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Integrative analyses of ferroptosis 
and immune related biomarkers 
and the osteosarcoma associated 
mechanisms
Guibin Li 1, Jie Lei 2, Dexin Xu 1, Wenchang Yu 3, Jinping Bai 4 & Ge Wu 5*

Osteosarcoma (OS) is the most common primary malignant bone tumor with high metastatic 
potential and relapse risk. To study the regulatory mechanism of the OS microenvironment, a complex 
regulatory network involving the ferroptosis- and immune response-related genes remains to be 
established. In the present study, we determined the effect of a comprehensive evaluation system 
established on the basis of ferroptosis- and immune-related genes on the immune status, related 
biomarkers, prognosis, and the potential regulatory networks underlying OS based on the TARGET 
and Gene Expression Omnibus databases that contain information on OS patients by bioinformatics 
analyses. We first characterized individual ferroptosis scores and immune scores through gene set 
variation analysis (GSVA) against TARGET-OS datasets. We then identified differentially expressed 
genes by score groups. Weighted gene co-expression network analysis was performed to identify 
the most relevant ferroptosis-related and immune-related gene modules, which facilitated the 
identification of 327 ferroptosis gene and 306 immune gene candidates. A 4-gene (WAS, CORT, 
WNT16, and GLB1L2) signature was constructed and valuation using the least absolute shrinkage 
and selection operator-Cox regression models to effectively predict OS prognosis. The prediction 
efficiency was further validated by GSE39055. We stratified patients based on the prognostic scoring 
systems. Eight hub genes (namely CD3D, CD8A, CD3E, IL2, CD2, MYH6, MYH7, and MYL2) were 
identified, and TF–miRNA target regulatory networks were constructed. Furthermore, Gene Ontology, 
Kyoto Encyclopedia of Genes and Genomes, gene set enrichment analysis, and GSVA were used to 
determine the signature’s potential pathways and biological functions, which showed that the hub 
genes were enriched in ferroptosis-associated biological functions and immune-associated molecular 
mechanisms. Thereafter, we investigated the proportion and infiltration extent of 22 infiltrating 
immune cells by using CIBERSORT, which revealed significant subgroup differences in CD8 + T cells, 
M0 macrophages, and M2 macrophages. In conclusion, we determined a new ferroptosis-related 
and immune-related gene signature for predicting OS patients’ prognosis and further explored the 
ferroptosis and immunity interactions during OS development, which provides insights into the 
exploration of molecular mechanisms and targeted therapies in patients with OS.

Osteosarcoma, the most common primary malignant bone tumor, mainly occurs in children and  adolescents1, 
and its cardinal features include early metastasis, high-grade malignancy, and extremely poor prognosis. Of the 
patients who develop metastatic disease, 74% experience lung-only metastasis, 9% exhibit bone-only metastasis, 
and 8% exhibit both bone and lung  metastases2. Improvement of the 5-year survival rate of OS has been limited 
over the last four  decades2,3. Therefore, developing novel therapies to improve patient prognosis is necessary.

Cancer therapy has entered the age of immunity and  iron4. Cancer treatment has rapidly evolved into immu-
notherapy, and the effective therapy of established tumors necessitates rational multi-combination immunother-
apy including ferroptosis. Recently, many studies have reported the interaction between ferroptosis modifications 
and antitumor  immunity4–12. Ferroptosis, characterized by iron-dependent accumulation of lipid  peroxides13, 
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is a novel cell death pathway and is different from necrosis, autophagy, and apoptosis in cell morphology and 
function, involving various tumor biological processes such as invasion, metastasis, and immune  escape14. 
Ferroptosis and antitumor immunity might synergistically regulate tumor progression in the tumor immune 
microenvironment (TIME). Ferroptosis of antigen-exposed tumor cells might involve the induction of tumor 
immunogenicity in  TIME15. Activated  CD8+ T cells can facilitate the iron-dependent accumulation of lipid 
peroxides, further inducing the antitumor effect of  immunotherapy16. OS is one of the diseases involving the 
recruitment and activation of tumor-associated macrophages (TAMs) as a treatment strategy. Multiple analyses 
of the tumor microenvironment of OS indicated that the immune cell infiltrates are composed of macrophages 
and T  cells17–19. However, the ferroptosis- and immunity-based predictive biomarkers for the treatment and 
prognosis of OS patients are not available  yet20.

Bioinformatics, a novel interdisciplinary subject with rapid development in recent years, reveals the laws and 
mysteries behind the complex biological data through the comprehensive use of molecular biology, computer 
science and information technology. Bioinformatics analyses have extended previous works based on screening 
for predictive biomarkers for ferroptosis and immunity within a variety of disease states.

In the present study, based on bioinformatics, the OS expression data were obtained from the Gene Expres-
sion Omnibus (GEO) database and TCGA. The prognostic and diagnostic models were constructed based on 
the currently available ferroptosis-related genes (FRGs) and immune-related genes (IRGs). Our findings could 
better elucidate the regulatory network of ferroptosis and antitumor immunity, thereby providing new perspec-
tives on the exploration of molecular mechanisms and novel therapeutic strategies for OS.

Materials and methods
Data acquisition and preprocessing. The gene expression profile datasets were downloaded from the 
TARGET database (https:// ocg. cancer. gov/ progr ams/ target) from UCSC Xena by using the AnnoProbe pack-
age (https:// github. com/ jiang fuqing/ GEO- AnnoP robe) of R software (version 4.0.2, http://r- proje ct. org/). These 
datasets were set as the training cohort and included 88 samples. The OS expression profile dataset was down-
loaded from the GEO (https:// www. ncbi. nlm. nih. gov/ geo/) database and set as the verification cohort, compris-
ing 37 samples of GSE39055 (Table 1). The raw data were read using the  affy21 package for background correc-
tion and quantile normalization. FRGs were acquired from the FerrDb database (https:// www. genec ards. org/), 
and IRGs were obtained from the Immport database (https:// www. immpo rt. org/).

Ferroptosis and immune scores. For all samples within the two datasets, the ferroptosis score and the 
immune score were calculated by performing a single-sample gene set enrichment analysis (ssGSEA) based on 
the gene expression matrix by using the R package  GSVA22.

Identification of differentially expressed genes. The samples were classified into two groups on the 
basis of the median values of the ferroptosis score and immune score. Differentially expressed genes (DEGs) in 
the TARGET-OS dataset were screened using the Deseq2  package23, whereas DEGs in GSE39055 were iden-
tified using the limma  package24. The volcano plot and heatmap of DEGs were constructed separately using 
the ggplot2 package and pheatmap package, respectively. The cut-off thresholds for the two datasets were an 
adjusted p value of < 0.05 and |log2FC|> 1.

Weighted gene co-expression network analysis. The “WGCNA”  package25 was used to perform 
the weighted gene co-expression network analysis (WGCNA) of DEGs. The adjacency matrix was constructed 
using a weighted correlation coefficient, and the genes had high connectivity in scale-free co-expression net-
works. Hierarchical clustering trees were constructed based on a high absolute correlation coefficient between 
the genes. The eigengene was calculated, and the modules were hierarchically clustered. The computational 
module significance (MS) determines the correlation between ferroptosis and the immune score in different 
modules. The modules with minimum MS values were considered negative modules, whereas the modules with 
maximum MS values were considered positive modules. After selecting the modules on the basis of the MS 
values, all genes within the modules were found to be highly correlated with the ferroptosis and immune scores. 
Module eigengenes revealed the first principal component in the module and described the expression pattern 
of the module. The correlation between ferroptosis-related genes, immune score values, and immune genes was 
determined by gene significance (GS).

Identification of the prognostic signature genes. In this study, the LASSO regression method was 
adopted to build the prognostic diagnostic model. Based on the linear regression, we increased the penalty term 
(the absolute value of the lambda slope), and used the regularization to solve the occurrence of overfitting during 
the curve fitting process, while improving the generalization ability of the model.A univariate Cox proportional 

Table 1.  Information on the GEO dataset and the TCGA dataset.

Datasets name GPL number Chip platform Group number Disease type

TARGET-OS RNA-seq Illumina HiSeq sequencing 88 OS

GSE39055 Expression microarray GPL14951: Illumina HumanHT-12 WG-DASL V4.0 R2 
expression beadchip 37 OS

https://ocg.cancer.gov/programs/target
https://github.com/jiangfuqing/GEO-AnnoProbe
http://r-project.org/
https://www.ncbi.nlm.nih.gov/geo/
https://www.genecards.org/
https://www.immport.org/
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regression model was used to screen candidate genes in the TARGET-OS dataset. The least absolute shrinkage 
and selection operator (LASSO) Cox regression model was constructed to identify the prognostic signature 
genes by selecting a standard error above the lowest standard. To make our model more optimized and practical, 
we used a stepwise Cox proportional hazards regression model.Finally, the risk score was calculated by consider-
ing the optimized gene expression and correlation estimated Cox regression coefficients by using the following 
formula:

Risk score = (exp-Gene1*coef-Gene1) + (exp-Gene2*coef-Gene2) + ⋯ + (exp-Gene*coef-Gene). Patients with 
OS were divided into high- and low-risk subgroups based on the risk score (median). Kaplan–Meier plots were 
used to determine overall survival of patients in the two subgroups by using the survival package. By performing 
a time-dependent receiver operating characteristic (ROC) curve analysis, the predictive ability of the risk score 
was measured using the ROCR  package26 to calculate the area (AUC) value under the ROC curve. A prognostic 
nomogram was constructed to determine survival outcomes based on multiple Cox regression analyses.

Furthermore, the random forest algorithm was used to further validate the accuracy of the model, and we used 
the Target-OS dataset as the training set and GSE39055 as the test set to further evaluate the reliability of eigen-
gene model building. The AUC values of the ROC curves were performed to assess the accuracy of the model.

Protein–protein interaction network establishment and hub gene regulatory network anal-
ysis. The protein–protein interaction (PPI) network was constructed using the  STRING27 online tool to 
examine the interactions between DEGs. The hub genes were further explored using the  CytoHubba28 plugin in 
Cytoscape. In addition, the transcription factor-core gene and miRNA-hub gene regulatory networks were con-
structed using Networkanalyst (http:// www. netwo rkana lyst. ca/ Netwo rkAna lyst) and visualized using cytoscape 
software.

Functional and pathway enrichment analyses. Enrichment analyses were separately performed for 
DEGs by referring to the GO and KEGG databases by using the GOplot  package29. An adjusted p value of < 0.05 
was considered statistically significant. GSEA was performed using the clusterProfiler  package30. “c2.cp.all.v7. 
0.symbols.gmt” was selected as the reference gene set, considering that the correlation is significant at a false 
discovery rate q < 0.25 and a p value < 0.05.

Correlation analysis of the risk score with immune infiltration. CIBERSORT31, a deconvolute 
method based on support vector regression modeling for 22 immune cell phenotypes in several cancer data-
sets, determines the abundance and composition of tumor-infiltrating immune cells in complex cells. Gene 
expression matrix data were uploaded to CIBERSORT, with the absolute level of immune infiltrates within each 
sample. The immune cell infiltration matrix was derived. Bar graphs were plotted to determine the immune cell 
infiltrates in each sample by using the R language ggplot2 package. Relevant heatmaps were used to visualize the 
correlation between the hub genes and 22 immune cell infiltration- or immune-related genes.

Statistical analysis. All data were analyzed using R software (version 4.0.2). The Student’s t test was used 
to compare the means of the continuous variable with normal distribution. The Mann–Whitney U test was used 
to analyze non-normally distributed continuous variables. The Chi-square or Fisher’s exact test was used to 
analyze categorical variables. Pearson correlation analysis was performed to calculate the correlation coefficients 
between various genes. Survival analysis was performed using the R statistical package. Kaplan–Meier analysis 
was performed to compare survival differences between the subgroups, and the significance was tested using the 
log-rank test. A nomogram for prognosis prediction was constructed based on univariate and multivariate Cox 
regression analyses. All P values were two-sided with a significance threshold of 0.05.

Ethics approval. This study was not conducted on human participants or animals by any of the authors. 
Our data were downloaded directly from public databases and we strictly abided by the publishing guidelines 
provided by GEO and TCGA databases; there were no requirements for ethical approvals.

Results
Identification of the ferroptosis and immune-related genes. An overview of the steps is presented 
as a flow chart (Fig. 1). Transcripts per million-normalized gene expression matrices were obtained using the 
TARGET-OS dataset. The ferroptosis and immune scores per sample were computed using GSVA. The samples 
were sorted based on their ferroptosis score and immune score (from low to high) (Figs. 2A, 3A). DEGs were 
extracted from the gene expression matrix of TARGET-OS by using the DEseq2 package of R software, as indi-
cated in the volcano plots and heat maps (Figs. 2B,C, 3B,C).

Concurrently, we constructed a WGCNA co-expression network to identify biologically significant gene 
modules and the genes closely associated with ferroptosis and immunity. In this study, 10 ferroptosis modules 
and 28 immune modules were selected for subsequent analysis (Figs. 2D–F, 3D–F). MS was determined to 
analyze the association between the ferroptosis and immune scores and genes. As shown in Figs. 2F and 3F, we 
screened the two most strongly correlated modules in Ferroptosis-related genes and immune-related genes by 
considering the intersection of all genes of the two modules and the DEGs, respectively, as displayed using Venn 
diagrams (Figs. 2G, 3G). We obtained 327 ferroptosis-related gene candidates and 306 immune-related gene 
candidates for subsequent analysis.

http://www.networkanalyst.ca/NetworkAnalyst
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Evaluation of the four-gene prognostic signature. After integration, a ferroptosis/immune gene set 
containing 633 genes was obtained. Among these genes, 131 were associated with OS (P < 0.05). Prognostic risk 
assessment was performed using LASSO-Cox regression analysis and by establishing a prognostic model based 
on the obtained gene expression profile (Fig. 4A). 11 genes were obtained after finishing the lasso regression, 
namely WNT16, WAS, ANXA13, MS4A4A, DLX2, CNNM1, DNAI1, CASP1, GLB1L2, TERT, and CORT. Next, 
in order to further eliminate the collinearity among genes, we carried out a multifactor Cox regression of 11 
genes. The stepwise regression method has three choices: “backward”, “forward” and “both” and we chose “both”. 
After multiple steps screening in this study, only four signatures were left. To optimize the model, a stepwise Cox 
proportional hazards regression model was used to identify the final 4 independent prognostic signature genes, 
namely WNT16, GLB1L2, CORT, and WAS (Fig. 4B). Subsequently, the patients were categorized into high- and 
low-risk subgroups (Fig. 4C) based on their optimized predicted risk scores. Patients in the high-risk prognostic 
subgroup had a significantly higher survival rate than those in the low-risk prognostic subgroup, as represented 
in the Kaplan–Meier curve (Fig. 5A). The four-gene signature showed significant prognostic effectiveness, with 
the 2-, 3- and 5-year area under the curve of 0.899, 0.820, and 0.788, respectively (Fig. 5B). Furthermore, through 
a multivariate Cox regression analysis, a nomogram model was constructed to better estimate the survival rate 
in OS patients and improve the predictive accuracy (Fig. 5C,D).

We additionally constructed WAS, CORT, WNT 16 and GLB1L2 as random forest models with eigenes. 
TARGET-OS was used as the training set and GSE39055 as the test set. The random forest model was trained 
(Fig. 6A), and it was found that CORT, WAS, GLB1L2 and WNT 16 were ranked according to the importance of 
the eigengene (Fig. 6B). Dividing patients into high risk and low risk groups, the training set TARGET-OS results 
showed significant differences, KM analysis and higher score group found worse prognosis, and time-dependent 
ROC curve showed the model with 1, 2, 3 year AUC values of 0.905, 0.946 and 0.852, respectively (Fig. 6C,D). 
Then, the results of the test set GSE39055 met the results of the training set, performed KM analysis and found 
significantly worse prognosis of patients in the high risk group, and the time-dependent ROC curve showed 
higher accuracy of the test set model, 1, 2, 3 years AUC values of 0.855, 0.771 and 0.684, respectively (Fig. 6E,F). 

Figure 1.  Study flow chart.
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In conclusion, we verified the possibility of WAS, CORT, WNT 16 and GLB1L2 as feature genes by Lasso-Cox 
and random forest model, and both Cox and random forest models showed high accuracy.

Verification of prognostic genes in the GEO dataset. The expression of 4 independent prognostic 
signature genes was analyzed using multivariate Cox regression in the TARGET-OS and GSE39055 datasets. 
The results showed the chromosomal locations of the 4 prognosis signature genes (Fig. 7A). The expression of 
WNT16 and CORT genes in the TARGET-OS cohort indicated a difference in the ferroptosis score, whereas in 
GSE39055, none of the genes differed significantly in terms of expression, except for WNT16 gene. In immune 
score comparisons, significant differences between WAS and CORT gene expression were observed in the TAR-
GET dataset. However, in GSE39055, GLB1L2, CORT, and WNT16 expressions varied significantly (Fig. 7B–E).

Analysis of hub genes and enrichment based on the risk score subgroups. Next, we wanted to 
explore which genes are differentially expressed between the previously identified high and low-risk groups. 
DEGs from the TARGET-OS gene expression matrix by using R software, as shown in the volcano plots and 

Figure 2.  Verification of ferroptosis candidate genes based on the TARGET-OS dataset. (A) Overview of the 
association degree between samples and ferroptosis score from high to low ranking. (B,C) Volcano plots and 
heatmaps of differentially expressed genes (DEGs) according to high and low ferroptosis scores. (D) Analysis of 
scale-free fit parameter and mean connectivity for different soft-thresholding power. (E,F) Dendrograms and 
heatmaps showing gene modules associated with the ferroptosis score. In Fig. 2F, the p values and correlation 
values are shown inside and outside the brackets, respectively. (G) Venn diagram representing the intersection 
of genes within the black and turquoise modules, which denote ferroptosis-related genes and DEGs, respectively.
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the heatmaps (Fig. 8A,B). After differential gene expression analysis, a PPI network was constructed using the 
STRING database. Eight hub genes, namely CD3D, CD8DA, CD3E, IL2, CD2, MYH6, MYH7, and MYL2, were 
extracted using the CytoHubba plugin (Fig. 8C,D). As shown in Fig. 7C, when the confidence score > 0.9 (high-
est confidence), only 72 nodes (genes) existed in the network, and 58 edges (edge) connected them. The average 
node degree was 0.229, avg. local clustering coefficient 0.113, expected number of edges 18, and PPI enrich-
ment p-value 8.59–14 e-14. Subsequently, we established molecular regulatory networks, which represent the 
collection of regulatory interactions occurring between transcription factors (TFs)/miRNAs and the identified 
hub genes (Fig. 8E,F). We further performed GO and KEGG pathway analyses, GSEA, and ssGSEA to identify 
potential downstream signaling pathways of the 4-gene prognosis model. The GO enrichment analysis showed 
that the DEGs were significantly enriched in the transporter activity, transmembrane transporter activity, syn-
apse part, sensory perception, etc. (Fig. 9A, Table 2). The KEGG pathway analysis indicated the complement 

Figure 3.  Screening of immune gene candidates in the TARGET-OS dataset. (A) Overview of the association 
of TARGET-OS samples with the immune score. Samples ranked from high to low based on their immune 
score. (B,C) Volcano plots and heatmaps of differentially expressed genes (DEGs) according to high and low 
immune scores. (D) Analysis of scale-free fit parameter and mean connectivity for different soft-thresholding 
power. (E,F) Dendrograms and heatmaps showing gene modules associated with the immune score. In Fig. 3F, 
the p values and correlation values are shown inside and outside the brackets, respectively. (G) Venn diagram 
representing the intersection of genes within the gray60 and dark orange modules, which denote immune-
related genes and DEGs, respectively.
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and coagulation cascades, retinol metabolism, neuroactive ligand-receptor interaction, and cGMP-PKG signal-
ing pathway to be the significantly enriched pathways (Fig. 9B, Table 3). Interestingly, ssGSEA indicated that 
the immune cell infiltration score for the high-risk subgroup was significantly lower than that for the low-risk 
subgroup (Fig. 9C).GSEA was performed between the high- and low-risk groups in the TARGET-OS dataset to 
identify the significantly enriched pathways (p < 0.05). We found that WP_ALLOGRAFT_REJECTION, REAC-
TOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_LYMPHOID_AND_A_NON_LYM-
PHOID_CELL, PID_BETA_CATENIN_NUC_PATHWAY, and KEGG_GRAFT_VERSUS_HOST_DISEASE 
were enriched in the high-risk subgroup, whereas WP_GLUTATHIONE_METABOLISM, WP_PHOTODY-
NAMIC_THERAPYINDUCED_NFE2L2_NRF2_SURVIVAL_SIGNALING, KEGG_HISTIDINE_METABO-
LISM, and REACTOME_SYNTHESIS_OF_BILE_ACIDS_AND_BILE_SALTS_VIA_24_HYDROXYCHOLES-
TEROL were mainly enriched in the low-risk subgroup (Fig. 9D,E, Table 4).

Differences in immune cell infiltration based on risk subgroups. Ranked by the risk scores, 
immune infiltration in TCGA cohorts was shown using bar graphs (Fig. 10A). Correlation analysis (Fig. 10B) of 
the infiltration score and 22 immune cells was performed on the basis of expression data by using the CIBER-
SORT algorithm.  CD8+ T cells, M0 macrophages, and M2 macrophages were significantly different in the high- 
and low-risk subgroups (Fig. 10C). As expected, the 8 hub genes were closely related to immune cell infiltration 
(Fig. 10D–K).

Discussion
Osteosarcoma is the most common bone tumor that affects children and young adults. Despite the emergence of 
novel therapeutic strategies such as limb salvage surgery, neoadjuvant chemoradiation, and molecular targeted 
therapies in the last four decades, the survival rate of OS has not improved. The incidences of localized OS or 
Ewing sarcoma have reached approximately 75%, and that of metastatic disease and initial chemotherapy resist-
ance are less than 30%32. Traditional chemotherapy and radiotherapy for OS can result in the development of 
resistance, which in turn attenuates the therapeutic effects. Recent studies have reported that the long recurrence-
free survival rate in patients is approximately 20%33. OS development is a highly complicated, multi-step process 
that involves chromosomal aberrations, genetic mutations, cellular signaling pathways, and epigenetic disorders. 
However, the molecular mechanism of OS is unclear and the predictive ability of traditional clinical markers is 

Figure 4.  Determination of prognostic ferroptosis- and immune-related genes. (A) 100-fold cross-validation 
for choosing tuning parameters of the Least Absolute Shrinkage and Selection Operator (LASSO) model. The 
LASSO coefficient profiles of prognostic genes. (B) Prognosis-related genes screened further using a stepwise 
Cox proportional hazards regression model. (C) Distribution of the risk score and gene expression profile. The 
risk factor heatmap shows expression abundance of four hub genes in the high-low riskscore group.
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obscure. Bioinformatics approaches provide better insights into the molecular mechanism underlying tumor 
development and progression by facilitating the identification of new biomarkers that help improve the earlier 
diagnosis and clinical prognosis prediction of patients with cancer.

Ferroptosis- and immune-related genes and their interactions have garnered considerable scientific atten-
tion in the field of cancer-targeted therapies. Ferroptosis, a newly discovered type of cell death, is biochemically 
and morphologically different from necrosis and apoptosis. Triggering ferroptosis has been confirmed to have 
therapeutic potential for ferroptosis-sensitive tumor cells. Many studies have extensively explored the involve-
ment of ferroptosis in OS development and  treatment34–37. Immunotherapy is also an important research area of 
cancer therapy and has become the most promising therapeutic strategy after conventional cancer therapeutic 
approaches (such as surgery, radiotherapy, and chemotherapy)38. Targeting ferroptosis by inducing peroxida-
tion of lipids in cancer cells provides a novel avenue for anti-cancer therapies. Some studies have reported the 
adaptation to lethal lipid peroxides of the immune cell in the TME, thus promoting the development of theory 
and clinical practice for therapies targeting  ferroptosis39. However, systematic studies combining the two modes 
for analysis in OS are not available. In this study, we constructed and evaluated genetic diagnosis and prognostic 
models through the integration and secondary analysis of ferroptosis and immunity, thus revealing the functional 
role of ferroptosis in tumor-infiltrating immune cells and providing a novel perspective on targeting ferroptosis 
in OS immunotherapy.

With the influx of tumor tissue sequencing data, the number of available prognostic models is increasing 
rapidly, which shows the clinical significance of prognosis prediction and potential drugs targeting molecular 
targets. However, a mature prognostic model for OS is currently  unavailable3. By using a stepwise Cox propor-
tional hazards regression model, we identified the 4 strongest independent prognostic risk genes, namely WNT16, 
GLB1L2, CORT, and WAS, and constructed a nomogram model to better predict OS patients’ overall survival 
and verify the prognosis prediction efficiency.

Wnt16 is one of the 19 Wnt ligands in humans, and it has been shown to affect cell proliferation and the 
 TME40. As a secreted protein in the TME, it plays a vital role in tumor resistance, metastasis, prognosis, and 
recurrence by activating the canonical Wnt/β-catenin pathway, which is involved in cell proliferation, migration, 

Figure 5.  Construction of a prognostic model. (A) Kaplan–Meier survival curves indicated that the probability 
of premature death was higher in high-risk subgroup patients than in low-risk subgroup patients. (B) Time-
dependent Receiver Operating Characteristic (ROC) curves were plotted to validate the prognostic model, with 
good discrimination in 2, 3, and 5 years. (C) Nomogram based on multivariate Cox regressions to predict the 
survival probability of OS patients. (D) Calibration curves of the nomogram, demonstrating a high prediction 
accuracy.
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invasion, angiogenesis, and immuno-surveillance, thereby enhancing the polarization of M2 macrophages and 
inducing  tumorigenesis41. Although the significance of Wnt signaling has been established in epithelial malignan-
cies, its role in mesenchymal tumors is  debatable42. Some studies have reported that the Wnt/β-catenin-signaling 

Figure 6.  Random forest prediction model construction based on WAS, CORT, WNT 16 and GLB1L2 
eigengenes. (A) Training process of the random forest. (B) Eigengene importance ranking, importance from 
large to small order CORT, WAS, GLB1L2 and WNT 16. (C) Random forest prediction score based on the 
TARGER-OS dataset. (D) Time-dependent ROC curves were drawn based on the random forest prediction 
scores of the TARGER-OS dataset. (E) Random forest prediction score based on the GSE39055 dataset. (F) 
Time-dependent ROC curves were drawn based on the random forest prediction scores of the TARGER-OS 
dataset.
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Figure 7.  Validation of prognostic gene expression in the TARGET-OS and GSE39055 datasets. (A) Positioning 
of prognostic genes on the chromosome. (B,C) Differential expression of prognostic genes in high- and low-risk 
ferroptosis score groups. (D,E) Differences in the expression of prognostic genes between the high- and low-risk 
immune score groups.*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001. 

Figure 8.  Differentially expressed genes (DEGs) of high- and low-risk groups and regulatory network 
construction of hub genes. (A,B) Volcano plots and heatmaps of DEGs according to high- and low-risk scores. 
(C) The DEGs’ protein–protein interaction network was developed using STRING. (D) Hub genes were 
identified using the CytoHubba algorithm. (E) Transcription factor regulatory networks of 8 hub genes. (F) 
miRNA regulatory networks of the hub genes.
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pathway is significantly activated in OS and is associated with tumorigenesis and metastases. Genomic association 
studies suggest that Wnt16 signaling is a vital mechanism that regulates the bone mineral density, cortical bone 
density, bone strength, and ultimate fracture  event43. Even though recent indications that these advantageous 
effects are coming from WNT-signaling activity, the detailed mechanism of WNT signaling by WNT16 has not 
been elucidated. One study showed continuous treatment of rWNT16 increases osteogenic differentiation in 
a c-Jun N-terminal kinase (JNK) pathway-dependent manner. In contrast, WNT16 knockdown significantly 
reduced PSC osteogenic  differentiation44, which suggest the MAPK pathway might be an upstream pathway to 
regulate further the Wnt/β-catenin, the oxidative stress, and the ferroptosis pathways. GPX4 is the ferroptosis core 
gene, and one recent study speculated that Targeting Wnt/β-catenin signaling by using inhibitors or knocking 
down TCF4 inhibited the expression of GPX4 and promoted the sensitivity of cancer cells to chemotherapy-
induced  ferroptosis45. Iron dose-dependent downregulation of the expression of WNT target genes disrupts 
osteoblast differentiation by inhibiting canonical Wnt signaling.Wnt agonist and ferroptosis reverse iron-inhibited 
traditional Wnt signaling to maintain osteoblast differentiation by reducing reactive oxygen species (ROS) and 
lipid peroxidation products to prevent ferroptosis effectively without reducing iron overload.The studies above 
suggest Wnt16 has emerged as a promising target in the field of skeletal research most likely by preventing fer-
roptosis via canonical Wnt signaling.

Glb1l2 is a member of galactosidase, and its physiological function is largely unknown. A  reduction46 
in GLB1L2 expression can lead to a decrease in the expression of a tumor-suppressor protein called Inter-
Alpha-Trypsin Inhibitor Heavy Chain Family Member 5, which is associated with malignant progression and 

Figure 9.  Functional enrichment of differentially expressed genes (DEGs) in the TARGET-OS cohort. (A,B) 
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses of DEGs 
in the high- and low-risk groups. (C) Enrichment analysis of immune gene sets by using single sample gene set 
enrichment analysis (ssGSEA) algorithm in the high- and low-risk groups. (D,E) The enrichment analysis in 
the high- and low-risk groups through Gene set variation analysis (GSVA) (pathways ranked among top 4 are 
presented in the results).
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unfavorable prognosis, indicating a tumor-suppressor function in breast, colon, bladder, hepatic cancers, and lung 
adenocarcinoma, etc. Jhun et al47 reported a reduced GLB1L2 expression in patients with prostate cancer. The 
present study observed a correlation of GLB1L2 expression with OS prognosis and identified GLB1L2 expression 
as a risk factor in the prognostic model, which has not been reported in other studies.

CORT, an endogenous cyclic neuropeptide, can modulate inflammatory responses by inhibiting immune 
infiltration and promoting tumor growth and metastasis.  Studies48 have reported a high CORT expression in 
high-risk OS, confirming that the high CORT expression is associated with adverse clinical prognosis in OS, a 
finding consistent with that of our study.

WAS gene is localized on chromosome Xp11.23-p11.22, which encodes a 502 amino acid protein (WASp). 
WASp is a key regulator of the actin cytoskeleton by modulating Arp2/3-mediated actin polymerization, and 

Table 2.  The GO TOP20 analysis of the differentially expressed genes.

ID p value Num

GO:0,022,857 transmembrane transporter activity 6.28E−05 48

GO:0,005,215 transporter activity 5.07E−04 48

GO:0,044,456 synapse part 2.05E−04 43

GO:0,015,075 ion transmembrane transporter activity 2.91E−04 39

GO:0,015,318 inorganic molecular entity transmembrane transporter activity 3.08E−04 37

GO:0,004,930 G protein-coupled receptor activity 9.46E−04 36

GO:0,009,986 cell surface 2.76E−03 36

GO:0,005,509 calcium ion binding 2.68E−04 34

GO:0,098,794 postsynapse 3.44E−04 31

GO:0,008,324 cation transmembrane transporter activity 1.45E−03 29

GO:0,015,672 monovalent inorganic cation transport 1.86E−04 28

GO:0,032,102 negative regulation of response to external stimulus 2.12E−04 27

GO:0,098,793 presynapse 5.43E−04 26

GO:0,031,012 extracellular matrix 3.66E−03 25

GO:0,097,060 synaptic membrane 3.66E−05 24

GO:0,015,267 channel activity 6.11E−04 24

GO:0,022,803 passive transmembrane transporter activity 6.11E−04 24

GO:0,022,838 substrate-specific channel activity 3.87E−04 23

GO:1,990,351 transporter complex 4.60E−05 22

GO:0,045,177 apical part of cell 1.23E−03 22

Table 3.  The KEGG analysis of the significantly differentially expressed genes.

ID Class p value

Neuroactive ligand-receptor interaction Environmental information processing 4.93E−08

Complement and coagulation cascades Organismal systems 5.16E−05

Fat digestion and absorption Organismal systems 3.60E−04

Retinol metabolism Metabolism 1.05E−03

Chagas disease (American trypanosomiasis) Human diseases 1.05E−03

Salivary secretion Organismal systems 1.52E−03

Thyroid hormone synthesis Organismal systems 1.72E−03

Amyotrophic lateral sclerosis (ALS) Human diseases 2.33E−03

Taste transduction Organismal systems 2.90E−03

Phototransduction—fly Organismal systems 3.22E−03

Serotonergic synapse Organismal systems 6.00E−03

Staphylococcus aureus infection Human diseases 7.71E−03

cGMP—PKG signaling pathway Environmental information processing 8.34E−03

Nicotine addiction Human diseases 1.54E−02

Aldosterone-regulated sodium reabsorption Organismal systems 1.67E−02

Cardiac muscle contraction Organismal systems 2.03E−02

Insulin secretion Organismal systems 2.03E−02

Vitamin digestion and absorption Organismal systems 2.03E−02

Glutamatergic synapse Organismal systems 2.22E−02
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plays an important role in multiple aspects of immune cell function. Its abnormal function can lead to a variety of 
immune defects, and patients often show abnormal T lymphocytes, B lymphocytes, and natural killer cell subsets.
There are more than 300 known mutations in WAS genes, including nonsense mutations, deletion mutations, 
insertion mutations, splicing mutations and missense mutations. A WAS gene mutation encoding the WASp 
causes a rare X-linked recessive disease Wiskott-Aldrich syndrome (WAS), a primary immunodeficiency with 
microthrombocytopenia and abnormal lymphoid and myeloid functions. As a potential intervention target for 
immunotherapy, the relationship between WAS genes and osteosarcoma has not yet been revealed.

The prognostic scoring model was developed to classify patients based on their pretreatment risk. Eight hub 
genes (CD3D, CD8A, CD3E, IL2, CD2, MYH6, MYH7, and MYL2) were selected for establishing the TF–miRNA 
molecular regulatory network. The hub genes were highly enriched in immunity, indicating that these genes may 
be potential therapeutic targets for OS immunotherapy.

CD3D and CD3E proteins, which are present on the T-cell surface, are indispensable for TCR/CD3 complex 
and contribute to T-cell signal transduction. CD3D is implicated in several cancers, including bladder cancer, 
colon cancer, breast cancer, and glioblastoma. CD3D is mainly involved in immune activation and regulation and 
is strongly and positively associated with immune checkpoints. It induces antitumor immunity via the activation 
of T lymphocytes, particularly  CD8+ T cells. CD3E, an epsilon subunit of the T-cell antigen receptor, is a new 
membrane immune  biomarker49 involved in reshaping suppressive TME by promoting T-cell development and 
neutrophil activation and mediating the activation of 33 signals of antigens or superantigens. Several studies 
have reported its overexpression in solid tumors and thus can help improve the prognosis and novel strategies 
of immunotherapy.

Studies have reported that CD3E affects the TME and the prognosis of patients with cancer, including those 
with low-grade glioma, cervical squamous carcinoma, head and neck squamous cell carcinoma, and bladder 
cancer. CD3E tends to show remarkably consistent co-expression patterns across the 31 cancer types. Some novel 
drugs have been synthesized based on CD3E against breast cancer and solid tumors expressing CEA. Cd2, a 
cell-surface adhesion protein, is expressed on T cells and natural killer cells. CD8A is a key immune activating 
and cytotoxic gene in OS. The genes MYH6, MYH7, and MYH12 might have a relationship with the occurrence 
and development of heart disease, although their regulatory mechanism in OS is unclear.ssGSEA showed that 
the immune cell infiltration score of high-risk OS patients was significantly lower. By determining the correla-
tion between the infiltration score of 22 immune cells, we found significant differences in  CD8+ T cells, M0 
macrophages, and M2 macrophages, suggesting that the prognostic model is closely related to the immune status 
and prognosis of OS patients. The heterogeneous immune microenvironment of OS comprises dendritic cells, 
natural killer cells, TAMs, and cytotoxic T cells.

OS cells are mainly invaded by TAMs, with M1-polarized macrophages inducing antitumor immunity and 
M2-polarized macrophages promoting tumor infiltration. M2-polarized macrophages play a key role in tumor 
progression and metastasis and are associated with poor OS prognosis. TAMs predominantly exhibit the M2-like 
phenotype in the TME, thereby suppressing the antitumor immunity to promote tumor growth. A study on OS 
demonstrated that CD163-positive M2 macrophages play a role in inhibiting tumor  progression50. M2-like TAMs 
are a contributor to chemoresistance in primary OS cells by inducing IL-1β release. Evidence indicates that all-
trans-retinoic acid inhibits tumor metastasis by decreasing the M2-like TAM infiltration and polarization in 

Table 4.  Results of the GSEA analysis.

ID Set size NES p value

WP_GLUTATHIONE_METABOLISM 21  − 1.99 2.24E−03

WP_PHOTODYNAMIC_THERAPYINDUCED_NFE2L2_NRF2_SURVIVAL_SIGNALING 23  − 1.82 2.24E−03

KEGG_HISTIDINE_METABOLISM 29  − 1.78 2.26E−03

REACTOME_SYNTHESIS_OF_BILE_ACIDS_AND_BILE_SALTS_VIA_24_HYDROXYCHOLESTEROL 14  − 1.76 2.16E−03

REACTOME_RA_BIOSYNTHESIS_PATHWAY 22  − 1.76 4.49E−03

REACTOME_O_LINKED_GLYCOSYLATION_OF_MUCINS 62  − 1.75 2.22E−03

REACTOME_THYROXINE_BIOSYNTHESIS 10  − 1.75 6.52E−03

REACTOME_REACTIONS_SPECIFIC_TO_THE_COMPLEX_N_GLYCAN_SYNTHESIS_PATHWAY 10  − 1.75 6.52E−03

REACTOME_DIGESTION 22  − 1.75 6.74E−03

WP_NRF2_PATHWAY 143  − 1.74 2.34E−03

PID_GLYPICAN_1PATHWAY 27 1.91 1.75E−03

KEGG_TYPE_I_DIABETES_MELLITUS 41 1.91 1.77E−03

REACTOME_NEGATIVE_REGULATION_OF_FGFR2_SIGNALING 34 1.91 1.80E−03

KEGG_HEMATOPOIETIC_CELL_LINEAGE 84 1.92 1.78E−03

REACTOME_SIGNALING_BY_FGFR4 41 1.92 1.77E−03

REACTOME_GENERATION_OF_SECOND_MESSENGER_MOLECULES 32 1.95 1.80E−03

KEGG_GRAFT_VERSUS_HOST_DISEASE 37 1.96 1.79E−03

PID_BETA_CATENIN_NUC_PATHWAY 76 1.97 1.76E−03

REACTOME_IMMUNOREGULATORY_INTERACTIONS_BETWEEN_A_LYMPHOID_AND_A_
NON_LYMPHOID_CELL 127 2.03 1.74E−03

WP_ALLOGRAFT_REJECTION 88 2.10 1.75E−03
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the TME and pulmonary metastasis in OS patients. By regulating pSTAT3 and IL-10 levels to block TAM-like 
polarization, dihydroxycoumarins esculetin and daphnetin play an essential role in OS metastasis in vitro and 
in vivo. In addition, M2 macrophages induce the depletion of T lymphocytes among other tumor-infiltrating 
lymphocytes, thereby reducing the maturation and secretion of pro-inflammatory cytokines. The results of this 
study suggested that M2-like TAMs could be a potential therapeutic target for OS.

Many studies have identified a novel mechanism by which  CD8+ T cells suppress tumors via the induction 
of ferroptosis and pyroptosis. A  study51 reported that  CD8+ T cells trigger ferroptosis by suppressing the expres-
sion of SLC3A2 and SLC7A11, suggesting that the immune system might play a role in ferroptosis triggering. 
OS biopsies have revealed that  CD8+ cytotoxic T cells are less abundant than myeloid cells, indicating that OS 
is poorly immunogenic. However, the results of our study indicated that  CD8+ T lymphocytes are a potential 
factor for OS prognosis and diagnosis.

This study has some limitations. First, wet lab experiments were not performed; hence, the results of bioin-
formatics analysis remain to be further validated. Second, the selection of datasets and batch-to-batch variation 
can inevitably lead to potential biases. Finally, information on comprehensive genomic analyses with clinical 

Figure 10.  Risk assessment of immune cell infiltration. (A) Histograms of the distribution of 22 immune-
infiltrating cells in the high- and low-risk subgroups. (B) Correlation analysis of 22 immune cells; (C) 
Differential analysis of 22 immune cells in the high- and low-risk subgroups. (D–K) The correlation between 
hub genes and 22 immune cells.*p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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correlation could not be obtained. Clinical samples for osteosarcoma are very difficult to obtain, by the bioin-
formatic approach, screening through global data, is more advantageous for research of rare cases, and in this 
article, we also verified through the external data set, ensuring the rigor of the data. We will continue to collect 
blood samples from clinical osteosarcoma over the next few years, expecting to add more clinical validation trials 
and publish research data. To conclude, the relationship between ferroptosis and OS should be further explored 
to establish novel treatment strategies for OS patients.

Conclusion
In this study, we determined the effect of OS prognosis prediction and the TIME from the perspectives of fer-
roptosis and antitumor immunity by using the comprehensive bioinformatics analysis. Based on the differential 
modules of FRG and IRGs in OS patients, we established prognostic risk models and multiple target molecules 
and further found that patients between the prognostic subgroups exhibited different immune states. The find-
ings of this study may contribute to the development of molecular targeted therapy and immunotherapy of OS.

Data availability
The datasets generated and/or analysed during the current study are not publicly available but are available from 
the corresponding author on reasonable request.
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