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m6A regulator‑mediated RNA 
methylation modification patterns 
are involved in the regulation 
of the immune microenvironment 
in ischaemic cardiomyopathy
Peng‑Fei Zheng 1,2,3, Xiu‑Qin Hong 2,3, Zheng‑Yu Liu 1,2,3, Zhao‑Fen Zheng 1,2,3, Peng Liu 4* & 
Lu‑Zhu Chen 4*

The role of RNA N6‑methyladenosine (m6A) modification in the regulation of the immune 
microenvironment in ischaemic cardiomyopathy (ICM) remains largely unclear. This study first 
identified differential m6A regulators between ICM and healthy samples, and then systematically 
evaluated the effects of m6A modification on the characteristics of the immune microenvironment 
in ICM, including the infiltration of immune cells, the human leukocyte antigen (HLA) gene, and 
HALLMARKS pathways. A total of seven key m6A regulators, including WTAP, ZCH3H13, YTHDC1, 
FMR1, FTO, RBM15 and YTHDF3, were identified using a random forest classifier. A diagnostic 
nomogram based on these seven key m6A regulators could effectively distinguish patients with ICM 
from healthy subjects. We further identified two distinct m6A modification patterns (m6A cluster‑A 
and m6A cluster‑B) that are mediated by these seven regulators. Meanwhile, we also noted that one 
m6A regulator, WTAP, was gradually upregulated, while the others were gradually downregulated in 
the m6A cluster‑A vs. m6A cluster‑B vs. healthy subjects. In addition, we observed that the degree 
of infiltration of the activated dendritic cells, macrophages, natural killer (NK) T cells, and type‑
17 T helper (Th17) cells gradually increased in m6A cluster‑A vs. m6A cluster‑B vs. healthy subjects. 
Furthermore, m6A regulators, including FTO, YTHDC1, YTHDF3, FMR1, ZC3H13, and RBM15 were 
significantly negatively correlated with the above‑mentioned immune cells. Additionally, several 
differential HLA genes and HALLMARKS signalling pathways between the m6A cluster‑A and m6A 
cluster‑B groups were also identified. These results suggest that m6A modification plays a key 
role in the complexity and diversity of the immune microenvironment in ICM, and seven key m6A 
regulators, including WTAP, ZCH3H13, YTHDC1, FMR1, FTO, RBM15, and YTHDF3, may be novel 
biomarkers for the accurate diagnosis of ICM. Immunotyping of patients with ICM will help to develop 
immunotherapy strategies with a higher level of accuracy for patients with a significant immune 
response.

Abbreviations
GEO  Gene expression omnibus
m6A  RNA N6-methyladenosine
ICM  Ischemic cardiomyopathy
HLA  Human leukocyte antigen
CAD  Coronary artery disease
AMI  Acute myocardial infarction
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γδ  Gamma delta
PCA  Principal component analysis
m5C  5-Methylcytosine
m1A  N1-methyladenosine
ssGSEA  Single-sample gene-set enrichment analysis
GSVA  Gene set variation analysis
DCA  Decision curve analysis
ROC  Receiver operating characteristic
MDSC  Myeloid-derived suppressor cell
MMP  Matrix metalloproteinase
Treg  Regulatory T
TNF-α  Tumor necrosis factor-α
Th17  Type-17 T helper
IL  Interleukin
MHC  Major histocompatibility complex

Coronary artery disease (CAD) is the leading cause of morbidity and mortality worldwide. The basic pathological 
changes of CAD mainly manifest as the continuous accumulation of a large amount of lipids under the intima of 
the coronary artery and the formation of atherosclerotic plaques. The continuous progression of atherosclerotic 
plaques gradually leads to the narrowing of the coronary artery lumen and finally, impairment of myocardial 
blood  perfusion1. Sustained myocardial blood perfusion related damage leads to myocardial necrosis due to 
ischaemia and hypoxia, and eventually to ICM, and its clinical manifestations mainly include chest pain, chest 
tightness, decreased exercise tolerance, dyspnoea, left ventricular dysfunction, arrhythmia, and ultimately  death2. 
As the pathological basis of ICM, atherosclerosis is essentially a chronic inflammatory process that involves 
multiple immune or inflammatory  mechanisms3. At present, Fernandez et al. systematically expounded the 
infiltration of immune cells in atherosclerotic plaques for the first time and further described the different 
activation states of infiltrated immune cells, which paved the way for the study of the underlying mechanism of 
autoimmune reactions in  atherosclerosis4. Yang et al. have suggested that monocyte infiltration increased and 
CD8 + T-cell infiltration decreased in patients with  CAD5. Moreover, in a recently published study, we found 
that the infiltration of M0 macrophages and neutrophils increased, whereas the infiltration of CD8 + T cells, 
gamma delta (γδ) T cells, and resting mast cells decreased in patients with acute myocardial infarction (AMI)6. 
These results suggest that the immune mechanism plays a key role in atherosclerosis and related cardiovascular 
diseases. However, the exact immunomodulatory mechanism involved in ICM is still unclear. Elucidating the 
immune regulation mechanism of ICM may be essential to reveal the underlying pathological mechanism and 
may help to identify new immunotherapies for ICM.

Traditional epigenetic modification refers to the reversible modification of proteins (histones) and DNA, 
which can regulate gene expression without changing the genetic  sequence7. Recently, RNA modifications have 
gradually attracted attention and is considered the third layer of epigenetics, through which RNA metabolism 
and processing can be  regulated8. Previous studies have shown that RNA modifications exist in all identified life 
forms. A variety of modification forms have been found, including N1-methyladenosine (m1A), 5-methylcyto-
sine (m5C), and N6-methyladenosine (m6A). The most common modification is m6A modifications, which is 
a homeostatic and reversible process in eukaryotic cells that is mainly regulated by a variety of m6A regulatory 
factors, including demethylases (erasers), binding proteins (readers), and methyltransferases (writers)10. Specifi-
cally, the process of m6A methylation is regulated by several methyltransferases, such as WTAP, METTL14 and 
METTL3, while the demethylation process of m6A methylation is mediated by several demethylases, including 
FTO and ALKBH5. In addition, readers are a group of m6A-binding proteins that can recognize the methyla-
tion motifs of m6A, which mediating the regulatory functions of m6A and belong to the YTHDF and YTHDC 
 families11.

Recent studies have shown that m6A regulation may partially explain some potential molecular mechanisms 
of immune regulation. For example, Wang et al. found that the HNRNPA2B1 regulator could promote m6A 
modification and trigger an innate immune response by recognizing viral DNA during viral  infection12. Han 
et al. found that YTHDF1 is involved in the antigen presentation of dendritic cells to CD8 + T cells by enhanc-
ing lysosomal cathepsin translation and impounding tumour neoantigen cross-presentation and CD8 + T-cell 
cross-priming, thereby promoting the immune escape of tumour  cells13. Li et al. found that the homeostatic dif-
ferentiation of T cells may be severely impaired due to the deletion of METTL3 in T  cells14. Although increasing 
evidence has shown that m6A plays a key regulatory role in the immune response, none of these research studies 
have focused on the role of m6A in the pathogenesis of ICM. Therefore, an in-depth investigation of the immune 
changes between healthy subjects and ICM patients, as well as the possible changes in m6A regulators related to 
these changes, can deepen our understanding of the pathogenesis of ICM from a completely new perspective.

Results
Data pre‑processing. The normalized gene expression matrix of the GSE1869, GSE5406, and GSE57338 
datasets was obtained by removing outliers, standardizing the data format, and adding missing values. The inte-
grated expression profile, which included 12,529 different gene symbols, was obtained after data merging and 
eliminating interbatch differences between the GSE1869 and GSE5406 datasets, and was defined as the training 
set (Supplementary Table S1). Then, the gene expression profile of GSE57338, which included 18,859 different 
gene symbols, was defined as the testing set (Supplementary Table S2A and S2B).
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The landscape of m6A regulators between healthy and ICM samples. A total of 20 different 
m6A regulators, including 6 writers (METTL3, ZC3H13, RBM15, RBM15B, WTAP, and CBLL1), 13 readers 
(YTHDC1, LRPPRC, HNRNPC, IGFBP1, YTHDC2, HNRNPA2B1, YTHDF1, FMR1, YTHDF3, IGFBP2, 
YTHDF2, IGFBP3, and ELAVL1) and 1 eraser (FTO), were analysed in this research study. As shown in the box 
plot (Fig. 1A) and heatmap (Fig. 1B), we noted that the expression level of WTAP had decreased significantly, 
while the expression levels of ZC3H13, YTHDC1, FMR1, FTO, RBM15, and YTHDF3 had increased signifi-
cantly in the ICM patients, compared with healthy subjects.

Random forest screening for key m6A regulators. Cyclic random forest classification was performed 
for all possible combinations in 1–20 variables, and the average error rate of the pattern mode was calculated. 
Referring to the relationship plot between the number of decision trees and the model error (Fig. 2A), 300 trees 
were selected as the parameter of the final model, which indicates stable error in the model. Subsequently, as 
shown in Fig. 2B, seven key m6A regulators (WTAP, ZC3H13, YTHDC1, FMR1, FTO, RBM15, and YTHDF3) 
with importance greater than 2 were selected for subsequent analysis.

Construction and assessment of a nomogram model for the diagnosis of ICM. As shown in 
Fig.  3A, a predictive nomogram was constructed based on the seven key m6A regulators (WTAP, ZC3H13, 
YTHDC1, FMR1, FTO, RBM15, and YTHDF3) in the training set (GSE1869 combined with GSE5406). The 
calibration curve suggests that the error between the predicted risk and the actual ICM risk was very small, 
indicating that the nomogram model achieved a high degree of accuracy in predicting ICM in the training set 
(Fig. 3B) and the testing set (Fig. 3E). Decision curve analysis (DCA) showed that the “nomogram” curve was 
higher than the grey line, indicating that the nomogram maintained a great level of clinical utility in predicting 

Figure 1.  Expression landscape of m6A RNA methylation regulators in ICM. Box plot (A) and heatmap (B) 
showing the expression of seven m6A regulators that are significantly differentially expressed between healthy 
and ICM samples. *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Figure 2.  Random forest model construction to identify the key m6A regulators. (A) The influence of the 
number of decision trees on the error rate. The x-axis represents the number of decision trees, and the y-axis 
indicates the error rate. When the number of decision trees was approximately 300, the error rate was relatively 
stable. (B) Results of the Gini coefficient method in the random forest classifier. The x-axis indicates genetic 
variables while the y-axis represents the importance index.
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the morbidity of ICM patients in the training set (Fig. 3C) and testing set (Fig. 3F). ROC analysis reconfirmed 
that the model was effective in distinguishing ICM patients from healthy subjects in the training set (Fig. 3D) 
and testing set (Fig. 3G).

m6A RNA methylation modification patterns mediated by the 7 key m6A regulators in 
ICM. Unsupervised consistent clustering analysis based on the expression values of the seven key m6A regu-
lators in the ICM samples were used to study the m6A modification patterns in ICM (Fig. 4A–C). Two different 
subtypes of ICM were identified based on qualitatively different expression of the seven key m6A regulators, 
including 30 samples in the m6A cluster-A group and 88 samples in the m6A cluster-B group (Fig. 4D, Sup-
plementary Table S3). In addition, we noted that the expression of WTAP increased, while the expression of 
ZC3H13, YTHDC1, FMR1, FTO, RBM15, and YTHDF3 decreased in the m6A cluster-B group, compared with 
that of m6A cluster-A group (Fig. 4E,F), indicating the existence of two distinct m6A modification patterns in 
ICM.

Differences in immune microenvironment characteristics between the control and ICM sam‑
ples and among the two distinct m6A modification patterns. The infiltration levels of many 
immunocytes was different between the control and ICM groups and among the two distinct m6A modification 
patterns. We noted a higher level of infiltration of activated CD8 T cells, gamma delta T cells, and Type-2 T 
helper cells, and a lower level of infiltration of activated dendritic cells, macrophages, NK T cells, and Type-17 T 
helper cells in the control group, compared to the ICM group (Fig. 5A). Meanwhile, we also found a relatively 
higher infiltration level of activated B cells, T follicular helper cells, regulatory T cells (Treg), NK T cells, NK 
cells, CD56dim NK cells, plasmacytoid dendritic cells, myeloid-derived suppressor cells (MDSCs), mast cells, 
activated dendritic cells, monocytes, macrophages, type-1 T helper cells, and type-17 T helper (Th17) cells, as 
well as lower infiltration levels of CD56bright NK cells, eosinophils, and immature B cells in the m6A cluster-
B group, than in the m6A cluster-A group (Fig. 5B). More details on the immune cell infiltration levels in the 
samples are provided in Supplementary Table S4. As shown in Fig. 5C, we noted that ZC3H13 expression was 
significantly negatively correlated with the numbers of activated B cells (r = − 0.62), monocytes (r = − 0.50), and 
NK cells (r = − 0.60); RBM15 expression was significantly negatively correlated with the numbers of T follicular 
helper cells (r = − 0.60) and NK cells (r = − 0.52); YTHDC1 expression was significantly negatively correlated 
with the numbers of activated B cells (r = − 0.52), NK cells (r = − 0.59), and macrophages (r = − 0.52); YTHDF3 
expression was significantly negatively correlated with the numbers of monocytes (r = − 0.62), activated B cells 
(r = − 0.57), MDSCs (r = − 0.51), Type-1 T helper cells (r = − 0.56), macrophages (r = − 0.54), mast cells (r = − 0.56), 
NK T cells (r = − 0.51), and NK cells (r = − 0.72); FMR1 expression was significantly negatively correlated with 
the numbers of CD56dim NK cells (r = − 0.56), activated B cells (r = − 0.61), and NK cells (r = − 0.52); while FTO 
expression was significantly negatively correlated with the number of Type-1 T helper cells (r = − 0.50) (P < 0.05 
for all). Moreover, compared with the low YTHDF3 expression group, the numbers of infiltrated activated B 
cells, activated dendritic cells, activated CD4 T cells, CD56dim NK cells, activated CD8 T cells, gamma delta T 
cells, MDSCs, macrophages, mast cells, monocytes, NK T cells, neutrophils, NK cells, Treg cells, type-1 T helper 

Figure 3.  Construction and validation of a predictive nomogram for ICM established based on seven m6A 
regulators. (A) The constructed nomogram. The calibration plot, DCA and ROC analysis of the nomogram 
in the training set (B,C,D) and in the testing set (E,F,G). (B,E) The diagonal dotted lines represent a perfect 
prediction using an ideal model. (C,F) The solid lines represent the performance of the nomogram, of which 
a closer fit to the diagonal dotted line represents a better prediction. (D,G) ROC analysis reconfirmed that the 
model was effective in distinguishing ICM patients from healthy subjects.



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5904  | https://doi.org/10.1038/s41598-023-32919-4

www.nature.com/scientificreports/

cells, T follicular helper cells, and Th17 cells were low, while the number of infiltrated immature dendritic cells 
were high in the high YTHDF3 expression group (Fig. 6A). Similar patterns of immune cell infiltration were 
found between the high and low expression groups of FMR1 (Fig. 6B), ZC3H13 (Fig. 6C), RBM15 (Fig. 6D), 
YTHDC1 (Fig. 6E), and FTO (Fig. 6F). In addition, we noted that the expression levels of HLA-A, HLA-DMA, 
HLA-DMB, HLA-DPA1, and HLA-DPB1 were significantly elevated in ICM patients than in control subjects 
(Fig. 7A). We also found that the expression levels of HLA-DMA, HLA-A, HLA-DQA1, HLA-B, HLA-DPA1, 
HLA-C, HLA-DMB, HLA-E, HLA-DQB-1, HLA-DRB6, HLA-DRA, HLA-F, HLA-J, HLA-G, and HLA-DPB1 
were significantly elevated, while the expression level of HLA-F-AS1 was significantly downregulated in the 
m6A cluster-B group, compared with the m6A cluster-A group (Fig. 7B).

Biological characteristics of healthy subjects and ICM patients. The HALLMARKS pathways 
between healthy subjects and ICM patients were compared via gene set variation analysis (GSVA). Compared 
with the m6A cluster-A group, the m6A cluster-B group had a larger number of enriched pathways, such as the 
TNF-a signalling pathway via NF-kB, apoptosis, the apical junction, the apical surface, cholesterol homeostasis, 
the late estrogen response, the interferon gamma response, glycolysis, IL-6/JAK/STAT3 signalling pathway, the 
interferon alpha response, UV response  up, myogenesis, hypoxia, TGF-β signalling, epithelial mesenchymal 

Figure 4.  Identification of two distinct m6A modification pattern subtypes in ICM. (A) Consensus clustering 
cumulative distribution function (CDF) for k = 2–9. (B) Relative changes in the area under the CDF curve 
for k = 2–9. (C) Heatmap of the matrix of the co-occurrence proportions in the ICM samples. (D) Principal 
component analysis of the transcriptome profiles of the two m6A subtypes, showing a remarkable difference in 
the transcriptome between the different modification patterns. The box plot (E) and heatmap (F) showing that 
the expression of seven m6A regulators were significantly different between the m6A-cluster-A and -B groups. *, 
P < 0.05; ***, P < 0.001.

Figure 5.  Diversity of immune microenvironment characteristics among the two distinct m6A modification 
patterns. The differences in the abundances of each immune microenvironment-infiltrating immunocyte 
between control and ICM samples (A); m6A cluster-A and -B (B). (C) The associations between 7 key m6A 
regulators and several immune cells. *, P < 0.05; **, P < 0.01; ***, P < 0.001. 
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transition, notch signalling, hedgehog signalling pathway, PI3K/Akt/mTOR signalling pathway, inflammatory 
response, xenobiotic metabolism, the reactive oxygen species pathway, angiogenesis, coagulation, IL-2/STAT5 
signalling pathway, allograft rejection, complement, and KARS signalling up, as well as poorly enriched path-
ways, including E2F targets, oxidative phosphorylation, haem metabolism, bile acid metabolism, and spermato-
genesis (Fig. 8A, Supplementary Table S5). In addition, we also noted that the HLA subtype genes, except for 
HLA-F-AS1, were positively correlated with xenobiotic metabolism, the interferon alpha response, KRAS sig-
nalling pathway, the interferon gamma response, IL-2/STAT5 signalling, the inflammatory response, IL-6/JAK/
STAT3 signalling pathway, epithelial mesenchymal transition, coagulation, complementation, the apical surface, 
the apical junction, and allograft rejection, and was negatively associated with spermatogenesis, while HLA-F-
AS1 expression was negatively associated with some of the pathways indicated above (Fig. 8B).

Effect of m6A modification on the immune microenvironment in ICM. As shown in Fig. 9, the 
infiltration levels of immune cells, such as activated dendritic cells, macrophages, NK T cells, and Th17 cells, 
were found to differ between control subjects and ICM patients, and between two different m6A modifica-
tion patterns in ICM. WTAP, a m6A regulator, was found to be progressively upregulated, while the other six 
m6A regulators, ZCH3H13, YTHDC1, FMR1, FTO, RBM15, and YTHDF3, were gradually downregulated in 
the m6A cluster-A vs. m6A cluster-B vs. healthy subjects. Additionally, the m6A regulators: FTO, YTHDC1, 
YTHDF3, FMR1, ZC3H13, and RBM15 were found to be significantly negatively correlated with the aforemen-

Figure 6.  Comparison of immunocyte abundance in the high- and low-expression groups of YTHDF3 (A), 
FMR1 (B), ZC3H13 (C), RBM15 (D), YTHDC1 (E), FTO (F). *, P < 0.05; **, P < 0.01; ***, P < 0.001.

Figure 7.  The differences in the expression levels of each HLA gene between the control and ICM groups (A); 
m6A cluster-A and -B groups (B). *, P < 0.05; **, P < 0.01; ***, P < 0.001.
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tioned immune cells. Moreover, it was observed that the infiltration of activated dendritic cells, macrophages, 
NK T cells, and Th17 cells were gradually increased in the m6A cluster-A vs. m6A cluster-B vs. healthy subjects.

Discussion
Recently, ICM has become the leading cause of heart failure. Increasing evidence shows that innate immune 
mechanisms play a crucial role in the occurrence and development of myocardial ischaemia and heart failure. 
Mild to moderate innate immune responses may limit the extent of heart damage and promote the repair of 
cardiac function, whereas dysregulated immune response is likely to be  deleterious15. Accumulating evidence 
has indicated that m6A modifications play an integral role in innate and adaptive immune  responses16. A large 
number of studies have explored the role of m6A modifications in immunity, especially in the infiltration of 
immune cells in the tumour microenvironment, and the results have confirmed that m6A modifications play a 
fundamental role in tumour  immunity17,18. Therefore, we believe that m6A modifications play a similar role in 
shaping the immune microenvironment in ICM. To better elucidate these issues, the effect of m6A modifications 
on the characteristics of the immune microenvironment in ICM was explored.

In this study, the effects of m6A modifications on immune cell infiltration, the expression of HLA subtype 
genes, inflammation, and immune-related pathways in ICM were explored, and several meaningful novel find-
ings were made. First, we noted that the expression levels of seven m6A regulators, including WTAP, YTHDC1, 
ZC3H13, FTO, FMR1, RBM15, and YTHDF3 were significantly different between ICM patients and healthy 
subjects. Second, we identified two distinct m6A modification patterns (m6A cluster-A and -B) through the 
unsupervised clustering of ICM samples based on the expression values of seven key m6A regulators. Third, 
we noted that the expression of one m6A regulator, WTAP, was gradually elevated, while the expression lev-
els of the other 6 m6A regulators, ZCH3H13, YTHDC1, FMR1, FTO, RBM15, and YTHDF3, were gradually 
downregulated in the m6A cluster-A vs. m6A cluster-B vs. healthy subjects. We also found that the infiltration 
levels of the activated dendritic cells, macrophages, natural killer (NK) T cells, and type-17 T helper (Th17) 

Figure 8.  The underlying diversity in the biological functional characteristics among the two m6A modification 
patterns. (A) Differences in HALLMARKS pathway enrichment scores between m6A cluster-A and -B. (B) 
Heatmap showing the correlations between HLA genes and 50 HALLMARKS pathways. *, P < 0.05; **, P < 0.01; 
***, P < 0.001.
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cells, gradually increased in the m6A cluster-A vs. m6A cluster-B vs. healthy subjects. Meanwhile, the m6A 
regulators, FTO, YTHDC1, YTHDF3, FMR1, ZC3H13, and RBM15, were significantly negatively correlated 
with the above-mentioned immune cells. These findings suggest that m6A modifications can significantly affect 
the immune microenvironment in ICM, and that m6A modifications, immune cell infiltration, and their inter-
actions play a crucial role in the occurrence and development of ICM. This classification strategy of immune 
subtypes can help us subtype ICM samples at the immune level or molecular level to help us better understand 
the underlying mechanisms of immune regulation in ICM. A recent study used this approach to identify two 
distinct m6A modification patterns in AMI, and the results of that study helped us enhance our understanding 
of the immune microenvironment in  AMI19. At present, molecular subtyping strategies have been widely used 
in tumour research, and the identification of novel molecular subtypes can help to formulate better treatment 

Figure 9.  The summary diagram. ***P < 0.001.
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 plans20,21. Therefore, the further elucidation of the potential mechanisms of m6A modifications in regulating 
various infiltrating immune cells can help develop new therapeutic strategies for ICM.

Previous studies have shown that lymphocytes, monocytes/macrophages, and mast cells may also contribute 
to myocardial fibrosis by secreting several key fibrogenic mediators, including mast cell-derived proteases, matri-
cellular proteins, chemokines, inflammatory cytokines, endothelin-1, and growth  factors22. Recent studies have 
revealed that during predominant type of macrophages is the M1 subtype in the infarction subtype during the 
early stages of myocardial infarction (2–5 days). These macrophages are capable of damaging the myocardium 
by releasing reactive oxygen species, inflammatory mediators, and proteases. However, during the late stages of 
infarction, macrophages in the affected area are mostly of the M2 subtype, which can improve cardiac function 
by reducing cardiac fibrosis and myocardial remodeling caused by ischemia–reperfusion  injury23. Anzai et al. 
found that the expression levels of interleukin-1β (IL-1β), IL-18, and tumour necrosis factor-α (TNF-α) were 
significantly elevated in mice with dendritic cell ablation, compared with the control group. These mice also 
showed deterioration of left ventricular function and ventricular remodelling, and suggested that dendritic cells 
play an important role in regulating monocyte/macrophage homeostasis and, therefore, act as a immunoprotec-
tive modulators in post-infarction  healing24. Forte et al. noted that the activation of cytotoxic CD8 T cells by 
dendritic cells contributes to the aggravation of inflammatory injury and the corresponding decline in cardiac 
function following myocardial  ischaemia25. Backteman et al. have suggested that the infiltration of NK cells was 
significantly reduced in CAD and ICM  patients26, while Ong et al. found that NK cells can delay the develop-
ment of cardiac fibrosis both by directly reducing collagen formation in cardiac fibroblasts and by inhibiting the 
accumulation of specific inflammatory mediators in the  heart27. In this study, we also found that several immune 
cells, including activated dendritic cells, macrophages, and NK T cells, exert a protective role in the occurrence 
and development of ICM, while activated CD8 T cells play a role in promotion. These findings are generally 
consistent with a results of a previous study. In addition, previous studies have shown that the antiangiogenic and 
profibrotic functions of type-17 T helper (Th17) and dysfunctional regulatory T (Treg) cells play an indispensable 
role during the progression into ischaemic heart  failure28,29. However, we noted that Th17 cells may also play a 
protective role in the development and progression of ICM, whereas Th2 cells play an opposing role during this 
pathological process. These findings indicate that immune cell infiltration plays a key role in the development 
of ICM, and its related mechanisms are complex and diverse, while more in vitro and in vivo studies are needed 
to further clarify the results of this study.

Human major histocompatibility complex (MHC), also known as human leukocyte antigen (HLA), is encoded 
by the HLA gene complex. HLAs can be divided into class I, II and III antigens based on their function and 
distribution. HLA-A, -B and HLA-C are classical HLA class I antigens; HLA-DQ, -DP and -DR are classical HLA 
class II antigens; HLA‐X, -H, -E, -DO, -G, -F, -DM, and -DN are non-classical HLA class I and II molecules; 
while other antigens, such as complement, are class III  antigens30,31. HLAs are significantly associated with the 
regulation, monitoring, and immune response and plays a crucial role in autoimmune diseases, tumour immu-
nity, and reproductive  immunity32. Several studies have attempted to associate dilated cardiomyopathy, ICM, or 
heart failure with specific HLAs. McKenna et al. noted that HLA-DR4 showed the most significant correlation 
with dilated  cardiomyopathy33. Osa et al. found that the presence of HLA-B‐15 and HLA-DQ3 was associated 
with advanced dilated cardiomyopathy, while the absence of HLA-A1, HLA-B8, and HLA-DQ2 are associated 
with the development of severe ICM. Almasood et al. noted that HLA-G is upregulated in patients with heart 
failure, and that serum HLA-G may be a potential new biomarker with a higher degree of sensitivity than other 
classical biomarkers of heart  failure34. However, it is still unclear whether there are differences in the expression 
of HLA genes between control subjects and ICM patients, as well as among the two different molecular subtypes 
of ICM. We noted that the expression levels of HLA-A, HLA-DMA, HLA-DMB, HLA-DPA1, and HLA-DAB1 
were significantly elevated in ICM patients, compared with control subjects. Meanwhile, we also found that 
the expression levels of HLA-C, HLA-DPA1, HLA-J, HLA-DMA, HLA-E, HLA-DQA1, HLA-A, HLA-DQB-1, 
HLA-F, HLA-DPB1, HLA-DMB, HLA-B, HLA-DRB6, HLA-G, and HLA-DRA were significantly upregulated, 
while the expression level of HLA-F-AS1 was significantly downregulated in the m6A cluster-B group, compared 
with the m6A cluster-A group. In addition, compared with the m6A cluster-A group, the m6A cluster-B group 
was more enriched in inflammatory or immune-related signalling pathways, including TGF-β signalling, TNF-α 
signalling via NF-kB, Notch signalling, IL-2/STAT5 signalling, IL-6/JAK/STAT3 signalling, PI3K/Akt/mTOR 
signalling, hedgehog signalling, and KARS signalling. Meanwhile, some associations between HLA subtype genes 
and these inflammatory- or immune-related pathways were also noted. These results suggest that immune or 
inflammatory activity is also different among the two different m6A modified subtypes of ICM. Immunotyping 
of ICM will help identify samples with a significant immune response, which will contribute to more precise 
immune intervention.

This research study has several limitations. First, the immune cell analysis in this study adopts the most widely 
used analysis method to quantify the number of immune cells, but single-cell sequencing is still required to 
obtain the most accurate number of immune cells. Second, we were unable to obtain additional clinical features 
or serological results of the ICM samples in the GSE1869, GSE5406, and GSE57338 datasets. Therefore, it is dif-
ficult to determine the key role played by m6A modifications in immune regulation from multiple perspectives 
and to evaluate the impact of different m6A modification patterns on the clinical outcome of patients, so the 
current analysis results are relatively singular. Third, this research study was based on bioinformatics analysis, and 
many of the findings are theoretically valid. However, the results of our study need to be verified by conducting 
more in vitro and in vivo experiments.
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Conclusion
This research study suggests that m6A modifications plays a key role in the complexity and diversity of the 
immune microenvironment of ICM. Seven key m6A regulators, including WTAP, ZCH3H13, YTHDC1, FMR1, 
FTO, RBM15, and YTHDF3, may be novel biomarkers for the accurate diagnosis of ICM. Immunotyping of 
patients with ICM can help develop immunotherapy strategies with a higher level of accuracy for patients with 
a significant immune response.

Materials and methods
ICM microarray datasets. Referring to the results of previous studies, the integration of different gene 
expression profile data for analysis is a reasonable approach used to identify novel key molecular  targets35,36. 
Thus, a total of three microarray datasets were downloaded from the Gene Expression Omnibus (GEO, http:// 
www. ncbi. nlm. nih. gov/ geo). After normalization and elimination of interbatch differences between GSE1869 
(including 6 healthy subjects and 10 ICM patients) and GSE5406 (including 108 ICM patients and 16 healthy 
subjects), an integrated gene expression profile was obtained and defined as the training set. Meanwhile, the 
gene expression matrix of GSE57338 (including 136 ICM patients and 95 healthy subjects) was defined as the 
testing set. All analyses included in this study were conducted using R  software37. Specifically, the normalize 
Between Arrays function in the "limma"  package38 was used to normalize the gene expression profiles of the 
GSE1869, GSE5406, and GSE57338 datasets. When a probe corresponded with multiple genes, it was excluded 
from the analysis. When multiple probes corresponded with the same gene, the average gene expression value 
detected by those probes was taken as the true expression value of the gene. Then, the ComBat function in the 
"sva"  package39 was used to eliminate the inter-batch differences between the GSE1869 and GSE5406 datasets. 
Since our study re-utilized publicly available datasets, including  GSE186940,  GSE540641, and  GSE5733842, which 
had been previously approved by local ethics committees during the original study, our research did not require 
additional ethical approval.

Identification of key m6A regulators. The Wilcoxon test was used to evaluate the differences in the 
expression status of the 20 m6A regulators between healthy individuals and ICM patients. Then, a random for-
est model was constructed using the “randomForest” package in R software and was used to identify key m6A 
regulatory factors. Specifically, the average model error rate of all m6A regulatory factors were calculated, and 
the optimal number of variables of the binary tree in the node was set at 6, and 300 was selected as the optimal 
number of trees contained in the random forest. Then, the random forest model was constructed using the 
decreasing precision method (Gini coefficient method) and was used to obtain the dimension importance value 
from the random forest model. Factors with importance values greater than 2 were selected as key m6A regula-
tors for subsequent model construction.

Construction and verification of the nomogram. The predictive nomogram was constructed using 
the "rms" package in R software and was based on the expression values of the seven key m6A regulators in the 
training set (GSE1869 combined with GSE5406). Then, the calibration curve was used to assess the predictive 
power of the nomogram model. Decision curve analysis was used to evaluate the clinical value of the nomogram 
model. Finally, receiver operating characteristic (ROC) analysis was used to evaluate the diagnostic performance 
of the nomogram model in distinguishing ICM patients from healthy subjects. In addition, we also verified the 
predictive value of the nomogram model by constructing the calibration curve and performing decision curve 
analysis and ROC analysis on the external testing set (GSE57338).

Identification of the m6A modification pattern. Based on the expression of seven key m6A regula-
tors, unsupervised clustering analysis was used to identify different m6A modification patterns in ICM. The 
robustness and cluster numbers were calculated using the consensus clustering  algorithm43,44. The R package 
"ConsensuClusterPlus" was used to perform the above mentioned steps for 1000 iterations to guarantee the 
robustness of the  classification45. Principal component analysis (PCA) was used to further verify the different 
m6A modification patterns distinguished by the seven key m6A regulators. The Kruskal test was used to com-
pare the expression levels of the 7 key m6A regulators among two distinct m6A modification patterns. Correla-
tions among several HLA gene subtypes and between the seven key m6A regulators and immunocyte fractions 
were evaluated using Spearman correlation analysis.

Single‑sample gene set enrichment analysis (ssGSEA) and gene set variation analysis (GSVA) 
enrichment analysis. Single-sample gene-set enrichment analysis (ssGSEA) was used to estimate the 
number of specific infiltrating immune cells in the ICM samples, which defines an enrichment score that is rep-
resentative of the degree of absolute enrichment of a gene set in each sample within a given  dataset46. The gene 
list of infiltrating immunocyte gene sets was obtained from a previous  study43. The Wilcoxon test was used to 
compare enrichment scores that represented immunocyte abundance between the different m6A modification 
patterns. Meanwhile, a total of 118 ICM samples were divided into low and high expression groups, according to 
the expression value of each key m6A regulator, which is significantly associated with infiltrating immune cells. 
Then, the abundance scores of infiltrating immune cells between the two different groups were also compared 
using the Wilcoxon test. Spearman correlation analysis was used to evaluate the correlation between the seven 
key m6A regulators and immunocyte fractions.

Gene set variation analysis (GSVA) was used to evaluate the 50 HALLMARK pathways among the two distinct 
m6A modification patterns using the ‘GSVA’ package in R software. The gene sets of ‘h.all.v7.0.symbols’ were 

http://www.ncbi.nlm.nih.gov/geo
http://www.ncbi.nlm.nih.gov/geo
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extracted from the MSigDB database (http:// softw are. broad insti tute. org/ gsea/ msigdb/ index. jsp) to perform the 
GSVA. In addition, the Kruskal test was used to evaluate the expression of HLA genes among the two distinct 
m6A modification patterns. Then, correlations among HLA genes as well as between HLA genes and 50 HALL-
MARK pathways were determined using Spearman correlation analysis.

Data availability
The datasets generated and/or analysed during the current study are available in the [GEO, http:// www. ncbi. nlm. 
nih. gov/ geo] repository, [GSE1869, GSE5406 and GSE57338].
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