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Simple nested Bayesian hypothesis 
testing for meta‑analysis, Cox, 
Poisson and logistic regression 
models
Klaus Rostgaard 

Many would probably be content to use Bayesian methodology for hypothesis testing, if it was easy, 
objective and with trustworthy assumptions. The Bayesian information criterion and some simple 
bounds on Bayes factor are closest to fit this bill, but with clear limitations. Here we develop an 
approximation of the so-called Bayes factor applicable in any bio-statistical settings where we have a 
d-dimensional parameter estimate of interest and the d x d dimensional (co-)variance of it. By design 
the approximation is monotone in the p value. It it thus a tool to transform p values into evidence 
(probabilities of the null and the alternative hypothesis, respectively). It is an improvement on the 
aforementioned techniques by being more flexible, intuitive and versatile but just as easy to calculate, 
requiring only statistics that will typically be available: e.g. a p value or test statistic and the dimension 
of the alternative hypothesis.

The majority of epidemiological studies are exercises in measurement; i.e., we try to estimate as accurately as 
we can some potential (possibly causal) association between an exposure and an outcome. Occasionally it is 
also of substantive interest to assess the evidence in favor of the null hypothesis, e.g. in terms of a probability of 
the null hypothesis. When assessed as probabilities this requires that the evidence in favor of the alternative(s) 
is assessed too. This is not possible in the traditional frequentist approach to statistical inference, as it is only 
based on the expectations that flows from assuming a particular null data generating mechanism/model. In the 
Bayesian approach it is possible to do it, but at the cost of having to specify some priors as input to the calcula-
tions. In the standard Bayesian paradigm these priors are supposed to model the beliefs of the investigator or 
client based on all relevant knowledge, not just studies or experiments similar to the one being analyzed. The 
subjectivism that flows from that is anathema to the standard scientific learning process, which is one reason 
why the standard frequentist approach is still dominant today. See Gilboa1 p. 40–48 for an excellent presentation 
of why you would want to act as a Bayesian in some situations and as a frequentist in other situations regarding 
the same substantive matters. However, it has often been demonstrated that the evidence for the alternative is 
weaker than usually recognized in the classical p value based scenario2–4. This would suggest that a Bayesian 
approach to model assessment would be preferable, if at all feasible.

In the following we shall use the terms model/data generating mechanism M0 as synonomous to a null 
hypothesis H0 and model/data generating mechanism M1 as synonomous to the alternative hypothesis Ha , also 
denoted H1 . The full-blown Bayesian approach provides the probability of the null hypothesis after seeing the 
data D , pr(M0|D) from the ratio pr(M1|D)/pr(M0|D) which in turn is constructed from the product of the so-
called Bayes factor and the prior odds pr(M1)/pr(M0) , see Eqs. (3) and (4). As Eq. (4) states the Bayes factor is 
the ratio of the probability of observing the data D under the alternative model and the probability of observing 
the data under the null model, i.e. the Bayes factor is a ratio of predictive performance on the data D of the data 
generating mechanisms/models M1 and M0 . Hence in the Bayesian framework the Bayes factor is the sole modi-
fier of prior beliefs about the model probabilities into posterior beliefs after having seen the data.

We will argue that it is possible to choose an objective informative “consensus” prior, essentially defined by 
requiring that the expression for Bayes factor in the case of a univariate interest parameter, generalizes in the 
natural way to the multivariate case thereby ensuring that the evidence in favor of the alternative is monotone in 
the likelihood-ratio and hence the p value. Unlike the situation for parameter estimation, Bayes factors depend 
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critically on the priors over the interest parameter θ : p1(θ) for M1 and p0(θ) for M0 (the latter is trivial), which 
therefore cannot just be made “uninformative” at no cost, see Kass & Raftery5.

We will argue that the ultimate (pre-data) prior odds ( pr(M1)/pr(M0) ) in an objective scientific setting should 
be set to 1. Readers may enter their own subjective (pre-data) prior odds into Eq. (3) and revise posterior infer-
ences accordingly. Often this is all we ask for when we are discussing what our particular study adds (through 
Bayes factor) to the body of knowledge about the potential association between exposure X and outcome Y .

We provide a simple, defendable, objective way of generating p1(θ) and the ensuing inferences, including the 
Bayes factor, applicable to situations where the data likelihood does not contain a dispersion parameter or its 
value can be assumed effectively known. Thus our methodology is immediately applicable in the many epide-
miological studies where the interest parameters are estimated using e.g. logistic regression, Poisson regression 
or Cox regression.

For an accessible overview of Bayesian methodology for epidemiologists and contrasts to traditional statistics, 
see Wagenmakers et al.6.

The disposition of the paper is as follows. The next section develops and motivates the method. In the first 
subsection we introduce the setting and notation. The next subsection fully develops our consensus priors for 
the case of a univariate interest parameter including choosing the only free parameter � that expresses a balance 
of information content between prior and data. The next subsection swiftly generalizes this methodology to the 
general multivariate case. The following section compare our approach to existing approaches including the 
Bayesian Information Criterion (BIC). In the next section we elaborate our view on how to choose the pre-data 
prior odds, and discuss alternatives. The next section provides an epidemiological example of why we need this 
Bayesian approach (we believe in H0 ) and what comes out of it, and illustrates considerations regarding alternative 
values of � . We end the paper with a discussion of mainly how the inferences obtained from using our machinery 
differs from those obtained with traditional frequentist means.

The method
Setting and notation.  We only consider interest parameters summarized in a parameter (vector) θ and 
assume large-sample asymptotics, i.e. everything is treated as multivariate normal Nd(·, ·) . Thus we use the same 
assumptions underlying the standard statistical software output of parameter estimates with associated standard 
errors, confidence limits, χ2-based test statistics etc used when analyzing Cox, Poisson and logistic regression 
models. Stated differently, we at most assume known the maximum likelihood interest parameter estimates and 
their associated observed covariance-matrix (a submatrix of the inverted observed Fisher information matrix), 
as would be used as the input for a (multivariate) meta-analysis7. These statistics and various test statistics based 
upon them are the only data that you are always likely to be allowed to communicate in studies of humans. This 
is a first order approximation to a much more elaborate and accurate calculation of the Bayes factor that would 
only be possible to do for some-one with access to all original raw data. On the other hand this asymptotic 
approximation yields fully efficient parameter estimation under very reasonable assumptions8. The approach 
here is an easy addition on top of standard analysis output, and in the end allows us to retrospectively apply 
it to previous studies using only a few test statistics that should often be available to us (e.g. p values), in line 
with other model selection criteria like the Akaike Information Criterion (AIC), the BIC and various test-based 
bounds on the Bayes factor, as surveyed in Held & Ott9. The methodology developed here applies equally to the 
summary of a single study as a meta-analysis style summary of multiple studies.

The notation for the univariate case ( d = 1 ), where all the relevant vectors and matrices can be treated as 
scalars (numbers) is as follows:

•	 Data D : L(D, θ) = L0 exp(− 1
2 (θ − θ̂ )V−1(θ − θ̂ )),

•	 Prior M0 : p0(θ) = δ0 (all probability mass in the point 0),
•	 Prior M1 : p1(θ) = N(θ1,W).

Let K ≡ V−1 and P ≡ W−1.
We have:

In order to calculate BF10 we have to choose θ1 and W, the mean and covariance respectively for the a priori 
distribution of θ.

The notation for the general case is as follows:

•	 Data D : L(D, θ) = L0 exp(− 1
2 (θ − θ̂)tV−1(θ − θ̂)),

•	 Prior M0 : p0(θ) = δ0 (all probability mass in the point 0),
•	 Prior M1 : p1(θ) = Nd(θ1,W).

Let K ≡ V
−1 and P ≡ W

−1.
We have:

(1)
pr(M1|D)

pr(M0|D)
=BF10 ×

pr(M1)

pr(M0)

(2)BF10 ≡
pr(D|M1)

pr(D|M0)
=

∫

L(D, θ)p1(θ) dθ
∫

L(D, θ)p0(θ) dθ
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In order to calculate BF10 we have to choose θ1 and W of dimension d and d × d , respectively. θ and other vectors 
are column vectors. θ t denotes θ transposed.

Note that much literature on Bayes factors, including Held & Ott9 and Wagenmakers et al.6, gives formulas 
for and bounds on BF01 = BF−1

10  , while we prefer to use BF10 to highlight similarities to usual penalized likeli-
hood methods.

An asymptotic Bayes factor for a univariate hypothesis ( d = 1).  Taking as starting point the typi-
cal epidemiological research question “Does X affect the risk of Y  in any way?” and it’s classical statistical formu-
lation as H0 : θ = 0 versus an alternative of no such constraint on θ clearly suggests that the prior p1(θ) should 
be centered at θ1 = 0 . We may have a hunch about the direction of an effect, but noting how rarely anyone dares 
to consider only one-sided hypotheses etc it seems irrelevant to consider other values than 0 as the center of the 
prior. Or stated differently: If we were very certain about where θ1  = 0 should be, we probably would not need 
to assess pr(M0) or the Bayes factor in the first place. Other desiderata that we may consider, e.g. that θ1 should 
be simple, unique, self-evident, biased towards H0/M0 etc, would point in the same direction. 0 simply seems to 
be the only point that could possibly fulfill most desiderata.

Assume the above expressions for the priors and likelihood and θ1 = 0 . For reasons to become apparent let 
P = �K , ψ ≡ �/(1+ �) and LR = exp( 12 θ̂K θ̂ ) . Then

In deviance form (6) is logBF10 = 1
2 logψ + 1−ψ

2 χ2 where χ2 is the difference in deviance between models 0 
and 1. See Supplementary Eqs. E1 & E2 for derivations.

� is a ratio between the information in the prior and the data formalized as P = �K . So any formula for calcu-
lating � should reflect this, e.g. �−1 ∝ K , and � ↓ 0 as more data are gathered. If we choose � large the alternative 
θ will be shrunk very much towards 0 and M1 will look very similar to M0 and Bayes factor will by necessity be 
close to 1, i.e. we essentially learn nothing from our data, the inference is what we put into the model in the form 
of the prior. If on the other hand we make � too small we are always going to prefer M0 , due to having spread out 
the probability mass too thinly and hence placed very little in the vicinity of θ̂ . This never-vanishing importance 
of the choice of the prior when testing hypotheses stands in glaring contrast to the situation where we estimate 
parameters. Here the choice of prior is usually not very important, because as the amount of data increases the 
posterior distribution will converge to the same limiting distribution5,6.

Bayes factor is maximized by ψ = 1/θ̂K θ̂ ∼= � for � ≪ 1 so � = 1/θ̂K θ̂ is not too small and shrinks at the right 
pace as more data are gathered and effectively maximizes the evidence in favor of the alternative. However, this 
� may be too large. We may actually believe in the null as an appropriate approximation of the truth and want 
Bayes factor to favor the null ( BF10 < 1 ) and more so the smaller θKθ is below some value. We may obtain this 
by introducing an upper limit to how large � may be. Consider logBF10 = 1

2 logψ + 1−ψ
2 χ2 . BF10 = 1 when 

logψ = (ψ − 1)χ2 . This only has a solution besides ψ = 1 when χ2 > 1 . E.g. the solution to the Equation with 
χ2 = 2 , corresponding to �max ≈ 0.255 yields preferences similar to applying the Akaike information criterion 
(AIC): when the decrease in deviance per dimension is larger than 2 we prefer the alternative, complicated model, 
when the decrease in deviance per dimension is smaller than 2 we prefer the simpler model ( H0 ). Likewise if we 
choose χ2 = 3.92 as our “watershed”, corresponding to the usual p = 0.05 accept/reject dichotomy for a one-
dimensional hypothesis, this corresponds to �max ≈ 0.022.

Examining the proposal of employing a �max more closely reveals features that may guide the choice of �max . 
When � = 1/χ2 throughout Bayes factor is not completely monotonely decreasing in χ2 (Fig. 1), yielding an 
argument for introducing a �max small enough to ensure monotonicity. Furthermore if we require that Bayes 
factor becomes 1 at some prespecified watershed then we have to require �max < 1/1.54 = 0.65 corresponding 
to χ2 > 1.54 . Thus there is actually little leeway to choose a sensible �max > 0.255 and we would therefore argue 
against that. It may however make good sense in specific situations to choose �max < 0.255.

We therefore propose as default

or more generally

where �DEV01 is the change in deviance between models 0 and 1, and �max ≤ 0.255 . The corresponding Bayes 
factor is now a continuous monotonely increasing function of �DEV01 . For �DEV01 < 1/�max Bayes factor is 
a simple exponential function, reaching its minimum value of ψ1/2

max for �DEV01 = 0.

(3)
pr(M1|D)

pr(M0|D)
= BF10 ×

pr(M1)

pr(M0)

(4)BF10 ≡
pr(D|M1)

pr(D|M0)
=

∫

L(D, θ)p1(θ) dθ
∫

L(D, θ)p0(θ) dθ

(5)BF10 =LRψ1/2 exp

(

−1

2
[ψθ̂K θ̂ ]

)

(6)=ψ1/2LR1−ψ

(7)� = min(1/θ̂K θ̂ , �max)

(8)� = min(1/�DEV01, �max)
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In some studies we would be more lenient towards formally statistically significant results, either because 
we would suspect various biases that we could not mitigate or because the effect sizes we detect as statistically 
significant would not amount to a practically or clinically meaningful difference. It is the same kind of logic 
that persuades professional surveyers not to make their studies as large as logistically possible because random 
fluctuations are soon swamped by inevitable biases as sources of error10. So we could augment �max according 
to such a “practically null” criterion. Then the watershed χ2 would be on the form T2/V  where V is the variance 
of the parameter, e.g. estimated from the width of the relevant confidence limits and |T| is the largest effect size 
we would tolerate as being in favor of the null hypothesis.

� being a ratio of information in the prior and the data suggests choosing � = ν/µ where ν and µ are counts 
of some information carrying unit as yet another way of specifying � and the watershed in a way that is objective, 
transparent and transportable. In survival analysis (Cox regression, Poisson regression) the growth of statistical 
information as the sample grows is reflected more accurately in the number of events observed (= the number 
of uncensored survival times) than the number of observational units11,12. This suggests that µ be the number of 
observed events in the data in survival analysis, perhaps just the number of observed events among the exposed, 
if exposure is rare. ν would then be the equivalent postulated information content in the prior—it would seem 
equivalent to empirical data containing ν events of the type counted by µ.

Suppose that θ̂ → θ̃ �= 0 as more data are gathered. Then W = �
−1V = (θ̂V−1θ̂ )V → θ̃2 , i.e. the limiting 

prior variance is then well-defined and constant, thus mimicking having chosen a priori and subjectively a fixed 
W = θ̃2 . Furthermore the region around 0 where we prefer H0 is on the form {θ : θKθ < c ⇔ |θ | <

√
cV} , 

where V is halved every time we double the number of observations (n) or other information carrying units. 
Thus the size of this region will be shrinking at the pace of 

√
n . Through the device of requiring � ≤ V/T2 to 

accomodate a practical null result this shrinkage can be halted, to make this region asymptotically fixed. If θ̃ is 
within it we will asymptotically prefer H0 , if it is outside that region we will asymptotically end up preferring H1 
and the evidence in favor of H1 measured by the Bayes factor will become infinite.

Our approach has been to constrain a hypothetical subjectively specified prior in ways that would make it 
objective. Evidently we have succeeded in generating a recipe for such a prior that asymptotically behaves as if 
fixed a priori and subjectively. Conversely, one may ask if this prior is likely also to be a consensus subjective prior 
in the sense of representing subjective beliefs in the scientific community on the subject matter to an acceptable 
degree? The traditional subjective prior N(θ1,W) allows us to specify beliefs about θ as a location ( θ1 ) and a degree 
of uncertainty about this location (W). Our new prior has introduced the constraint Eθ = θ1 = 0 and thus we 
are forced to express our prior beliefs about θ by specifying beliefs only about Eθ2 = VarS(θ)+ (ESθ)

2 = �
−1V , 

where we have used S to designate subjective quantities. This will only potentially be very different from employ-
ing the prior N(θ1,W) when |θ1/W | is large. However, if we were so sure about where θ was located (without 
having looked at the data!), it would seem more appropriate to make the comparison between H0 and H1 a 
comparison between two simple hypotheses, i.e. H1 would be the hypothesis that θ = θ1 . We have elaborated on 
bounds on how large � should be allowed to be. Imagine a subjectively specified �S ≪ min(1/�DEV01, �max) . 

0 1 2 3 4 5
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Figure 1.   Bayes factor as a function of χ2 and � . BF0: � = 1/χ2 , BF1: � = 1 , BF2: � = 0.255 , BF3: � = 0.063 , 
BF4: � = 0.65.
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This would almost surely be a consequence of believing in numerically larger effect sizes than what turned out to 
be the case, and as such signifying beliefs in H1 , i.e. that θ was far from 0. A person having such beliefs should be 
happy to be “corrected” in the direction of more evidence for H1 by our consensus prior. Altogether, we believe 
that many would-be practitioners of subjective Bayesianism in science would be relieved and happy to employ 
our admittedly flexible consensus prior for scientific nested model comparison.

Classical Bayesian inference using Bayes factors may suffer from Lindley’s paradox, which has caused some to 
suggest abandoning Bayes factors altogether for nested hypothesis testing13. In our setup the paradox corresponds 
to imagining a sequence of test statistics ( χ2 s) that are constant, but corresponding to monotonically decreasing 
Vs as more data are gathered13. In that case the Bayes factor will at some point start to favor the null hypothesis 
over the alternative to an arbitrary degree, despite the test statistic being fixed at some level that would usually 
by the scientist be considered strongly in favor of H1 . If we use � = ν/µ , letting µ → ∞ and hence � → 0 , and 
fix the test statistic and hence the LR = LR0 we have BF10 ≈

√
�LR0 → 0 , indeed exhibiting Lindley’s paradox. 

However, the standard data-driven version of Bayes factor proposed here does not suffer from the paradox: the 
only χ2 s that will make us favor H0 are those that we deliberately through our choice of a watershed χ2 have 
designated as being in favor of H0.

A general asymptotic Bayes factor ( d ≥ 1).  When generalizing our Bayes factor from one dimension 
to multiple dimensions it would seem natural to have a formula and priors that do so too. This is indeed possible. 
Let θ1 = 0 and P = �K  and let ψ ≡ �/(1+ �) and LR = exp( 12 θ̂

t
K θ̂) and assume the above expressions for the 

priors and likelihood. Then

In deviance form (10) is logBF10 = d
2 logψ + 1−ψ

2 χ2 where χ2 is the difference in deviance between models 0 
and 1. See Supplementary Eqs. E3–E5 for derivations. Obviously monotonicity in LR and hence the p value has 
been maintained.

P may also be essentially obtained from requiring monotonicity of the the Bayes factor in the p value, rather 
than for esthetic and computational reasons, as elaborated below.

The precision matrix of the study K = V
−1 is often called the information matrix: it tells us what our study is 

most informative about; which parameters can be estimated with the biggest precision. Thus the standard Wald 
test statistic θ̂

t
K θ̂ essentially collects evidence against the null, penalizing deviations from the null of a given size 

harder in directions where the sample/study is informative than in directions where it is less informative. To be 
more specific: any covariance matrix, and it’s inverse, has a representation as a diagonal matrix, i.e. K = O

t
�O 

where O is a rotation matrix and � = diag(�1, . . . , �d) with �1 ≥ . . . ≥ �d . Thus the Wald test statistic θ̂
t
K θ̂ has 

a representation in another basis (specified by O ) on the form 
∑d

i=1 w
2
i �i . Noting that most sources of informa-

tion about θ are likely to resemble our study and the correlations between components of θ to be roughly similar 
choosing the prior precision P ∝ K  therefore seems an obvious idea. Also if we view the Bayes factor as an 
extension of the traditional significance test we may insist that the Bayes factor in favor of the alternative should 
increase monotonically as the p value decreases. In our set-up such a constraint can be honored, but it requires 
that P is diagonal in the same basis as K  and further puts restrictions on the ranks of the eigenvalues of P . If we 
furthermore require that any scale copy of P should obey the p value monotonicity constraint, the eigenvalues 
of P has to obey the same ranking as the eigenvalues of K  , see Supplementary Equation E6 for derivations. The 
only practically viable option for obtaining this is to have P = c1I + c2K  , with c1, c2 ≥ 0 , noting that c1I has 
the same representation in all bases. The mean of the posterior of θ under M1 will be m = (K + P)−1

K θ̂ which 
will be exactly in the direction of θ̂ only when P ∝ K  , or stated differently: m can only be interpreted as merely 
shrinking θ̂ towards 0 in case P ∝ K  , which is trivially fulfilled when d = 1.

Further in favor of using P ∝ K  we note that the information matrix K  for Poisson and logistic regression 
models is derived from a larger information matrix on the form (in standard notation) X t

WX where X is an 
a priori known design matrix and W is a diagonal matrix of weights of each observation in the data set. These 
weights will in general depend on θ but even then K  will typically deviate little from K(θ1 = 0) , i.e. K  calculated 
based on the weights corresponding to the null hypothesis, especially when the effect sizes are small. The expres-
sion for the information matrix in Cox regression is more complicated than for Poisson and logistic regression, 
but the same argument applies; that the difference between K  and K(θ1 = 0) is likely to be small, vindicating 
the use of P ∝ K .

So P = �K  is not only very convenient, yielding simple formulas; it is also deeply meaningful as the best 
suggestion absent other prior knowledge about what P should be. For other examples of approaches where the 
specification of the details of the prior distribution regarding correlation structure etc is based on the data see 
Chen & Ibrahim14 and Bedrick et al.15.

We have used Eqs. 9 and 10 and derivatives thereof interchangeably. The former is what comes out of our 
modeling, while the latter is an interpretation of it that provides the more general, robust and accurate way to 
calculate Bayes factor according to our ideas. Use of Eq. (10) and hence deviance ( χ2 ) firstly guarantees that our 
inference is indeed monotone in the LR and hence in the p value, secondly is in better correspondence with the 
Savage–Dickey density ratio theorem, which states that Bayes factor quite generally can be calculated by dividing 
the prior in 0 by the posterior in 0 both under H1 , i.e. BF10 = p1(0)/p1(0|D)6. The Savage–Dickey density ratio 

(9)BF10 =LRψd/2 exp

(

−1

2
[ψ θ̂

t
K θ̂ ]

)

(10)=ψd/2LR1−ψ
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theorem also provides an argument why the calculation of Bayes factor should be insensitive to specification of 
priors and likelihoods for nuisance parameters6.

In Supplementary Equation E7 we provide further heuristic arguments why a universal Bayes factor should 
look like Eq. (10), using the Savage–Dickey density ratio theorem6.

If � is not chosen prior to seeing θ , then it must be a function of θ tKθ to ensure monotonicity in the p value; 
i.e. all θ for which θ tKθ = c should lead to the same � to obtain the same inference.

Bayes factor is maximized by ψ = d/θ̂
t
K θ̂ ∼= � for � ≪ 1 so � = d/θ̂

t
K θ̂ is not too small and shrinks at the 

right pace as more data are gathered and effectively maximizes the evidence in favor of the alternative.
So we immediately end in the natural generalization of our proposed � estimator for d = 1:

or more generally

where �DEV01 is the change in deviance between models 0 and 1, and �max ≤ 0.255 . The corresponding Bayes 
factor is now a continuous monotonely increasing function of �DEV01 . For �DEV01 < d/�max Bayes factor is 
a simple exponential function, reaching its minimum value of ψd/2

max for �DEV01 = 0.
In the general case we may also want to use a “practically null” criterion to put an upper bound on � . For 

ease of interpretation and communication we suggest that such a criterion should typically be based on a one-
dimensional margin of the interest parameter.

Connections to other theory
Most approaches to “objective” statistical inference have more or less equated “objective” with using minimally 
informative or even improper priors, including the fiducial approach by Fisher and in the same spirit, the p 
value function by Fraser16–18. Inherently, this in many cases clearly favors the null hypothesis in nested hypoth-
esis testing. Our approach to “objective” statistical inference here is the complete opposite. Our starting point 
is that modern “subjective” Bayesian statistics in the tradition of Savage and others logically and otherwise 
works fine1,19, the only real defect in the scientific context being that it may be accused of being “subjective” in 
its choice of priors. So our project here has been to examine which sensible constraints on the priors could turn 
this methodology into an objective methodology in the spirit and self-image of hard science. As argued earlier 
we believe we have managed not just to provide a data-driven objective prior, but also at the same time a likely 
consensus subjective prior.

In its classical form the Minimum Description Length (MDL) principle used for model selection to a first 
approximation corresponds to using the AIC20 and as such is likely to yield inferences very similar to the infer-
ences we would obtain from the default version of our Bayes factor. Later developments of the MDL principle 
have had a less Bayesian flavor21,22. However, the MDL principle and similarly looking penalized likelihood 
methods22,23 do not seem to match our consensus prior regarding flexibility, ease of calculation and ease of 
interpretation.

In essence BIC is obtained from our approach by insisting on � = ν/µ where ν and µ are counts of some 
information carrying unit. In the BIC ν = 1 , corresponding to a prior with the information content of a single 
average observation (or whatever unit we are counting) and as such as little information in the prior as empiri-
cally conceivable.

A frequently proposed upper bound on Bayes factor is 1/(−ep log(p))24. This and other bounds on Bayes factor 
are surveyed in Held & Ott9. However, neither of these bounds nor the BIC admits the flexibility and realism of 
our approximation of Bayes factor. E.g. the BIC has a clear tendency to favor H0 and in the opposite direction the 
aforementioned bound on Bayes factor always yields BF10 ≥ 1 corresponding to letting ψ → 1 and thus using 
improbably precise priors, rendering the data irrelevant for inference.

We also note that BF10 = ψd/2LR1−ψ (Eq. 10) also appears as an approximate Bayes factor in work on the 
fractional Bayes approach (section 2 in O’Hagan25), suggesting a wider applicability of Eq. (10) than stated here. 
We don’t find this surprising since we also learn the prior from the data, although we have argued that this is 
merely for convenience; often the result should be very close to what we could learn from fitting M0 . However, 
we do part company with O’Hagan in our recommendations regarding ψ (section 6 in O’Hagan25).

In Supplementary Equation E4 we have adapted our machinery for use in classical subjective Bayesian infer-
ence with a prior on the form Nd(θ1, �

−1
V) , thus solving an escalating logistic problem of eliciting/specifying 

very many parameters of the prior. Specifying d + 1 meaningful parameters should certainly be doable.
Much of what we have developed here is foreshadowed by several decades, at least in the univariate case, 

by work from the inventor of the Bayes factor, Sir Harold Jeffreys26. Among other things Jeffreys developed 
approximate expressions for the Bayes factor very similar to (5) and (6), i.e. in its simplest form in our notation 
BF10 ≈

√
�LR thus realizing that the Bayes factor roughly is the product of a term that is a function of the p 

value (LR) and a term that depends on the square root of the information usually proportional to the number 
of observations n ( 

√
�)26. He also realized that large and middle p values represents evidence in favor of H0 , 

not just absence of evidence for H1
26. Thus the novelty of the present contribution only lies in generalizing and 

specializing such type of approximative expression for Bayes factor to a broad class of regression models that are 
completely dominant in e.g. epidemiological research, providing arguments for choosing and scaling (through 
� ) the priors to be objective and possibly quite informative at the same time.

(11)� = min(d/θ̂
t

K θ̂ , �max)

(12)� = min(d/�DEV01, �max)
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Odds prior to data—and final inference
Before discussing pre-data prior odds of M0 and M1 we need to understand what the hypotheses really mean. If 
we were in a position to collect as much data as we would want we would probably in all but the rarest cases be 
able to identify an effect size different from 0 . So the meaning of M0 is not really that we believe it to be absolutely 
true, but rather that we believe it to be so small as to be predictively indistinguishable from 0 on potentially 
available data. Bayes factor in our context is a simplifying device. It collects evidence in favor of each hypothesis 
and therefore the null hypothesis of a simple model may not need to be abandoned until the evidence in favor of 
the alternative that you consider likely is much larger. As such a non-vanishing pr(M0|D) is a license to ignore 
the true non-null effect size that we haven’t been able to pinpoint with sufficient precision. Just as a model is 
a simplification of reality, the null model is a simplification of an extended model. H0 may be a hypothesis we 
wish to entertain, for convenience or simplicity, or something we wish to refute in order to demonstrate that 
some exposure affects the probability of some output, e.g. that some treatment is better than another treatment.

In epidemiology we are only likely to identify very small effect sizes with certainty when both the out-
come and the exposure is very common, say when studying 30-day mortality following blood transfusion. 
Then even a tiny apparent relative difference in probability of the outcome by blood product characteristic, 
would, if true and causal translate into an actionable possibility of avoiding x adverse events per year. Non-
trivial decision making is best done using decision theory. But if our interest lies in using Bayes factor as a 
simplifying device unless overwhelmed by evidence for the alternative we may do so by a slight change in the 
meaning of H0 and Ha to something closer to our implicit interpretation of H0 and Ha also in the situation with 
very abundant data by instead considering the posterior probability of θ being 0 or practically 0 ( θ ∈ Rε ), i.e. 
pr(M0|D)+ pr(θ ∈ Rε|M1,D)pr(M1|D) . This is in the spirit of “modernizations” of the traditional significance 
test as advocated in Goodman et al.27 and Blume et al.28.

In order to obtain proper posterior odds and probabilities of hypotheses you need to asses (pre-data) prior 
odds of the models/hypotheses. In analogy with our choice of θ1 = 0 for the consensus parameter prior we 
consider pre-data prior model odds pr(M1)/pr(M0) = 1 as the best possible practical universal consensus pre-
data prior odds. Setting the prior odds equal to 1 corresponds to evaluating the posterior odds at the boundary 
between your a priori position, and the position of your adversary (who favors the opposite hypothesis) where 
the odds are as far in favor of your adversary’s point of view as you can accommodate. Further it could be argued 
that in keeping with the role of models as simplifying devices and Occam’s razor and the special role assigned to 
H0 in science we should always have pr(M1)/pr(M0) ≤ 1 . And on the other hand if we see the point of the test to 
be to possibly falsify/reject H0 we should have pr(M1)/pr(M0) ≥ 1 . For an opposing view in favor of assessing/
discussing the true pre-data prior odds in epidemiological studies, see Goodman et al.29.

There are other methods for determining pre-data prior odds, but they do not seem particularly reliable and 
objective in our view30–33. Anyway, the reader of your results can multiply their own pre-data prior odds with 
your objective Bayes factor to obtain their subjective posterior odds and probabilities.

Finally, we could avoid specifying pre-data prior odds of hypotheses altogether if we instead asked what is 
the expected posterior loss if we act as if some simplifying or interesting assumption ( H0 ) is true, measured in 
a big estimated model ( M1 ) we believe in30. But this of course requires an elaborate M1 model and that you can 
obtain consensus with your readers/clients about what loss function to use.

A practical example
We will illustrate the use of our methodology in an example concerning an eight-dimensional interest param-
eter, where we believe the null hypothesis to be a good approximation of the truth. We will show the simple 
calculations involved in assessing Bayes factor only based on statistics published in an epidemiological paper34.

Most people become infected by Epstein-Barr virus (EBV); once infected the virus persists in the host. In the 
western world primary EBV infection occurs mostly in infancy (0–3 years) and in teenage years. Occasionally 
primary EBV infection is accompanied by infectious mononucleosis; this happens rarely in infancy, but com-
monly in teenage-years and later. EBV is mostly transmitted through saliva and is not very contagious. Having 
siblings reduce the risk of infectious mononucleosis since each sibling may infect you with EBV in infancy, 
thereby pre-empting primary EBV infection in teenage-years with its associated larger risk of infectious mono-
nucleosis. The protection against infectious mononucleosis obtained from each sibling varies widely by age dif-
ference; the smaller the difference in age, the more protection and with younger siblings being more protective 
than older siblings with the same absolute age difference to the followed-up person. This has been modeled in 
multiplicative (Poisson or Cox regression) models with time-varying counts of siblings in each of eight disjoint 
categories of age-difference as predictors34.

Infectious mononucleosis is a well-known risk factor for multiple sclerosis with hazard ratios (HRs) consist-
ently in the range 2–3. Whether it is the infectious mononucleosis (an exaggerated immune reaction) per se, or 
infectious mononucleosis as a marker of so-called delayed EBV infection that is the culprit is unclear. But based 
on other evidence the latter seems most likely. If the latter was the case one should expect the HRs of multiple 
sclerosis as a function of sibship constellation to be the same as the HRs for infectious mononucleosis as a func-
tion of sibship constellation, as modeled by the aforementioned eight-dimensional predictor. This would then 
be our H0 . This was examined in a population-based study of persons born in Denmark since 1971 in a stratified 
Cox regression model with hospital contacts for multiple sclerosis and infectious mononucleosis, respectively 
as outcomes34. In this joint model the interest parameters are θ IM = θ and θMS = θ +�θ with H0 : �θ = 0 . 
The details of the modeling are un-important here, it suffices to know that the hypothesis of common sibling 
parameter estimates for the two outcomes was examined using a likelihood-ratio test34.

It is obvious from the paper34 that the alternative hypothesis is 8-dimensional ( d = 8 ). And we are 
informed that the p value is 0.19, which with this d corresponds to a deviance χ2 = 11.21 . We thus obtain 
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� = min(8/11.21, 0.255) = 0.255 and hence ψ = �/(1+ �) = 0.255/1.255 = 0.203 .  Plugging into 
logBF10 = d

2 logψ + 1−ψ
2 χ2 yields BF10 = exp(−1.908) = 0.1484 and hence [under the assumption of uniform 

prior odds pr(H1)/pr(H0) = 1 ] we obtain the posterior probabilities pr(H1|D) = 0.129 and pr(H0|D) = 0.871 . 
We consider these calculations uncontroversial and therefore perfectly adequate for the situation, suggesting that 
H0 is indeed likely to be true. In this example the AIC actually puts a bound on � . If we hadn’t used this bound 
we would instead have ended up in BF10 = 0.7923 and thus pr(H1|D) = 0.442 and hence pr(H0|D) = 0.558  i.e. 
a result much closer to equiprobability of the two hypotheses as expected.

In the following we will examine various considerations that could potentially suggest a lower � than the one 
based on the AIC.

As an example of accomodating a practical null result let us consider the parameter for the effect of each addi-
tional 0–2 years younger sibling. This parameter has the largest effect size for the infectious mononucleosis out-
come | log(HR)| = − log(0.80) = 0.223 . If we take T to be 20% of this effect size, to accomodate for instance that 
not all infectious mononucleosis is due to EBV we obtain T = 0.2× 0.223 = 0.045 . The relevant variance estimate 
is obtained from 

√
V = (log(1.19)− log(0.89))/3.92 = 0.074 where the confidence limits 0.89 and 1.19 belong 

to the estimate of the HR between the common HR for the two outcomes (=HR for infectious mononucleosis) 
and the HR for multiple sclerosis per sibling 0–2 years younger. The resulting χ2 = 0.0452/0.0742 = 0.36 ≪ 2 
is useless. To obtain a useful χ2 would require a much larger study (lower V) or that we were much more lenient 
in our choice of effect sizes favoring H0 (larger T) or both.

Considering the one-dimensional case the AIC ( χ2 = 2 ) corresponds to using a significance level of ≈ 0.16 
to distinguish between accepting or rejecting H0 . In keeping with the idea of sticking with H0 in the absence of 
strong evidence against it (low p values), it could be sensible to let e.g. the 90 or 95 percentile of the χ2-distribu-
tion be the watershed between supporting H0 or H1 . However, we think this type of argument is most reasonable 
for arguing for convenience null hypotheses, e.g. as a license to avoid modeling and reporting interactions if they 
are deemed inconsequential, and not important for the study. In this case when it is the central hypothesis we 
are discussing, it would seem like tilting the scales in the direction of a desired result.

The prior p(θ1) employed in our formula is supposed to represent pre-data prior knowledge pertinent to 
the study. A priori we know more or less the distribution of the interest parameter for the infectious mono-
nucleosis outcome. But we don’t know it for the interest parameter regarding the multiple sclerosis outcome 
(4442 cases). In the study cohort we found 103 cases of multiple sclerosis following infectious mononucleosis at 
age 12+ years, yielding a standardized incidence ratio of 2.35. This elevated incidence is one of the key inspira-
tions for our hypothesis: the hypothesized protection from having siblings is supposed in a way to explain the 
elevated standardized incidence ratio in people having had infectious mononucleosis as a marker of delayed 
primary EBV infection. So according to this view a sensible value on a grid G on the form � = ν/µ ≤ �max , 
with ν ∈ {1, 2, 5, 10, 20, 50, . . .} and µ being counts of some information carrying unit in a reasonable prior and 
the data, respectively, would be � = 100/4442 = 0.023 . Using this � yields BF10 = 5.65× 10−5 and hence a 
vanishing probability of the alternative hypothesis. However, there are many more studies available on risk of 
multiple sclerosis following infectious mononucleosis, yielding remarkably similar results34. Taking these into 
account would quickly increase ν to a degree where the resulting � would be the same as when using the AIC. 
We also note that the way an inconspicuous χ2 in this case was turned into overwhelming evidence in favor of 
H0 exemplifies Lindley’s paradox13.

R code for this example is provided in Supplementary Methods.

Discussion
The traditional frequentist hypothesis test works by collecting evidence against the null (“model criticism”); the 
methodology of rejecting the null hypothesis when the p value becomes small is the statistical equivalent of Pop-
per’s paradigm of falsifying hypotheses. The Bayesian learning process collects evidence in favor of hypotheses; it 
is symmetric in the models. The frequentist approach, on the other hand, is designed to prefer a null model (for 
simplicity), and only to make us grudgingly be persuaded in favor of an (unspecified) alternative when the evi-
dence is very much against the null. Our proposals are primarily intended to enhance the traditional frequentist 
methodology in a way that only causes us to abandon the null hypothesis if we have a specific alternative that 
performs noticeably better in terms of predicting the data at hand.

Bayesians have always told frequentists that it is logically wrong and unsound just to consider inferences based 
on the null model24. Viewed in that context it is slightly embarrasing to end up with an approximate expres-
sion for Bayes factor that only depends on the dimension and p value of the hypothesis. Having swallowed this 
embarrassment it is however very comforting to be able to translate or calibrate the objective p value for any 
given hypothesis to a Bayes factor and thus achieve a more realistic picture of the evidence conveyed by the data 
in favor of the null and the alternative hypothesis, respectively. It is actually a Bayesian solution to the Fisherian 
project of making statistical inference using only likelihood functions35!

Having constrained our Bayes factor to be monotonely increasing in the likelihood-ratio has ensured that 
the formula for Bayes factor for d > 1 is the natural generalization from the case with d = 1 where monotonic-
ity is always fulfilled. It has also made our Bayes factor both objective, meaningful and at least corresponding 
to both frequentist likelihood-ratio-based and pure likelihood inference, and thus likely to be accepted by the 
scientific community3,4,36. Furthermore, this Bayes factor is easily calculated from standard statistical output, e.g. 
an uncategorized p value and dimension of the hypothesis, which is usually available in epidemiological papers, 
and certainly in statistical software.

How is the Bayesian inference proposed here quantitatively different from the classical frequentist infer-
ence? If we divide the parameter space into regions where we either reject or accept H0 it is clear from the 
formula BF10 = ψd/2LR1−ψ that the “accept” regions for the Bayesian and frequentist approaches would be 
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of the same shape and orientation (asymptotically an ellipsoid centered at 0 ), but with different boundaries so 
that the regions where we accept H0 would tend to be larger in the Bayesian approach. For example, if we use 
Eq. (8) with �max = 0.255 and pr(H1)/pr(H0) = 1 as our default methodology BF10 = 1 would correspond to p 
values of 0.1573 and 0.0293 under 1- and 10-dimensional hypothesis, respectively. And BF10 = 19 correspond-
ing to pr(M0|D) = 0.05 would correspond to p values of 0.0026 and 1.66× 10−7 under 1- and 10-dimensional 
hypothesis, respectively. These differences in quantitative behavior between our Bayesian proposal and p value 
based methodology is illustrated in Fig. 2. If the p value is either very large or very small we would of course 
reach qualitatively the same conclusion irrespective of the chosen method. Thus if we use Bayes factor merely to 
choose the preferred/most likely model then the standard inference is exactly the same as when using the AIC. 
If we instead use Occam’s razor and only deviate from H0 if there is strong evidence against it, then the Bayes 
factor would lead to fewer rejections of H0 than when using significance testing ( p ≤ α ) vs ( Pr(H0|D) ≤ α ). And 
the evidence for the null and the alternative model is quantified in a meaningful way as probabilities; something 
that the traditional frequentist inference never came close to.

The mapping (p, d) → BF10 is monotone in p for fixed d, but is otherwise non-trivial, and therefore cannot 
and should not be attempted without calculating it. It would be a grave mistake and missing the point to just go 
on using p values in the belief that due to monotonicity it would lead to the same statistical inferences as using 
our Bayes factor.

There has been many attempts to unseat p values as the main vehicle for statistical inference besides confi-
dence intervals24,37. This is yet another attempt to do that, and based on history is likely to fail. If it fails again 
it will only be because many researchers actually love all these statistically significant false positive findings in 
the quest for funding, promotion and what not or perhaps just lazy inertia. On the other hand it would be quite 
simple for journal editors and other stakeholders to recommend or require “the Bayesian version” of statistical 
inference presented or taken as starting point whenever a test or model choice would be deemed relevant. And 
maybe this methodology could also stop authors from sprinkling their texts with the (usually superfluous) words 
“statistically significant” when they are in fact only estimating quantities, and there is no strong evidence for 
some hypothesis in need of being communicated.
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Figure 2.   Lack of support for H0 (measured as − log(p) (Pd) and − log(Pr(H0|D)) (BFd), respectively, as a 
function of χ2 and dimension d of H1.
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Data availability
All data generated or analysed during this study are included in this published article and its supplementary 
information files.
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