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Modified minimum principal 
stress estimation formula 
based on Hoek–Brown criterion 
and equivalent Mohr–Coulomb 
strength parameters
Yanhui Song 1, Man Feng 1* & Peng Chen 1,2

The most critical parameter for determining equivalent values for the Mohr–Coulomb friction angle 
and cohesion from the nonlinear Hoek–Brown criterion is the upper limit of confining stress. For rock 
slopes, this value is the maximum value of the minimum principal stress ( σ ′

3,max
 ) on the potential 

failure surface. The existing problems in the existing research are analyzed and summarized. Using 
the finite element method (FEM), the location of potential failure surfaces for a wide range of slope 
geometries and rock mass properties are calculated using the strength reduction method, and a 
corresponding finite element elastic stress analysis was carried in order to determine σ ′

3,max
 of the 

failure surface. Through a systematic analysis of 425 different slopes, it is found that slope angle (β) 
and geological strength index (GSI) have the most significant influence on σ ′

3,max
 while the influence 

of intact rock strength and the material constant m
i
 are relatively small. According to the variation 

of σ ′

3,max
 with different factors, two new formulas for estimating σ ′

3,max
 are proposed. Finally, the 

proposed two equations were applied to 31 real case studies to illustrate the applicability and validity.

Abbreviations
σ1  Major effective principal stress
σ3  Minor effective principal stress
σci  Unconfined compressive strength of intact rock
σcm  Unconfined compressive strength of rock mass
σt  Tensile strength of rock mass
σv  Gravitational stress
σ ′
3n  Normalized upper limit of confining stress

σ ′
3,max  Upper limit of confining stress over the equivalent Mohr–Coulomb and Hoek–Brown criteria are 

considered
σ a
3,max  Appropriate value of σ3,max obtained from elastic stress analysis

σ
p
3,max  Predicted value of σ3,max

mb  Hoek–Brown constant for rock mass
mi  Hoek–Brown constant for intact rock
s  Hoek–Brown constant for rock mass
a  Hoek–Brown constant for rock mass
c′  Equivalent cohesion
φ′  Equivalent friction angle
GSI  Geological strength index
D  Disturbance factor
γ  Unit weight
H  Slope height
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β  Slope angle
Erm  Deformation modulus of rock mass

At present, limit equilibrium method based on Mohr–Coulomb (MC) failure criterion is still the main method 
for slope stability analysis. However, some studies show that the nonlinear Hoek–Brown (HB) failure criterion 
more correctly represents rock failure for almost all rock  types1–5. Multiple methods for evaluating the equivalent 
MC friction angle and cohesion have been  proposed5–15. Iamael and  Konietxky16 modified the HB criterion to 
consider the anisotropy of rock by applying an explicit function of the rock parameter mi with orientation β.

The Hoek–Brown criterion was firstly proposed for intact rock by Hoek and Brown in  198017, and the latest 
version for rock mass is as  follows5:

where σ1 and σ3 are the major and minor principal stresses, σci is the unconfined compressive strength, and mb, 
s, and a are rock mass material constants given by Eqs. (2), (3), and (4), respectively.

where mi is a material constant for intact rock, GSI is the geological strength index which depends on rock mass 
characterization and commonly varies from 0 to 100; D is a factor which depends upon the degree of disturbance 
due to blast damage and stress relaxation and varies from 0 to 1.

The GSI classification system is based upon the assumption that the rock mass contains sufficient number of 
‘randomly’ oriented discontinuities such that it behaves as an isotropic mass. Therefore, the control failure of a 
single discontinuous structure is beyond its range, which will lead to highly anisotropic mechanical behavior.

In line with the above discussion, it is important to realise the research in this paper will be subject to the 
same limitations that underpin the Hoek–Brown yield criterion itself.

Hoek9 proposed a method to calculate the equivalent Mohr–Coulomb parameters based on instantaneous 
rock mass properties for: (1) a specified effective normal stress, (2) a specified minor principal effective stress, and 
(3) a condition in which the rock mass uniaxial compressive strength is the same for both the Hoek–Brown and 
Mohr–Coulomb criteria. In 1997, Hoek and  Brown8 revised the method of calculating the equivalent Mohr–Cou-
lomb parameters according to the generalized Hoek–Brown criterion. It is recommended that the maximum 
value of the minimum effective principal stress generally be 0.25σci , and the estimated c value using this method 
be decreased by 25% to avoid overestimating the rock mass strength. Also, for rock slopes, the effective normal 
stress on the potential failure surface of the slope may be small, so the maximum value of the minimum effec-
tive principal stress 0.25σci should be applied cautiously, otherwise the rock mass shear strength mass may be 
overestimated. For rock slopes, a minor principal stress range of 0 < σ3 < σv can be used, where σv = depth × unit 
weight of the rock  mass18. In this case, depth is defined as the average depth of a failure surface in which a cir-
cular type can be assumed.

The equations for determining the equivalent cohesion and friction angle proposed by Hoek et al. in 2002 
and 2018  are5,19:

with

where γ is the rock mass unit weight, H is the slope height, and σcm is the rock mass global strength, which is 
expressed as follows:
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Li et al.11 found that, for steep slopes (i.e. greater than 45°), the safety factors calculated using the equivalent 
friction angle and cohesive strength obtained from Eqs. (5–9) are significantly higher due to the deviation of the 
estimated σ ′

3,max ; therefore, they suggested the following modified power functions to estimate σ ′
3,max:

where βis the slope angle.
Renani and  Martin13 also studied the estimation of σ ′

3,max through systematic slope stability analysis and 
found that using the σ ′

3,max calculated from Eq. (8) resulted in a 14% overestimation of the safety factor on aver-
age with higher discrepancies for steeper slopes, which more importantly led to drastic overestimation of the 

normalized failure area by an average of 79%. And what is more, they found that σ
′
3,max

γH  is almost independent of 
σcm
γH  and is primarily controlled by the slope angle; therefore, Renani and  Martin13 proposed the following equa-
tion to estimate σ ′

3,max:

Equation (12) is obtained from an analysis of slopes with a range of parameters (Table 1).β, mi, GSI, and D 
almost cover the whole range of possible values (Table 1). Only σci

γH covers a narrow range of possible values. For 
example, when slope height H = 100 m, and γ = 0.027 MN/m3, then σci = 0.27–27 MPa, this situation represents 
only a small portion of natural rock slopes, therefore when σci

γH > 10 , the applicability of Eq. (12) needs to be 
verified.

The magnitude of the minimum principal stress on the potential failure surface of the rock slope is primarily 
related to its development location, which is not only related to slope angle but also to the intact rock strength 
and rock mass integrity. However, Eq. (8) does not consider the influence of slope angle and Eq. (12) does not take 
into account the effect of the intact rock strength and rock mass integrity. Although all factors are considered in 
Eqs. (10) and (11), the slope angle is divided into two cases: less than 45°and greater than or equal to 45°, which 
fails to consider the effect of a continuously changing slope angle on the minimum principal stress magnitude. 
In view of these problems that still exist in the current research, this contribution aims to propose a new estima-
tion formula for σ ′

3,max on the potential failure surface of the slope by extending the range of σci
γH > 10 in Table 1.

Methodology
In order to establish the estimation formula of σ ′

3,max on the slope potential failure surface, the finite element 
strength reduction method for generalized Hoek–Brown criterion was adopted to calculate the location of the 
potential failure surface for a wide range of slope geometries and rock mass properties. Then the corresponding 
finite element elastic stress analysis was carried out in order to determine the value of σ ′

3,max on the failure surface 
(based on the method proposed by Renani and Martin  in13). The σ ′

3,max values on 425 potential slope failure 
surfaces are calculated and used in a statistical analysis to obtain new estimation formulas.

It is noteworthy to highlight that in reality, even for the rock mass exhibits isotropic characteristics, the pres-
ence of distinct structural planes and fault can lead to deviations in the sliding surface of local slopes. However, 
these deviations are generally considered to be within acceptable limits.

(9)σcm = σci
[mb + 4s − a(mb − 8s)]

(mb
4 + s

)a−1

(1+ a)(2+ a)

(10)
σ ′
3max

σcm
= 0.41

(

σcm

γH

)−1.23

forβ < 45◦

(11)
σ ′
3max

σcm
= 0.2

(

σcm

γH

)−1.07

forβ ≥ 45◦

(12)
σ ′
3max

γH
=

0.175

tan (β)

Table 1.  Range of slope parameters.

Parameter β(°) σci

γH
mi GSI D

Minimum 30 0.1 5 20 0

Maximum 75 10 30 80 1

Table 2.  Range of slope parameters in this study.

Parameter β(°) σci

γH
mi GSI D

Minimum 30 10 5 20
0

Maximum 70 50 30 80
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Table 2 shows the range of slope parameters used in this study. Finite element strength reduction analysis and 
elastic stress analysis was carried out using RS2 software. The gravitational stress field had a horizontal to verti-
cal in situ stress ratio of unity, rock mass deformation modulus Erm was estimated using the Eq. (13)20, the rock 
mass residual index is the same as the peak index, and Poisson’s ratio was 0.28. Figure 1 shows the position and 
shape of the potential failure surface of the slope calculated using the finite element strength reduction method 
(corresponding to the maximum shear strain band), and Fig. 2 shows the minimum principal stress σ ′

3,max on 
the potential failure surface.

The disturbance factor D was not considered in this study because the disturbed zone of the slope caused by 
blasting excavation is primarily limited to the shallow part of the slope; hence, D should not be used for the entire 
 slope19. Due to the difference in blasting methods, slope shapes, and rock mechanical properties, the range of 
slope disturbance zones varies significantly. At present, there is no method to estimate this range, which makes 
considering the effect of D difficult.

The disturbance factor D is usually considered to take into account of the effects of reduction of GSI caused 
by construction disturbance. When the slope is analyzed for various GSI values, the individual effect of D can 
be safely ignored.

(13)Erm = 100000

(

1− D/2

1+ e((75+25D−GSI)/11)

)

Potential failure surface
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Shear Strain

0.00e+000
1.80e-004
3.60e-004
5.40e-004
7.20e-004
9.00e-004
1.08e-003
1.26e-003
1.44e-003
1.62e-003
1.80e-003
1.98e-003
2.16e-003
2.34e-003
2.52e-003
2.70e-003
2.88e-003
3.06e-003
3.24e-003
3.42e-003
3.60e-003

Figure 1.  Potential failure surface calculated using the strength reduction method.
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Figure 2.  σ ′
3,max on the potential failure surface. 
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Impact analysis of various factors
As mentioned earlier, Eq. (8) does not consider the influence of slope angle, while Eq. (12) only considers the 
influence of slope angle without considering the intact rock strength and rock mass integrity. This study shows 
that for slopes with varying rock mass properties, there will be a large difference range of σ ′

3,max when the range 
of σci

γH is between 10 and 50, even for the same slope angles. When the slope angle is 30°, the difference in σ
′
3,max

γH  can 
reach 0.5 (Fig. 3), indicating that in addition to the slope angle, the rock mass properties have a non-negligible 
impact on σ ′

3,max.

σ
ci

 to γH ratio. Homogeneous rock slope failure is related to the strength of the intact rock that composes 
the slope. Under the same conditions, the greater the uniaxial compressive strength of the rock block, the higher 
the slope stability and the deeper the potential failure surface. In this study, σci

γH is used to characterize the effect 
of rock block strength on σ ′

3,max of the potential failure surface. Figure 4a–e show the correlation between σ
′
3,max

γH  
and σci

γH when GSI = 20, 35, 50, 65, and 80, respectively.
When GSI is small (i.e., GSI < 50), no matter the slope angle, σci

γH has little effect on σ
′
3,max

γH  ; when GSI is large 

(i.e., GSI ≥ 50), the magnitude of σ
′
3,max

γH  increases slowly with increasing σci
γH , and the smaller the slope angle, the 

greater the increase (Fig. 4).

Geological Strength Index (GSI). The Geological Strength Index (GSI) reflects rock mass integrity and 
is the most important factor affecting slope stability and the location of the potential failure surface. GSI has a 
significant impact on the magnitude of σ ′

3,max on the potential failure surface. Figure 5a–e show the correlation 

between σ
′
3,max

γH  and GSI when σci
γH ranges from 11 to 45.

σ ′
3,max

γH  values increase exponentially with increasing GSI value at different slope angles, and the growth curves 
at different slope angles are basically parallel, indicating that the change in σ

′
3,max

γH  with GSI is not affected by the 

size of the slope angle (Fig. 5). Similarly, the change in σ
′
3,max

γH  with GSI is also not affected by σci
γH (Fig. 5a–e).

Material constant mi. mi is a material constant for the intact rock which depends upon the mineralogy, 
composition, and grain size of the intact  rock21, which is obtained from laboratory. Hoek and  Brown19 proposed 
an approximate relationship between the compressive to tensile strength ratio, σci

|σt |
 , and the Hoek–Brown param-

eter mi:

where |σt | is the absolute value of the uniaxial tensile strength.
In order to examine the influence of mi on σ

′
3,max

γH  on the potential failure surface, the variation law of σ
′
3,max

γH  with 

mi for varying slope angles and rock mass parameters is calculated and analyzed. Results show that, σ
′
3,max

γH  always 
decreases as a power function with increasing mi, and the decrease range is commonly small. For example, when 
mi varies from 5 to 30, the difference in σ

′
3,max

γH  is within 0.2, indicating that mi has no significant effect on σ
′
3,max

γH  . 

Especially when mi > 10, its effect on σ
′
3,max

γH  is very small. Figure 6 shows the variation of σ
′
3,max

γH  on potential failure 
surface with mi under three different conditions.

(14)
σci

|σt |
= 0.81mi + 7

Figure 3.  Change in σ
′
3,max

γH
 for various slope angles.
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Slope angle. Slope angle not only affects the stress distribution in the rock mass but also affects the location 
of the potential failure surface, indicating that the effect of slope angle on σ ′

3,max is significant. Numerous calcula-
tions show that when other conditions are the same, σ ′

3,max decreases exponentially with increasing slope angle. 

Figure 7 shows the variation of σ
′
3,max

γH  with slope angle when σci
γH = 25.9, mi = 10, and GSI is 20, 35, 50, 65, and 80, 

respectively. In other cases, the variation of σ
′
3,max

γH  with slope angle follows the same law.

New equation for estimating appropriate range of confining stress
In "Impact analysis of various factors", the influence of various factors on σ ′

3,max of the potential failure surface 
is analyzed. Results show that slope angle and GSI have the most significant influence on σ ′

3,max , followed by 
the intact rock strength, while the mi has the least effect. According to the variation pattern of σ ′

3,max with each 
factor, the following function is used as a fitting function:

(15)σ ′
3max

γH
= b

(

σci
γH

)c
e
GSI
k

md
i (tan β)

f
+ t

Figure 4.  Correlation between σ
′
3,max

γH
 and σci

γH
.
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Figure 5.  Correlation between σ
′
3,max

γH
 and GSI.

Figure 6.  Effect of mi on σ
′
3,max

γH
.
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where b, c, k, d, f, and t are constants.
Based on the above assumptions, an analysis was carried out on the calculation results of 425 slopes with a 

wide range of slope geometries and rock mass properties. Equation (15) was fit to these data, and the following 
best-fit equation was derived:

The σ
′
3,max

γH  values predicted from Eq. (16) are plotted against appropriate values (finite element method results) 

in Fig. 8. The correlation between the predicted and appropriate σ
′
3,max

γH  values is reasonably close to the ideal 1:1 
relationship of a perfect fit.

Although the fitting degree of Eq. (16) is sufficiently accurate, its expression is cumbersome. In order to sim-
plify Eq. (16), σci

γH and mi are removed from Eq. (16) considering their minor influence on σ ′
3,max , and a value of 

f = 1 is adopted. On this basis, the same analysis was completed, and a simplified estimation formula for σ ′
3,max 

was obtained:

(16)σ ′
3max

γH
=

0.173
(

σci
γH

)0.165
e
GSI
75.2

m0.219
i (tan β)0.631

− 0.1 R2 = 0.953

Figure 7.  Variation of σ
′
3,max

γH
 with slope angle.

Figure 8.  Comparison between appropriate σ
′
3,max

γH
 values and predicted values from Eq. (16).
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The relationship between σ
′
3,max

γH  estimated by Eq. (17) and the appropriate value is shown in Fig. 9.
Comparing Figs. 8 and 9, the prediction accuracy of Eq. (17) is slightly lower than that of Eq. (16), especially 

when σ
′
3,max

γH  is large, the dispersion of the predicted value using Eq. (17) increases.

In addition, for validating the simplified and comprehensive quantitative correlations, the σ
′
3,max

γH  predicted from 

Eqs. (16) and (17) are applied to comparing the appropriate σ
′
3,max

γH  value based on finite element method results. 

The predicted σ
′
3,max

γH  values are plotted and compared in Fig. 10. Predicted errors in σ
′
3,max

γH  from the simplified and 
comprehensive quantitative correlations are plotted in Fig. 11.

Most errors predicted by the comprehensive quantitative correlation (Eq. 16) are less than 0.05 (min − 0.141, 
max 0.068, average 0.020) and are smaller than those predicted by the simplified quantitative correlation (Eq. 17, 
min − 0.143, max 0.208, average 0.040), indicating Eq. (16) has the better performance (Figs. 10, 11).

(17)
σ ′
3max

γH
=

0.1e0.017GSI

tan β
R2 = 0.89

Figure 9.  Comparison between appropriate σ
′
3,max

γH
 values and predicted values from Eq. (17).

Figure 10.  Predicted σ
′
3,max

γH
 values from two quantitative correlations.
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Figure 11.  Predicted errors of σ
′
3,max

γH
 values from two quantitative correlations.

Table 3.  various real cases of rock  slopes22.

Cases H (m) β (°) γ (kN/m3) σci (MPa) GSI mi D

1 184 55 27 153 47 9 0.9

2 140 34 26 50 28 8 0.7

3 220 45 27 65 44 17 0.8

4 135 65 27 172 58 9 0.9

5 70 50 27 29 41 7 0.8

6 110 45 26.5 50 25 10 0.7

7 270 45 27 109 39 18 0.9

8 170 55 30 104 48 7 0.7

9 60 60 27 65 44 13 1

10 35 67 27 109 28 12 1

11 63 35 27 109 28 12 1

12 70 49 27 3 49 24 1

13 58 50 27 5 55 22 1

14 60 48 27 5 54 22 1

15 60 52 27 5 56 22 1

16 40 71 27 50 33 14 1

17 110 50 27 50 25 14 1

18 41 50 27 3 46 24 1

19 41 55 27 3 49 24 1

20 46 55 27 3 50 24 1

21 57 49 27 3 48 24 1

22 57 37 27 3 48 24 1

23 57 40 27 3 48 24 1

24 57 42 27 3 48 24 1

25 27 45 25 0.75 100 10 0

26 50 60 23 10 30 8 1

27 50 45 27 13.5 30 5 0.7

28 25 45 27 5.4 20 20 0.7

29 5 30 27 2.7 10 5 0.5

30 25 75 25 0.625 80 15 0.3

31 250 60 23 46 50 35 1
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Although the prediction accuracy of Eq. (17) is generally lower than that of Eq. (16), when σ
′
3,max

γH  is small (i.e., 
σ ′
3,max

γH  < 0.25), the prediction errors are equivalent. Only when σ
′
3,max

γH  is large (i.e., σ
′
3,max

γH  > 0.25) does the prediction  
error become significant (generally within 0.10). Therefore, when σci and mi are not available, Eq. (17) can be 
used to estimate σ ′

3,max.
It should be noted that Eqs. (16) and (17) are obtained from an analysis of slopes with the range of parameters 

given in Table 2, where apart from σci
γH having limited range ( σci

γH = 10–50), the slope angle, GSI, and mi , almost 
cover the complete possible value ranges.

Validation using published data
In "New equation for estimating appropriate range of confining stress", two new equations for estimating appro-
priate range of confining stress have been established. To further validate the developed new equations, we have 
applied them to the various real cases of rock  slopes22. The gathered data and calculation results are shown in 
Tables 3 and 4, respectively.

The root mean squared error (RMSE) is used as an indicator pf the misfit between the appropriate value and 
the predicted value.

(18)RMSE =

√

√

√

√

1

N

N
∑

i=1

(

σ
p
3,max

γH
−

σ a
3,max

γH

)2

Table 4.  Calculation results.

Cases σci/γH

Appropriate
σ
′

3,max

γH

Equations (10) and (11)
σ
′

3,max

γH

Equation (12)
σ
′

3,max

γH

Equation (16)
σ
′

3,max

γH

Equation (17)
σ
′

3,max

γH

1 30.80 0.1469 0.1896 0.0040 0.1808 0.1557

2 13.74 0.2747 0.4593 0.0189 0.2145 0.2386

3 10.94 0.1481 0.1988 0.0160 0.1478 0.2113

4 47.19 0.1591 0.1790 0.0017 0.1698 0.1250

5 15.34 0.1693 0.2017 0.0096 0.1738 0.1685

6 17.15 0.1544 0.2039 0.0102 0.1329 0.1530

7 14.95 0.1811 0.1988 0.0117 0.1411 0.1941

8 20.39 0.1765 0.1927 0.0060 0.1809 0.1584

9 40.12 0.0988 0.1876 0.0025 0.1302 0.1220

10 115.34 0.0317 0.1836 0.0006 0.0857 0.0684

11 64.08 0.2646 0.3543 0.0039 0.2624 0.2299

12 1.59 0.1005 0.2270 0.0958 0.0635 0.1999

13 3.19 0.1596 0.2134 0.0460 0.0981 0.2137

14 3.09 0.1358 0.2145 0.0511 0.1032 0.2255

15 3.09 0.0988 0.2133 0.0443 0.0908 0.2024

16 46.30 0.0185 0.1914 0.0013 0.0446 0.0604

17 16.84 0.1010 0.2112 0.0087 0.0931 0.1284

18 2.71 0.1716 0.2205 0.0542 0.0678 0.1834

19 2.71 0.1265 0.2187 0.0452 0.0558 0.1611

20 2.42 0.0966 0.2199 0.0507 0.0549 0.1638

21 1.95 0.1300 0.2244 0.0780 0.0669 0.1966

22 1.95 0.2469 0.5984 0.1191 0.1179 0.3001

23 1.95 0.2209 0.5984 0.1070 0.1036 0.2695

24 1.95 0.1949 0.5984 0.0997 0.0948 0.2511

25 1.11 0.2963 0.1996 0.1575 0.3019 0.5474

26 8.70 0.0348 0.2218 0.0116 0.0652 0.0962

27 10.00 0.1556 0.2141 0.0175 0.1650 0.1665

28 8.00 0.1481 0.2129 0.0219 0.0650 0.1404

29 20.00 0.2963 0.5135 0.0152 0.2222 0.2052

30 1.00 0.0480 0.2133 0.0469 0.0206 0.1043

31 8.00 0.0730 0.1995 0.0126 0.0539 0.1351
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where σ a
3,max and σ p

3,max are the appropriate and predicted value of σ3,max , respectively, and N is the number of 
cases. When an RMSE value approaches zero, the predicted values from the equation are closer to the appropri-
ate values.

As can be seen in Fig. 12, the RMSE values form all modified predictive equations in this study are lower than 
the equations from previous studies.

When σci
γH < 10 , the predicted σ3,max

γH  given in Eqs. (16) and (17) are both close to appropriate σ3,max

γH  . The pre-

dicted σ3,max

γH  from Eq. (16) are smaller, and the predicted values of Eq. (17) are larger. The RMSE of the predicted 

value from Eq. (16) is 0.0714, and the Eq. (17) is 0.0898. The estimated σ3,max

γH  given in Eqs. (10) and (11) are quite 
above the appropriate values with a mean absolute error of 0.1944. The prediction results of Eq. (12) are close to 
those of Eq. (16), but the accuracy is lower than that of Eq. (16) with RMSE of 0.0917 (Figs. 12, 13).

When σci
γH ≥ 10 , the predicted σ3,max

γH  given in Eqs. (16) and (17) are both very approach to the appropriate 
values. Meanwhile, the RMSE of the predicted value by Eqs. (16) and (17) are 0.035 and 0.0387, respectively. The 
predicted values of Eqs. (10) and (11) are higher than the appropriate values with RMSE being 0.1106. The predic-
tion result of Eq. (12) is significantly smaller than the appropriate value with RMSE being 0.1686. (Figs. 12, 14).

Conclusions
When the Mohr–Coulomb criterion is used to analyze slope stability, it is commonly necessary to use the 
Hoek–Brown criterion to obtain equivalent Mohr–Coulomb shear strength parameters, where the maximum 
value of the minimum principal stress on the potential failure surface of the slope is the most important param-
eter. Based on the finite element strength reduction method and elastic analysis, this paper systematically analyzes 
425 different slopes. Slope angle and GSI have the most significant influence on σ ′

3,max , followed by intact rock 
strength and mi. σ ′

3,max decreases with increasing slope angle and mi as a power function and increases with 
increasing GSI and σci/γH as an exponential and power function, respectively. On this basis, two new formulas 
for estimating σ ′

3,max are fit to the data, and the average errors of Eqs. (16) and (17) are 0.02 and 0.04, respectively, 
which shows the new formulas have good performance. To further validate the developed new equations, the 
equations were verified by 31 real slope cases. The result of verification shows estimated σ3,max

γH  from Eqs. (16) and 
(17) are more consistent with the appropriate value than the predicted result from previous research, and the 
prediction accuracy of Eq. (16) compares well with others. The verification result indicating that new equations 
established in this contribution can be used in practical engineering.

Figure 12.  The RMSE obtained in the predicted σ
′
3,max

γH
 value by different equations.
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Figure 13.  Comparison of the appropriate σ
′
3,max

γH
 values and predicted values from different equations ( σci

γH
 < 10).



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:6409  | https://doi.org/10.1038/s41598-023-33053-x

www.nature.com/scientificreports/

Data availability
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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