
,
(

ρCp

)

s
	� Base liquid and nanoparticles heat capacity (ML2/T2K)

(

ρCp

)

nf
	� Nanofluids heat capacity

σf , σs	� Base liquid and nano particles electrical conductivity (S m−1)
σnf 	� Nanofluids electrical conductivity (S m−1)
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αf ,αs	� Base liquid and nanoparticles thermal diffusivity (L2/T)
αnf 	� Nanofluids thermal diffusivity
Cfs	� Skin friction coefficient
Shs	� Sherwood number
Nus	� Nusselt’s number
Res	� Reynolds number
T	� Temperature of the fluid (K)
ϕ	� Nanoparticle’s concentration
a	� Constant related to stretching/shrinking of the sheet
s	� Arc length coordinate along the curved surface
τrs	� Wall shear stress
�	� Stretching/shrinking parameter
B0	� Magnetic field strength (T)
r	� Normal to the tangent at any point of the curved surface
u, v	� Velocity components in s, r directions respectively (m s−1)
R	� Curvature of the curves belt
C	� Concentration of the fluid (mol m−3)
Cw ,C∞	� Concentration near and far away from the surface respectively
Tw ,T∞	� Temperatures near and far away from the surface respectively
K	� Dimensionless curvature parameter
M	� Magnetic field parameter
S	� Suction parameter
Ec	� Eckert number
δ	� Porosity parameter
Pr	� Prandtl number
jw	� Wall heat flux
qw	� Wall heat flux
νw	� Suction velocity
σ ∗	� Stefan–Boltzmann constant (W m−2 K−4)
k∗	� Mean absorption coefficient (m−1)
kT	� Thermal diffusion ratio
Dm	� Molecular diffusivity (m2 s−1)
cs	� Concentration susceptibility (Kg m−3)
k1	� Boltzmann constant (8.314 J/K mol)
kr	� Chemical reaction rate (mol L−1 s−2)
n	� Fitted rate constant (W m−2 K−1)
Ea	� Activation energy (KJ mol−1)
P	� Dimensionless pressure
f 	� Stream function
η	� Similarity variable
f ′	� Dimensionless velocity
θ	� Dimensionless temperature of fluid
φ	� Dimensionless concentration of fluid
ω	� Temperature difference parameter
Br	� Brinkman number
τ	� Dimensionless chemical reaction rate parameter
Rd	� Radiation parameter
Du	� Dufour number
Sc	� Schmidt number
E1	� Dimensionless activation energy parameter
L	� Slip length
ǫ	� Dimensionless slip length
H	� Diffusion parameter
ω1	� Concentration difference
NG	� Local entropy generation
Kp	� Permeability of porous medium
Sr	� Soret number

Incompressible viscous fluids flow over a stretching surface has captivated an extensive consideration of research-
ers owing to the variety of applications in engineering productions as well as scientific processes, like, metal 
processing industries, production of paper and glass-fiber, wire drawing, polymer, and high temperatures such 
as atomic power plant, gas turbine, thermal energy storage, solar power technology, and electrical power genera-
tion, etc. The dynamics of two-phase dusty fluid flow were numerically investigated by Siddiqa et al.1. Ahmed 
et al.2 examined the rheological behavior of incompressible viscous nanofluids considering the thermal slip. The 
incompressible magnetized flow of a viscous fluid through a stretching sheet was explored by Andersson et al.3. 
Pop et al.4 investigated the MHD flow along with the blowing phenomena induced by a stretching sheet. Gupta 
and Gupta5 numerically considered the heat and mass transfer along with suction or blowing across a stretching 
surface. Furthermore, Reddy et al.6, studied the heat and mass transfer properties of hybrid nanofluid flowing 
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over a flat surface subjected to stretching/shrinking. Santhi et al.7 implemented the double stratification model 
and compared the steady and unsteady flow of nanofluid. Meanwhile, Basha et al.8 studied the ferromagnetic 
stagnation flow of Carreau nanofluid over a wedge and observed a declination in the velocity for the stronger 
magnetic field. Reddy et al.9 discussed the impact of thermophoresis and observed a rise in the temperature of the 
nanofluid for strong thermophoresis. Sreedevi and Reddy10 concluded that the heat conducted by the nanofluid 
enhances for the stronger thermophoresis and Brownian motion. Basha et al.11 performed a sensitivity analysis 
to explain the heat transport features of Eyring-Powell nanofluid flowing across a circular cylinder. Reddy et al.12 
investigated the impact of biot number on the heat transfer characteristics of nanofluid set in motion across 
a vertical cone. Here is the more recent work available for the representative analysis of the nanofluid motion 
across a stretched surface13–20.

Energy loss in a flow and heat transfer development is due to irreversible procedures. Entropy generation 
is a prime concept in every engineering industry. Entropy plays a projecting role in thermodynamics analysis, 
biotechnology, statistical mechanics, fluid mechanics, fluid dynamics, and continuum physics, more recently, 
also in biology, etc. Entropy is related not only to the availability of energy to do work, but it is also a measure of 
disruption of a system as well as its surrounding. This notion was initially postulated by Ludwig Boltzmann in the 
1800s using the second law of thermodynamics to calculate the entropy generation in any thermodynamic system. 
The latest study elucidated that the second law is a more comprehensive and effective investigation method to 
reduce the entropy of a system. Entropy structures are associated with a considerable number of energy-related 
processes including geothermic power systems and solar power systems. Originally, Bejan21 gave the idea of 
entropy in the heat transport systems and in the fluid flow systems. Sohail et al.22 considered the impacts of heat 
conductance and the thermal conductivity associated with entropy formation in magnetized fluid flow across 
a bi-directional stretching sheet. Zhang et al.23 explored the entropy study on the blood flow with magnetic 
Zinc-Oxide nanoparticles considering Jeffery fluid flow. Srinivasacharya and Bindu24 present the numerical 
solution of entropy optimization for the micropolar fluid motion induced by an inclined channel. Basha et al.25 
explored the flow of a tangent hyperbolic nanofluid past a cylinder by assuming the Boussinesq approximation. 
Al-Mdallal et al.26 analyzed the entropy generation using the Keller box method for the fluid flowing across a 
circular cylinder. Reddy et al.27 examined the entropy generation process along with the heat transport features 
of nanofluid associated with the influence of a magnetic field. Furthermore, Basha and Sivaraj28 applied the col-
location method to study the entropy process for the flow of Ag− Fe3O4—blood flowing inside a porous tube. 
The references27–32 shows some recently published work available on entropy optimization.

The process of heat and mass transportation including the influence of Dufour and Soret creates an important 
impact because of various applications including migration of groundwater pollutants, binary alloys solidifica-
tion, melting of geosciences different components, separation of isotopes, and mixing gases. Mainly both Soret 
and Dufour effects can work more strongly whether the temperature is high having concentration gradients 
in large amount. Hayat et al.33 explored the transport of mass and heat under the use of these two effects with 
mixed convection boundary layer flow across a spongy surface in a permeable medium which is covered with 
viscoelastic fluid. Turkyilmazoglu and pop34 have discussed the heat sources effects and Soret effect on impul-
sively arising innumerable vertical surface with time dependent MHD radiative free convection flow. Cheng35 
discussed the effects of Soret and Dufour on convection-free heat and mass transport from the sloppy plate in 
a spongy or permeable medium having the same concentration and wall temperature. The control of chemical 
reactions and radiation on mass transfer and heat convection over a flexible surface in the boundaries of a Dar-
cian spongy medium with effects of Soret and Dufour phenomenon have been explored by Pal and Mondal36. 
The linear as well as the nonlinear double-diffusive convection which is saturated in an anisotropic permeable 
layer including Soret effect and the internal heat source has been explored by Altawallbeh et al.37. The additional 
latest work is available on the transport of heat which can be seen in the refs.38–45.

Based on the above studies, in the current research work, our goal is to analyze viscous nanofluid with 
cross-diffusion and entropy generation along with stagnation point flow across a curved surface. Moreover, the 
Joule heating and the activation energy have been considered in this investigation. Particularly, the target was 
to modify the recently published article of Revathi et al.46 and associate their work with stagnation point flow 
considering the novel terms like porosity, viscous dissipation, suction, and slip effects. Moreover, this work has 
been considered with the new fluid (SiO2–CH3OH), and solved numerically with the application of the bvp4c 
package in MATLAB. The graphical assessment has been performed to analyze various numerical results for 
distant values of effective parameters. In this way, the model considered here is completely different from the 
published work, and on the basis of the author’s knowledge, no one in the past considered such kind of inves-
tigations. The important area of application of this flow problem is manufacturing, engineering, and industrial 
sciences consisting of mechanical engineering, health science, civil engineering, geomechanics, bioengineer-
ing, material science, petroleum engineering, etc. The real-world examples of these applications are thermal 
insulation, refrigerators, filtration plants, fluidized beds, groundwater flows, heat exchangers, filtration plants, 
etc. Moreover, industrial and manufacturing processes like nuclear reactors, combustion, solar ponds, missile 
technology, furnace design, etc. are particularly based on the function of thermal radiation. Additionally, in 
several engineering techniques, the radiation phenomenon is used as a heat-controlling agent. Thus, the current 
effort will entice countless researchers owning to their extensive incredible and innovative applications which 
enthused us to discuss the existing work.

Basic equations
The two-dimensional incompressible radiative stagnation point flow of a dissipative nanofluid over a permeable 
curved surface has been considered with the impact of Joule heating and activation energy as shown in Fig. 1. 
Moreover, the Soret and Dufour numbers were correspondingly considered in the mass diffusion and energy 
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equations. The two directions r and s were considered correspondingly perpendicular to the surface and along 
the surface with the surface velocity u = as + L

(

∂u
∂r −

u
r+R

)

 , and with the free stream velocity u → ue(s) = bs , 
where a > 0, a < 0 and a = 0 respectively signifies the stretching, shrinking and static surface with slip length 
L . A magnetic field of intensity B0 was fixed in the radial direction. The nanofluid was prepared by the combina-
tion of silica nano particles and the methanol base fluid. In view of these considerations, the governing boundary 
layer equations are stated below47–49.

The related boundary conditions are specified as

The thermophysical characteristics of the Silica (SiO2) nanoparticles and methanol (CH3OH) base fluid is 
specified in Tables 1 and 2.

(1)
∂

∂r
[(r + R)v] = −R

∂u

∂s
,

(2)
1

ρnf

∂p

∂r
−

u2

r + R
= 0,

(3)
1

ρnf

R

r + R

∂p

∂s
= vnf

(

∂2u

∂r2
+

1

r + R

∂u

∂r
−

u

(r + R)2

)

−v
∂u

∂r
−

Ru

r + R

∂u

∂s
−

uv

r + R
−vnf

u

Kp
−
σnf B

2
0

ρnf
u,

(4)

(

v
∂T

∂r
+

Ru

r + R

∂T

∂s

)

=
knf

(

ρCp

)

nf

(

∂2T

∂r2
+

1

r + R

∂T

∂r

)

+
σnf

(

ρCp

)

nf

B20u
2

+
1

(

ρCp

)

nf

(

∂2T

∂r2
+

1

r + R

∂T

∂r

)

16σ ∗T3
∞

3k∗
+

µnf
(

ρCp

)

nf

(

∂u

∂r
−

u

r + R

)2

+
1

(

ρCp

)

nf

DmkT

cs

(

∂2C

∂r2
+

1

r + R

∂C

∂r

)

,

(5)

(

v
∂C

∂r
+

Ru

r + R

∂C

∂s

)

= Dm

(

∂2C

∂r2
+

1

r + R

∂C

∂r

)

+
DmkT

Tm

(

∂2T

∂r2
+

1

r + R

∂T

∂r

)

− K2
r

(

T

T∞

)n

Exp

(

−
Ea

K1T

)

(C − C∞).

(6)
u = as + L

(

∂u
∂r −

u
r+R

)

, v = −vw ,T = Tw ,C = Cw , at r = 0,

u → ue(s) = bs, ∂u
∂r → 0,T → T∞,C → C∞ as r → ∞.

}

Figure 1.   Schematic diagram.
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It is possible to convert Eqs. (1–6) into a non-dimensional structure by introducing the following dimension-
less transformations.

Thus, the resulting non-dimensional equation assumes the following structure.

Based on Eq. (8), we can eliminate the pressure P from Eq. (9). Thus, the combination of Eqs. (8 and 9) can 
be written as.

(7)
u = bsf ′(η), η =

√

b
vf
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R
r+R

√
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2
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Table 1.   The thermophysical properties of nanofluid.

Properties Nanofluid

Density ρnf = ϕρs + (1− ϕ)ρf

Electrical conductivity
σnf
σf

= 1+

3
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σs
σf

−1

)
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−
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Viscosity µnf =
µf

(1−ϕ)2.5

Thermal diffusivity αnf =
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Thermal conductivity
knf
kf

=

(

ks
kf

+2

)

−2ϕ

(

1−
ks
kf

)

(
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+ϕ

(
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)

Table 2.   Thermophysical features of the Silica (SiO2) nanoparticles and the methanol (CH3OH) base fluid.

Thermophysical properties Methanol (f) ( CH3OH) Silica (s) ( SiO2) 

Cp (J/kgK) 2545 703

ρ (Kg/m3) 792 2200

k (W/mK) 0.2035 1.38

σ (S/m) 0.5× 10
−6

10
−25
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By re-arranging Eqs. (10) and (11), we get.

The boundary conditions (6) are transformed into following pattern.

The dimensionless parameters arising from Eqs. (12–15) are defined below.

In addition, it must be noted that by presuming K → ∞ , the classical problem of the flat sheet is acquired. 
In this way, Eq. (12) is changed into Eq. (17).

The integration of Eq. (17), prior to the utilization of condition (15) at η → ∞ yield the following.

For the similar condition ( K → ∞ ), Eqs. (13) and (14) reduces to Eqs. (19) and (20).

and conditions (15) reduces to.

The important physical quantities about the engineering interest associated with the present study are the 
local Nusselt number (Nus) , friction drag 
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τw , qw and jw correspondingly denotes the wall shear stress, heat flux as well as the mass flux.
Making use of Eq. (7) in system (22) yield the subsequent non-dimensional system.

where Res = bs2

νf
 refer to the Reynolds number.

Entropy generation modeling
The definition of entropy generation is given by

In this equation, the primary, secondary and tertiary term at the right side correspondingly stands for the 
irreversibility of heat transfer, viscous dissipation, and Joule heating. The association of fourth term with fifth 
term stands for the mass transfer irreversibility as well as the last term stands for the porous medium irrevers-
ibility. Note that, R is the constant of universal gas.

The use of Eq. (7), yield the dimensionless form of Eq. (25), which may be written as

where the parameters NG ,Br ,H ,ω and ω1 are defined below.

The non-dimensional Bejan number could be defined as

This implies that.

Solution method
Here, we choose to implement the numerical approach in order to address the current flow problem. So, the 
differential equations must first be expressed in a system of first order ODEs before they can be solved by any 
differential equation solver. As a result, by including the following factors.

we could rewrite the resulting Eqs. (12–14) as
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∣
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where

The non-dimensional boundary conditions (15) can be expressed similarly as

The three separate kinds of data are required by the bvp4c solver for boundary value problems: the equation 
to be solved, the correlated boundary conditions, and the initial guess utilized to arrive at the answer. Here, the 
relative tolerance was considered to be 10−10 and the integration interval was set at zero to five around the mesh 
point 70. The graphic below contains a sketch of the entire technique.
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Results and discussion
The graphical representation of the concentration, temperature, velocity, Nusselt number, entropy generation, 
skin friction coefficient, Bejan number and Sherwood number are described in this section. Graphs of velocity 
with radial direction f ′(η) are shown in Figs. 2 and 3 and they are similarly affected by both K and M . Figure 2 
shows that the curvature parameter K  is in direct relation with radius of the sheet resulting in less space for 
particles to stick when sheet radius decreases and because of that stretching rate decreases so the fluid velocity 
diminishes. Figure 3 explicated the decreasing effect of M on velocity profile f ′(η) . As larger the Hartmann num-
ber M , the higher the resistive force due to that momentum boundary layer thickness is reduced. The decrease in 
nanoparticles volume fraction φ consequences the decrease in temperature profile θ(η) shown in Fig. 4, because 
with the higher value of φ , more nanoparticles will be made available to conduct to the heat dissipated from 
the surface. Figure 5 shows accelerating behavior of θ(η) depending on the greater Du , there is an increase in 
temperature and thermal diffusion. The decreasing effect of Pr on θ(η) are shown in Fig. 6. Higher Pr reduces 

Figure 2.   Impact of K on f ′(η).

Figure 3.   Impact of M on f ′(η).
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the thickness of the thermal boundary layer and θ(η).because, by definition, Pr is the “ratio of the momentum 
diffusivity and thermal diffusivity.”

From Figs. 7, 8 and 9 we can see that by the rising value of Du Sr ,τ and Du, the concentration profile φ(η) 
enhances respectively. By definition Soret number is the “effect resulting from the the proportion between tem-
perature and concentration differences” and Du is the “effect resulting from the proportion between concentra-
tion difference and temperature difference”. This clarifies that diffusive species having greater Soret and Dufour 
values results in higher concentration profile φ(η) . The effect of chemical reaction parameter τ on the φ(η) is 
seen from Fig. 8. This figure depicts that the concentration profile is extremely dominated and decreases by the 
greater chemical reaction parameter while flowing in region. From Fig. 10, it is examined that the skin fraction 
coefficient Cfs enhances with the larger nanoparticles volume fraction φ . The reason behind this phenomenon 
is the higher density of nanofluid with nanoparticles fraction and higher density of nanofluid results in higher 

Figure 4.   Impact of φ on θ(η).

Figure 5.   Impact of Du on θ(η).
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skin friction coefficient. Figure 11 illustrates the effect of K  on the coefficient of skin friction Cfs through the 
Hartmann number M . Here, the curvature parameter K and the magnitude of the skin friction coefficient are 
directly proportional to each other because when K is larger, radius of surface decreases, it creates more resist-
ance for fluid particles which leads to higher value of the skin friction coefficient Cfs.

In Fig. 12, we have analyzed the effects of suction and Eckert number on the Nus which states that the Nusselt 
number Nus is negatively connected to the Eckert number. Figures 13 and 14 discusses the relationship between 
the suction parameter S and the change in magnitude of local Nusselt number. This is displayed on a graph for 
various radiation parameter values and Hartmann number M . These figures illustrate the indirect relationship 
among the Nusselt number and the radiation parameter Rd as well as a reverse trend is observed for the Hart-
mann number M . Figures 15 and 16 show the effect of temperature difference parameter ω and Soret number 
Sr on the Sherwood number Shs versus activation energy E1 . As long as the temperature difference parameter 

Figure 6.   Impact of Pr on θ(η).

Figure 7.   Impact of Sr on φ(η).
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ω and Soret number Sr increases, the Sherwood number increases as well. The influence of chemical reaction 
parameter τ on the Sherwood number Shs along with the activation energy E1 is analyzed in Fig. 17. The Sherwood 
number rises because the chemical reaction parameter reduces the thickness of the concentration boundary layer.

The Figs. 18 and 19 shows the enhancement of entropy generation NG by increase in Hartmann number M 
and radiation parameter Rd respectively. From these figures, it is seen that the entropy generation NG shows more 
noticeable increase within the existence of Hartmann number M and the radiation parameter Rd. Consequently, 
when magnetic field acts on the flow field, the fluid temperature rises because of the Lorentz forces. In addition, 
higher Rd results in higher temperature of fluid owing to growth in the movement of charged particles. Thus, an 
additional phenomenon viz vibration, internal displacement happens when temperature of fluid flow rises and 
results in boosting of entropy of the fluid flow system. Figure 20 shows the behavior of the rate of entropy genera-
tion NG against the temperature difference parameter ω . Zhao et al.29 reported earlier that there is no objection 

Figure 8.   Impact of τ on φ(η).

Figure 9.   Impact of Du on φ(η).
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to the existence of entropy, which specifies that the entropy generation NG is increasing with increasing values 
of temperature difference parameter ω.

The fluid temperature increases rapidly when a Lorentz force appears because of the magnetic field applied 
to the flow field. There is more viscous heating than heat transfer because of the conduction in the presence of 
larger Brinkman number Br , so resulting in high fluid temperature. The Figs. 21 and 22 explains the outcome of 
the Brinkman number Br and the Hartmann number M on the Bejan number Be . From these two scenarios we 
can see that these parameters negatively affect the Bejan number owning to the irreversibility of mass and heat 
transfer which is decreased by constant terms like fluid friction. It defines that the greater values of Brinkman 
number Br effects having Joule heating and viscous dissipation are lesser than heat transfer irreversibility. Moreo-
ver, we examined the findings in Table 3 with the body of prior research to determine the validity of the study.

Figure 10.   Impact of φ on skin friction w.r.t M.

Figure 11.   Impact of K on skin friction w.r.t M.
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Conclusion
The hydromagnetic stagnation flow of nanofluid under the radiation effect is analyzed by implementing the Soret 
Dufour model for heat and mass transport. Furthermore, bvp4c is employed to get the solution of the system of 
ordinary differential equations acquired by transforming the governing PDEs. The outcomes so acquired were 
related to the literature already in existence, and a reasonable degree of agreement was found, hence validating 
the solution. Some of the main outcomes that can be derived from this study are as follows:

Figure 12.   Impact of Ec on Nusselt number w.r.t S.

Figure 13.   Impact of Rd on Nusselt number w.r.t S.
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•	 The velocity profile reduces for the larger curvature parameter (K) and the Hartmann number (M).
•	 The thermal and momentum boundary layer thickness enhances with the larger values of nanoparticles 

concentration (ϕ).
•	 The Dufour number (Du) and the Prandtl number (Pr) have different impacts on the temperature profile.
•	 The Soret number (Sr) and the Dufour number (Du) steps up the concentration profile but chemical reaction 

rate parameter (τ ) diminishes it.
•	 The nanoparticle concentration (ϕ) and the curvature parameter (K) minimizes the skin friction w.r.t. Hart-

mann number (M).
•	 The Eckert number (Ec) and the magnetic field parameter (M) minimizes the Nusselt number but radiation 

parameter (Rd) elevate the Nusselt number w.r.t. the suction (S).

Figure 14.   Impact of M on Nusselt number w.r.t S.

Figure 15.   Impact of ω on Sherwood number w.r.t E1.
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•	 The Hartmann number (M) , temperature difference parameter (ω ) and the radiation parameter (Rd) steps 
up entropy generation (NG).

•	 The Bejan number is decreasing for larger values of Brinkman number (Br) and Magnetic field parameter 
(M).

Figure 16.   Impact of Sr on Sherwood number w.r.t E1.

Figure 17.   Impact of τ on Sherwood number w.r.t E1.
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Figure 18.   Impact of M on NG.

Figure 19.   Impact of Rd on NG.
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Figure 20.   Impact of ω on NG.

Figure 21.   Impact of Br on Be.
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