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Short‑term memory 
capacity analysis 
of Lu3Fe4Co0.5Si0.5O12‑based spin 
cluster glass towards reservoir 
computing
Zhiqiang Liao 1,4, Hiroyasu Yamahara 1,4*, Kenyu Terao 1, Kaijie Ma 2, Munetoshi Seki 1,3 & 
Hitoshi Tabata 1,2

Reservoir computing is a brain heuristic computing paradigm that can complete training at a high 
speed. The learning performance of a reservoir computing system relies on its nonlinearity and 
short-term memory ability. As physical implementation, spintronic reservoir computing has attracted 
considerable attention because of its low power consumption and small size. However, few studies 
have focused on developing the short-term memory ability of the material itself in spintronics 
reservoir computing. Among various magnetic materials, spin glass is known to exhibit slow magnetic 
relaxation that has the potential to offer the short-term memory capability. In this research, we 
have quantitatively investigated the short-term memory capability of spin cluster glass based on 
the prevalent benchmark. The results reveal that the magnetization relaxation of Co, Si-substituted 
Lu3Fe5O12 with spin glass behavior can provide higher short-term memory capacity than ferrimagnetic 
material without substitution. Therefore, materials with spin glass behavior can be considered as 
potential candidates for constructing next-generation spintronic reservoir computing with better 
performance.

With the society transitioning into the high-speed informatization era, artificial intelligence technology has 
become crucial as an efficient method of data processing. However, the separation of memory and computation 
of traditional computers restricts the embedded interaction between artificial intelligence systems and modern 
devices and significantly increases the power consumption of computing1. In recent years, to overcome this bot-
tleneck, researchers have developed neuromorphic devices with high integration and low power consumption 
by simulating the function of neurons and synapses2–5. Among the existing neuromorphic devices, a framework 
called reservoir computing has been favored by researchers6–8. The basic principle is based on mapping data to a 
high-dimensional space using large reservoir units and learning its characteristics9. For hardware devices, a large 
number of reservoir units in the reservoir computing software can be easily simulated by time multiplexing a 
single unit10. In the training process, only the output layer data must be trained using simple linear regression11. 
In essence, a reservoir computing system is mainly required to have two characteristics: short-term memory 
ability and nonlinearity12. Short-term memory refers to a small amount of external input information that 
remains a transient active state in the memory system for a short time 13. The short-term memory ability can 
cause the historical information entering the reservoir to gradually decay and disappear with time. As another 
key characteristic, nonlinearity can be easily realized in various physical devices. Therefore, reservoir computing 
is simple in terms of training, fast convergence, and easy physical implementation.

So far, physical reservoir computing has been developed based on various systems14–16, including elec-
tronic systems17,18, mechanical systems19,20, optical systems21,22, spintronics devices23,24. Among them, 
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magnetic-tunnel-junction based spintronic devices are considered to be a promising choice for physical res-
ervoir computing, owing to their non-volatility, read/write endurance, high-speed operation, low power con-
sumption and low size25–28. Besides, spin wave29,30, skyrmion31, antiferromagnetic systems32 are also used for 
constructing spintronics reservoir computing systems with different physical principles. Nontheless, whether 
it is based on magnetic tunnel junction or other spintronics systems, the present spintronic reservoir comput-
ing realizes the required short-term memory ability through the relaxation process originates from certain 
physical phenomena27,28 or the delay module in the system29,30. The nonlinearity can be simply provided by the 
magnetic materials and the spin dynamics28–30. Interestingly, when the short-term memory and nonlinearity 
are simultaneously provided from multiple components, the abilities of the entire system intensify more than 
those of a single component28,29,33. Therefore, in an ideal case, it is expected that all components in spintronic 
reservoir computing can provide short-term memory ability and nonlinearity. However, in the existing studies, 
the magnetic characteristics of ferromagnets used in spintronic devices mainly contribute to the nonlinearity28,29. 
Among various magnetic materials, spin glasses are disordered magnets, where spin-freezing state occurs below 
the spin-freezing temperature (Tg), and exhibit characteristic memory and aging effects related to the slow 
magnetic relaxation. From the perspective of the mean-field theory, this characteristic property of spin glass is 
explained by the multi-valley potential, which is caused by the randomness of incoming atoms and the frustration 
between spin interactions34,35. Although a number of spin glasses have been reported to show memory effects, 
particularly pertaining to memorizing the thermal and/or magnetic field history36–38, there are no quantitative 
studies discussing their connection with short-term memory ability in physical reservoir computing.

To address this research gap, we quantitatively tested the short-term memory capacity of Lu3Fe4Co0.5Si0.5O12 
(LFCS), which has demonstrated spin cluster glass behaviors of memory effect with high Tg

39, through the short-
term memory task commonly used by reservoir computing. It is well-known that there is an upper limit on the 
amount of new information for the memory system to remember in a short time 40. This limit is the short-term 
memory capacity, also known as memory span. For a reservoir computing system, the memory span can be quan-
titatively evaluated by two different methods. The first is benchmarking the system on short-term memory task 
with quantitatively defined short-term memory capacity as an index41. The second method is using information 
processing capacity to comprehensively evaluate the nonlinear and linear capacities of the binary input-driven 
reservoir computing system42,43. Because we mainly focus on the short-term memory capacity of spin glass, the 
first method is chose in this work. Numerical simulation and experimental results showed that the short-term 
memory capacity of LFCS magnetization is higher than that of typical ferrimagenetic material of Lu3Fe5O12 
(LuIG). Specifically, when the input binary sequence is mapped from {0, 1} to applied magnetic field {0, 100 Oe} 
and the working temperature is 150 K immediately below Tg, the magnetization of spin glass has an short-term 
memory capacity around 2. In contrast, LuIG does not have an effective short-term memory capability. We also 
found that the short-term memory ability in the experimental results is attenuated compared with the ideal 
simulation that can be attributed to the relaxation introduced by noise and the measurement system. In addition, 
the relationship between the amplitude of external write magnetic field for LFCS and the short-term memory 
ability is explored. It was revealed that the short-term memory ability of LFCS is suitable for utilization under a 
field strength of approximately 100 Oe. Because the aging memory behaviors of LFCS are common in the spin 
glass family 37,44,45, the conclusions of this work can be similarly extended to typical spin glass materials. These 
results contribute a quantitative connection between the spin glass behavior and the short-term memory capacity 
of reservoir computing. Hence, this work is expected to offer a potentail material candidate for improving the 
spintronics reservoir computing.

Material and methods
Spin cluster glass of Lu3Fe4Co0.5Si0.5O12.  The sample preparation and spin cluster glass behaviors of 
LFCS have already been reported35,36,46. The general chemical formula of rare-earth iron garnet is (R3) [Fe2] 
a[Fe3]dO12 (where R denotes the rare-earth elements). Octahedral a-sites and tetragonal d-sites are occupied by 
16 and 24 Fe3+ ions, respectively, whereas the dodecahedral c-sites are occupied by 24 R3+ ions. Among vari-
ous rare-earth iron garnets, magnetic moments in Fe3+ in octahedral and tetragonal sites are dominant in the 
magnetization of lutetium iron garnet (Lu3Fe5O12, LuIG) because the 4f. level is filled in Lu3+. The magnetic 
moments of Fe3+ in octahedral and tetragonal sites are antiferromagnetically aligned with each other; hence, 
the net moment corresponds to that for one Fe3+ per formula unit, resulting in ferrimagnetism. Among various 
magnetic materials, LuIG and YIG (Y3Fe5O12) show exceptionally low damping constants for spin wave propa-
gation, which means long lifetime and free path. The small magnetic loss is necessary for spin wave application 
including reservoir computing. Although typical magnetic materials such as permalloy, CoFeB, and Heusler 
alloys show the damping constants of 10–3, LuIG and YIG show one digit or more smaller values as 10–5–10–447. 
Both LuIG and YIG are garnet-structured magnetic insulator and composed of the spectroscopic S-state of all 
the ions that carry the magnetic moment, which result in very small spin–orbit interaction and magnetic loss. 
Therefore, LuIG and YIG are commonly used candidates for spin wave devices. Because spin glass behaviors 
have been reported in Co and Si-doped LuIG in addition to the characteristics of spin wave propagation 39, we 
selected LuIG in this work. According to previous studies39, Co2+ and Si4+ prefer to substitute the octahedral and 
tetrahedral sites, respectively. The incorporation of anisotropic Co2+ and nonmagnetic Si4+ induces randomness 
and frustration of magnetic interactions. Thus, similar spin cluster glass behavior as that previously reported in 
spinel-type ferrimagnets, was observed48,49. LuIG and LFCS films were deposited on Y3Al5O12 (111) substrates 
through pulsed laser deposition using an ArF excimer laser. The source targets were prepared using a conven-
tional solid-state reaction. Powders of Lu2O3 (99.9%), α-Fe2O3 (99.99%), CoO (99.9%), and SiO2 (99.9%) were 
mixed stoichiometrically and sintered at 1400 °C for 6 h. During the film growth, the substrate temperature 
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and ambient oxygen pressure were maintained at 750 °C and 1 Pa, respectively. The as-grown films were post-
annealed in air at 800 °C for 2 h to improve their crystallinity.

Figure 1a shows the temperature dependence of magnetization in zero-field-cooling (ZFC) and field-cooling 
(FC) procedures. The irreversibility given by the divergence between ZFC and FC magnetization is a char-
acteristic of spin glass indicating spin freezing state at temperature lower than Tg. As illustrated at inset of 
Fig. 1a, randomly spin frozen state and ferrimagnetic state are realized at low temperature under ZFC and FC 
protocols, respectively. Prior to the measurements, the sample was heated up to 400 K for demagnetization to 
ensure uniformity of the initial state. Thereafter, it was cooled from 400 to 10 K in the absence of field, and the 
magnetization was recorded based on the ZFC procedure upon heating to 400 K in the weak fields (that is, 50 or 
200 Oe). Subsequently, the magnetization was recorded upon cooling to 10 K based on the FC procedure. The 
magnetization in the ZFC shows a steep decrease at low temperatures that is a characteristic of spin glass. The 
ZFC curves exhibit cusps at blocking temperatures that are defined as the spin-freezing temperature Tg. The Tg 
shifts systematically from 220 to 150 K as the applied magnetic field increases from 50 to 200 Oe that is a typical 
characteristic of spin cluster glass. Generally, the time-dependent magnetic relaxation can be fitted based on the 
stretched exponential function39:

where M0 and M1 are constants which can reflect the glassy component of magnetization and initial remnant 
magnetization.  β is the stretching exponent. τ represents the relaxation time constant that reflects the duration 
of the relaxation behavior. A is the amplitude of external magnetic field, which can influence the τ and β . Because 
the initialization of the curve fit affects the specific value of T, we compared the order of τ at different temperatures 
under the normalization condition. As shown in Fig. 1 (b), among the measured temperature conditions of LFCS, 
τ reaches the maximum value at 150 K with an external magnetic field of 100 Oe. With an increase in temperature 
over 190 K which is the Tg under applied magnetic field of 100 Oe39, τ gradually decreases. At 300 K, τ decreases 
by two orders of magnitude compared with τ at 150 K. This can be attributed to the ferrimagnetic behavior of 
LFCS at room temperature39, which reveals that magnetization is independent of time. If the temperature drops 
to 80 K and 10 K, τ is significantly reduced by nearly an order of magnitude, owing to the deeper frozen state 
of the system at lower temperatures. Figure 1 (c) displayed the experimental magnetic relaxation data with the 
fitting curve, which is more intuitive to reveal the effect of τ on spin glass relaxation. The index used to assess 
the goodness of fit is the root mean square error. The small RMSE given in Fig. 1c shows the accuracy of our 
fitting calculation.

Implementation of reservoir computing.  Similar to the simplest artificial neural network, traditional 
reservoir computing comprises three basic parts50: the input layer, intermediate layer (reservoir), and output 
layer, as illustrated in Fig. 2a. At a certain time t  , the state of the reservoir is described by the following formula:

(1)M(t) = M0 +M1exp

[

−

(

t

τ [A(t)]

)β[A(t)]
]

,

(2)−→x (t) = f
[

Win
−→u (t)+W−→x (t − 1)

]

,

Figure 1.   (a) Temperature dependence of magnetization of LFCS film measured by ZFC and FC procedures 
under the applied magnetic fields of 50 Oe and 200 Oe. (b) Normalized τ in FC procedure at 10, 80, 150, 225, 
and 300 K under the applied magnetic fields of 100 Oe. (c) The magnetic relaxation data with the fitting curve at 
10, 80, 150, 225, and 300 K under the applied magnetic fields of 100 Oe.
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where −→x  and −→u  are the state vector and input vector of the reservoir, respectively. Suppose J and L are the 
dimensions of the input and output layers respectively, and K is the number of internal nodes in reservoir. Win 
is the K-by-J input weight matrix. f  and W are the nonlinear mapping function and K-by-K internal connection 
matrix of the reservoir, respectively. If the matrix containing −→x (t) at all time steps is defined as X , the relationship 
between X and the target data matrix Y  can be written as follows:

where Wout is the L-by-K output weight matrix and the training target. Once Wout is obtained, one can use Eqs. 
(2) and (3) to obtain the target results with any input.

In contrast to traditional reservoir computing implemented by software, the physical reservoir computing 
system with time-multiplexing approach depicted in Fig. 2b relies on a unique technique called masking to realize 
the function of the input matrix Win

51,52. However, in the following short-term memory tasks, it is not necessary 
to preprocess the input by masking. Moreover, to reduce energy consumption, a physical reservoir computing 

(3)Y = WoutX,

Figure 2.   (a) Schematic of traditional reservoir computing. After receiving the input information, the reservoir 
state is dynamically updated internally. (b) Schematic of physical reservoir computing with time-multiplexing 
approach. The physical reservoir is completed by time multiplexing the physical system response. Each unit in 
the physical reservoir is equivalent to a sampling point. (c) Schematic of physical reservoir computing based on 
spin cluster glass. Connection of its internal nodes is determined by the complex interaction among spins of the 
material.
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system generally has only one physical unit. Therefore, it is necessary to sample the continuous response of the 
physical system and treat each sampling point as a virtual node33. It is noteworthy that f  and W are determined by 
the inherent characteristics of the spin cluster glass as a physical reservoir computing system, as shown in Fig. 2c.

Figure 3 shows the experimental schematic of realizing the above training process in spin cluster glass mate-
rial. Firstly, the input training sequence −→u (t) and input weight matrix Win are generated by computer. Then, 
the masked input sequence Win

−→u (t) is converted into a series of applied magnetic field signal and the magnetic 
relaxation is recorded as  −→x (t) by the physical property measurement system with vibrating sample magnetom-
eter (PPMS-VSM). After collecting all the −→x (t) containing at all time step, we can obtain X . Finally, according 
to the initial determined target data matrix Y  and obtained X , Wout can be calculated offline in the computer.

Short‑term memory benchmark.  Short-term memory, also known as fading memory, is the premise for 
reservoir computing to complete the above training correctly33. Similar to the principle of transmitter depletion 
in the human brain53,54, short-term memory is the key that enables reservoir computing to process and encode 
the received information. To test the short-term memory ability, an input binary sequence sin ∈ [0, 1] should be 
randomly generated. In our work, the binary input sin follows the Bernoulli distribution that takes 0 and 1 with 
probabilities p = 50% and (1− p) = 50% , respectively. Thereafter, the target sequence y(N , d) can be obtained 
using the following formula:

where N  and d are the N  th data and delay distance, respectively, that are positive integers. In this study, sin 
contains 200 randomly generated binary codes, 30 of which are used for washout, 130 for training, and 40 for 
verification. In order to avoid the error caused by the large linear correlation of some variables in X , we use the 
ridge regression method to calculate Wout

55. The calculation formula is as follows:

where I represents the identity matrix and � is a constant which is equal to 10−8 . Thereafter, the prediction out-
put yp(N) corresponding to the test set can be obtained using Eq. (3). To characterize the performance of the 
short-term memory task, the square of the correlation coefficient between the predicted target and real target 
is calculated as33:

where Cov[yp(N), y(N , d)] is the covariance between yp(N) and y(N , d) . Cov[yp(N)] and Cov[y(N , d)] are equiva-
lent to Cov[yp(N), yp(N)] and Cov[y(N , d), y(N , d)] , respectively. rSTM(d)2 ∈ [0, 1] is proportional to the short-
term memory ability of reservoir computing when the delay distance is d . Thereafter, the short-term memory 
capacity can be obtained by

In this work, when dmax > 20 , the value of rSTM(d)2 is less than 0.01. Hence, we take dmax = 20 . To ensure 
reliability, 10 independent experiments were performed. It is noteworthy that each binary input is a continuous 
signal of equal duration in the physical reservoir computing. Therefore, it is necessary to sample the output signal 
of the physical reservoir computing for the training process. In this short-term memory test, each binary code 

(4)y(N , d) = sin(N − d),

(5)Wout = (XTX + �I)
−1

XTY ,

(6)rSTM(d)2 =
Cov[yp(N), y(N , d)]2

Cov[yp(N)] × Cov[y(N , d)]
,

(7)C =

dmax
∑

d=1

rSTM(d)2.

Figure 3.   Schematic of reservoir computing experiment implementation on spin cluster glass material.
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lasts for 100 s and is input by PPMS-VSM in the form of an in-plane magnetic field. In addition, the binary code 
{0, 1} is mapped to {0, A Oe}, where A is the amplitude of the magnetic field. For the duration of each code, the 
amplitude of the input magnetic field A consists of a bias term Abias and binary random data Apsin:

The sampling frequency in the training process was 1 Hz.

Results and discussion
Simulation evaluation for short‑term memory capability of spin glass relaxation.  In order to 
numerically test the short-term memory ability of the relaxation term of the spin glass, we first randomly gener-
ate binary sequence with 200 codes. Each code contains 100 points to simulate the discrete sampling physical 
signal, which indicates that the virtual node number of the spin glass system is 100. Thereafter, we determine the 
time of each positive magnetization relaxation and negative magnetization relaxation according to the binary 
code. According to Eq.  (1), we can then obtain the relaxation sequence of spin glass for the corresponding 
binary input sequence. Notably, as the premise of simulation, we need to carry out the magnetization relaxation 
measurement experiment described in Section "Spin cluster glass of Lu3Fe4Co0.5Si0.5O12" to determine the 
relaxation parameters under specific temperature scheme. Since M0 and M1 can be normalized during training, 
accurate τ and β are more important. Because the magnetization relaxation characteristic of spin glass is the 
strongest near Tg, we extracted τ and β at a constant temperature of Tg using Eq. (1). The obtained [τ ,β] values 
for the FC and ZFC relaxations under an external applied magnetic field of A = 100 Oe are [2741 s, 0.60] and 
[3848 s, 0.53], respectively39. In contrast, the short-term memory benchmark was also tested on tanh function. 
The tanh function is representative of the threshold activation function in reservoir computing56 as well as other 
artificial neural networks57–59, which is used to simulate the excitation and inhibition of human neurons. In this 
work, tanh can be used to numerically simulate the magnetodynamics of LuIG.

The time-domain responses of three systems to random binary sequences are shown in Fig. 4a. It can be seen 
that when the input signal is switched between 0 and 1, the output of the tanh function reaches the steady state 
instantaneously without any relaxation transition. Different from the tanh without relaxation behavior, spin glass 
in the form of ZFC and FC form shows a relatively long-time relaxation duration. Generally, the shorter the 
relaxation time, the weaker is the short-term memory capability29. Moreover, in Fig. 4b, the relationship between 
the input and output of the spin glass forms a loop, whereas that of the tanh function forms a straight line. The 
loop relationship between input and output is the embodiment of the system memory effect60–62. Therefore, 
from Fig. 4a and b, we can qualitatively understand the short-term memory capability comparison of the three 
systems. Specifically, the tanh function has no short-term memory capability. It should be noted that when the 
relaxation time τ is shortened, the relaxation of spin glass will weaken and approach the output by tanh function. 
Thereby, one can expect that the short-term memory capacity of spin glass will decrease when the temperature 
is significantly higher / lower than Tg.

For further quantitative analysis, Fig. 4c and d show the short-term memory benchmark test results of the 
three systems. Consistent with the qualitative analysis, the short-term memory capability of spin glass in both 

(8)A = Abias + Apsin.

Figure 4.   (a) Input binary sequence and the output from the spin glass relaxation term of FC condition, 
ZFC condition, and tanh function, respectively. Each binary code is sampled into 100 discrete points. (b) 
Relationship curve between input binary sequence and the output from each system. (c) short-term memory 
capacity and (d) rSTM(d)2 of each system.
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the ZFC and FC relaxation states is better than that of the tanh function, which is 0. In Fig. 4d, rSTM(d)2 of the 
spin glass under both ZFC and FC condition first decreases with the delay distance, and thereafter fluctuates 
near 0. Although there is no significant difference in the attenuation rate of rSTM(d)2 , the rSTM(d)2 of ZFC state 
is higher than that of FC state at d = 1 , which contributes to the short-term memory difference between the 
two conditions. In essence, the different short-term memory capacities under ZFC and FC condition can be 
attributed to different magnetization relaxation processes caused by different external magnetic field conditions. 
Specifically, under the condition of FC, the magnetization of the spin glass is subject to additional constraints 
compared with that of ZFC, which also weakens the response to the binary input, resulting in a lower short-term 
memory capacity. From the simultaneous relaxation performance, the relaxation amplitude of spin glass in FC 
is less than that in ZFC63.

Experimental testing for short‑term memory capability of spin glass relaxation.  When 
A = 100 Oe, the short-term memory benchmark was experimentally tested on LFCS and LuIG. Figure 5a and 
b show the short-term memory capacities of the two materials at different temperatures and cooling conditions. 
First, it can be seen that for the LFCS of ZFC or FC relaxation, its short-term memory capacity is the best at 
150 K. This can be explained by the effect of the change in thermal energy on the height of the potential bar-
rier resulting from the multivalley potential34. At a low temperature of 10 K, the potential barrier is high, and 
the spin state is completely frozen, with almost no change in the magnetic field. In contrast, at temperatures 
around 300 K, the potential barrier reduces, the metastable state is lost, and the spin-glass-like characteristic is 
lost. Therefore, the short-term memory capacity is expected to be small at 10 K and 300 K. However, at around 
150 K, the temperature is slightly less than the spin-freezing temperature in the magnetic field64, therefore the 
short-term memory capacity is expected to be larger because the magnetic field causes a slow magnetic relaxa-
tion that slowly exceeds the potential barrier of the magnetic state. Similar to the simulation results in Fig. 5 (a), 
the short-term memory capacity of FC relaxation at 150 K is lower than that of ZFC. Moreover, from Fig. 5 (c), 
one can expect the difference in short-term memory capacity under the two conditions is mainly contributed 
by rSTM(d = 1)2 . Therefore, the short-term memory capability of LFCS under ZFC relaxation is better than 
that of FC relaxation that is consistent with the simulation results. Notably, a delay distance of 1 means a time 
scale of 1 s, which is the minimum measurement interval of PPMS-VSM. For the traditional spintronics RC, its 
short-term memory can only maintain microsecond level29. In contrast, the LFCS can maintain the short-term 
memory ability at the second level. It implies that even for the high-speed signal in a shorter time scale, the spin 
cluster glass can still be expected to provide considerable short-term memory capacity.

Furthermore, for LuIG, the short-term memory capability should be close to the tanh function in theory 
because of the extremely short relaxation time of ferrimagnetic materials65. In Fig. 5b, one can show that the 
short-term memory capacity fluctuates sharply under the tested conditions. In Fig. 5d, for almost every d , the 
error of rSTM(d)2 is large compared to its average value. Hence, it can be considered that the short-term memory 
capacity of LuIG is extremely low and the measurement result indicates the error fluctuation caused by the 
environment and equipment disturbance.

Figure 5.   Short-term memory capacities of (a) LFCS and (b) LuIG under different temperature and cooling 
schemes. rSTM(d)2 of (c) LFCS and (d) LuIG under different temperature and cooling schemes. The input binary 
sequence is mapped from {0, 1} to {0, 100 Oe}.
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Although the aforementioned results preliminarily prove that LFCS has a short-term memory capacity around 
2 at 150 K, there is a noticeable gap between the experimental results and simulation. To further analyze the 
source of this gap, the ideal input and the input magnetic field applied by PPMS-VSM under the same binary 
test sequence are depicted in Fig. 6a and b. In the ideal case, the binary sequence should be instantaneously 
switched between 0 and 1, without transition values. In the actual case, the externally applied physical signal 
cannot be changed instantaneously, which will produce a transition state, such as the scattered points in Fig. 6b. 
The positions of these scattered points are irregular, and the intervals are not uniform; thus, random relaxa-
tion independent of input information is introduced. In addition, it can be observed that in the magnetization 
curves measured by PPMS-VSM (Fig. 6c), regardless of FC or ZFC relaxation, the magnetization of spin glass 
is markedly disturbed by noise during the relaxation process. This implies that noise also introduces random 
relaxation independent of the input information. The directions of input relaxation and noise relaxation are 
shown in Fig. 6d. In the ideal condition of the simulation, the input–output curve with short-term memory 
capability should form a rectangle (Fig. 4b). However, the random relaxation caused by the input and noise 
obviously distorted the input–output relationship curve. Comparing the durations of the two types of random 
relaxation, when A = 100 Oe, one can expect that the duration of the input relaxation is approximately 3–4 s, 
which is significantly shorter than the duration (100 s) of a binary code. However, noise relaxation is always 
present. In addition, in a previous study28, the short-term memory capacity of physical reservoir computing 
was increased by approximately 1 after the system noise was suppressed. Therefore, it can be perceived that the 
main reason behind the difference in the short-term memory capability of spin glass between the experimental 
and simulation results, is the random relaxation introduced by noise. For the input relaxation, it is difficult to 
completely eliminate its negative influence due to the inevitable transition process of the physical system. As a 
feasible method, we can reduce the effect of input relaxation by increasing the duration of each input code to 
decrease the proportion of the transition process in the whole signal input process. For reducing the impact of 
noise, filters and time-domain averaging techniques are effective methods which has been widely used in other 
reservoir computing systems 28,66.

Finally, we determine whether the mapping relationship between the binary code and the external magnetic 
field, that is, the value of A , affects the short-term memory capability of the spin glass. We experimentally evalu-
ated the performance of spin glass on the short-term memory benchmark at 150 K when {0, 1} binary codes were 
mapped to {0, 50 Oe}, {0, 100 Oe} and {0, 200 Oe}, respectively. The test results are shown in Fig. 7.

Figure 7 shows that with an increase in the external magnetic field, the short-term memory capacity of spin 
glass first increases, subsequently reaching saturation or even slightly decreasing. When the magnetic field ampli-
tude is small, spin glass is more susceptible to noise due to weaker magnetization. However, with the increase 
in the magnetic field, the transition time in the input signal is extended, that is, the input relaxation intensifies. 
The stronger input relaxation limits the growth of short-term memory capacity, which results in the trend shown 
in Fig. 7. Notably, although the short-term memory capacity of LFCS is saturated to about 1 in a noisy environ-
ment, this value should not be considered a small value. For many traditional spintronics reservoir computing 

Figure 6.   (a) Randomly generated binary sequence. In the ideal case, binary code only takes two values—0 
and 1. (b) Input magnetic field applied by PPMS-VSM according to the binary sequence. The scattered points 
between 0 and 100 Oe are caused by the non-transient magnetic field applied by the system. (c) Magnetization 
(a.u.) of FC and ZFC relaxation in LFCS at 150 K. (d) Relationship curve between input magnetic field and the 
output magnetization (a.u.) of FC and ZFC relaxation in LFCS.
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device, the short-term memory capacity in noisy environment is about 2 to 328,29. Because the overall short-term 
memory capacity and nonlinearity of a physical reservoir computer are jointly contributed by each component 
28,29,67, using spin glass as the basic material has the potential to increase the overall short-term memory capacity 
of traditional spintronics reservoir computing devices by about 1/3 to 1/2 at most.

Conclusion
Based on the short-term memory benchmark commonly used in physical reservoir computing, we quantitatively 
evaluated the short-term memory ability of magnetization in LFCS, both numerically and experimentally. Under 
ideal conditions, the short-term memory capability of LFCS is approximately 2 and comparable to some physical 
reservoir computing systems with a single node28,33. Although in the experiment, we found that the additional 
irregular relaxation caused by noise and the measurement system degenerate the short-term memory capacity of 
LFCS, its short-term memory capacity is still larger than that of ferrimagnetic LuIG without spin glass behavior.

It is worth noting that the above conclusions are not intended to encourage the development of a physical 
reservoir computing system that depends only on the relaxation behavior of spin cluster glass materials. Rather, 
the conclusion of this study should be understood as providing an improved basic material candidate for spin-
tronic reservoir computing based on magnetodynamic relaxation. When combining spin glass with existing 
spintronic reservoir computing systems, some additional physical considerations need to be taken into account 
according to the specific system. For example, if combing the spin glass with spin wave equipment, it should be 
careful to consider the change of damping constant after replacing materials, which affects the shape designing 
of the spin cluster glass. Because the nonlinearity and short-term memory capability of the spintronic reservoir 
computing result from the interaction of various components in the system28,29, choosing a material that can 
provide short-term memory capability will undoubtedly be more conducive to the enhancement of spintronic 
reservoir computing performance. However, an optimal short-term memory capacity of LFCS is obtained near 
150 K. Therefore, it is a challenging and an important task in future research to realize materials exhibiting spin 
glass behavior at higher temperatures.

Data availability
The datasets measured during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.
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