scientific reports

OPEN

Modeling of land subsidence using GIS‑based artifcial neural network inYunlin County, Taiwan

Cheng‑Yu Ku1 & Chih‑Yu Liu2*

In this study, the land subsidence in Yunlin County, Taiwan, was modeled using an artifcial neural network (ANN). Maps of the fne-grained soil percentage, average maximum drainage path length, agricultural land use percentage, electricity consumption of wells, and accumulated land subsidence depth were produced through geographic information system spatial analysis for 5607 cells in the study area. An ANN model based on a backpropagation neural network was developed to predict the accumulated land subsidence depth. A comparison of the model predictions with ground-truth leveling survey data indicated that the developed model had high accuracy. Moreover, the developed model was used to investigate the relationship of electricity consumption reduction with reductions in the total area of land with severe subsidence (>4 cm per year); the relationship was approximately linear. In particular, the optimal results were obtained when decreasing the electricity consumption from 80 to 70% of the current value, with the area of severe land subsidence decreasing by 13.66%.

Land subsidence due to the overexploitation of water resources has been reported in numerous countries¹. Moreover, anomalous recent global temperatures have afected environmental conditions and led to negative consequences, including the loss of water resource equilibrium and more frequent drought and flooding^{[2,](#page-15-1)[3](#page-15-2)}. In the 1970s, researchers observed subsidence in the southern coastal areas of the Choshui delta on the west coast of central Taiwan^{[4,](#page-15-3)[5](#page-15-4)}. The severity of this land subsidence increased, which resulted in damage to public infrastructure and numerous other problems. Therefore, mitigating land subsidence to prevent coastal hazards is critical to ensure that natural environmental resources can be developed sustainably^{6,[7](#page-15-6)}. The characteristics of the subsidence of Choshui delta are strongly afected by changes in the groundwater of inland and coastal areas. Over the past 10 years, subsidence has slowed in the coastal areas but has continued in inland areas^{[8](#page-15-7)}. Currently, of all areas of this delta, the central area exhibits the highest subsidence rate.

Various numerical, statistical, and artifcial intelligence methods have been proposed for determining land subsidence risk^{[9,](#page-15-8)10}. Numerical approaches, such as the two-dimensional seepage method, quasi-three-dimensional seepage method, and three-dimensional fully-coupled method, are simple to implement and interpret. However, these methods may require long calculation times, and their input parameters might be difficult to determine^{11,12}. Statistical approaches, such as time-series analysis, regression analysis, or Grey theory, are similarly easy to implement; however, they might have relatively low numerical accuracy^{13–15}. Currently, artificial intelligence approaches, such as support vector machine (SVM) and artifcial neural network (ANN), are frequently applied for land subsidence risk assessments. Although SVM can be efectively implemented in practice and requires few computational resources, it might not be applicable for large-scale engineering problems^{[16](#page-16-3)[–18](#page-16-4)}. Increasingly scientifcally accurate models are being developed in parallel with the growing understanding that these machine-learning approaches may be useful techniques for risk assessment. ANNs for land subsidence risk have been developed on the basis of remote sensing, geographic information system (GIS), and interferometric synthetic aperture radar data $19-22$ $19-22$. The computational process of an ANN algorithm is substantially more complicated than that of other methods. Moreover, an ANN algorithm requires setting numerous input parameters. Although it has a long computational time, its superior practical applicability offsets this $cost^{23-}$ $cost^{23-}$ $cost^{23-}$

In this study, the land subsidence in Yunlin County, Taiwan, was modeled using an ANN. Two classes of variables afecting land subsidence were considered: those innate to the geology of the area and those related to human activity, which are denoted as "innate" and "human" variables, respectively. The human variables were groundwater withdrawal and agricultural land use, and the innate variables were percentage of fne-grained soil and average maximum drainage path length. The proposed GIS-based ANN model was employed to predict the

1 Department of Harbor and River Engineering, National Taiwan Ocean University, Keelung 20224, Taiwan. ²Department of Civil Engineering, National Central University, Taoyuan 320317, Taiwan. [⊠]email: liu20452003@ncu.edu.tw

land subsidence, and historical land subsidence data were used to evaluate the model predictions of land subsidence and establish the validity of the proposed model. The study methodology is described in the following text.

Materials and methods

Study area. Yunlin County is located in the south-central area of the Choshui delta in central Taiwan (Fig. [1\)](#page-1-0). Yunlin County is fat; 10% of its area is hilly and 90% is covered by plains. Tis county is a key area for industry, agriculture, and aquaculture in central Taiwan. However, long-term overpumping has resulted in geohazards due to subsidence. According to the Water Resources Agency (WRA) of the Ministry of Economic Afairs of Taiwan, Yunlin County has a maximum annual subsidence rate of 5.5 cm—the highest in Taiwan in 2022. The areas with the greatest subsidence are in Tuku and Yuanchang Townships in the central Choshui delta.

Geospatial data preparation. The selected variables are listed in Table [1](#page-1-1) (i.e., percentage of agricultural land use, electricity consumption of wells, percentage of fne-grained soil, average length of the maximum drainage path, and accumulated subsidence depth). Land use data with a resolution of 1 m were acquired from the National Land Surveying and Mapping Center (NLSC). Electricity consumption data with a resolution of 10 m were obtained from the Taiwan's WRA. Borehole data were obtained from Taiwan's Central Geological Survey (CGS) and WRA. The accumulated subsidence depth was calculated on the basis of data from WRA leveling surveys and multilayer compaction monitoring wells (MLCWs). Maps depicting these data were established using

Figure 1. Topography of Yunlin County. This figure was created using ArcGIS 10.6.1 software.

Table 1. Source data.

2

GIS spatial analysis to export geospatial layers (Fig. [2](#page-2-0)). The relationship between the innate and human factors causing land subsidence was evaluated using the ANN output.

Percentage of agricultural land use. The land use in Yunlin County is displayed in Fig. [2](#page-2-0). Nine land use types were identifed: agriculture, forestry, transportation, hydrological, construction, public, recreational, mining, and other. Most land in Yunlin County is agricultural land, and irrigation is widespread.

The percentage of agricultural land within 250 m of each MLCW was calculated using the ArcGIS buffer analysis tool to create a bufer polygon at a specifed distance around input features to perform spatial analysis; the land areas were then calculated. The percentage of agricultural land use is defined as follows:

$$
L_f = \frac{F_a}{T_a},\tag{1}
$$

where L_f denotes the percentage of agricultural land use, F_a denotes the area of agricultural land in the considered land area, and T_a denotes total considered land area.

Electricity consumption of wells. Land subsidence is induced by the overexploitation of groundwater resources; thus, investigating groundwater usage is critical. Data for the groundwater usage related to well discharge are not available; however, electricity consumption by wells can be used as proxy indicator for groundwater usage. Figure [3](#page-3-0) presents the distribution of managed wells in Yunlin County. Over 100,000 wells are located in the study area, and of these wells, 91,607 are irrigation wells, which were selected in this study. Most irrigation wells have a maximum depth of 60 m; thus, 84,349 irrigation wells with a depth of<60 m were selected as a representative sample.

Land subsidence data were collected from 24 WRA MLCWs in Yunlin County with an average depth of 288.5 m. The land subsidence at an MLCW is attributable to all groundwater usage within its buffer radius. An appropriate buffer radius was determined by identifying the correlation coefficients between electricity consumption of wells and accumulated subsidence for various bufer radii between 150 and 2000 m and subsidence depths of 0–60 m (Fig. [4\)](#page-3-1). The highest correlation coefficient of 0.85 was obtained for the buffer radius of 250 m; thus, 250 m was selected as the bufer radius for the subsequent analyses.

The electricity consumption data for $2015-2020$ for the managed wells with a depth of 0–60 m within the bufer radius of each MLCW were collected. For spatially analyzing the electricity consumption of the managed wells of the area, the point density tool in ArcGIS was used to calculate the feature density in a neighborhood around the features. The electricity consumption of the managed water wells per unit area was calculated as follows:

Figure 2. Land use in Yunlin County. This figure was created using ArcGIS 10.6.1 software.

Figure 3. Distribution of managed wells in Yunlin County. This figure was created using ArcGIS 10.6.1 software.

Figure 4. Plot of buffer radius versus correlation coefficient.

$$
W_e = \frac{E}{T_a},\tag{2}
$$

where W_e denotes the electricity consumption of the managed wells per unit area and *E* denotes the total electricity consumption of these wells in the considered land area. Figure [5](#page-4-0) presents the electricity consumption of the managed wells of Yunlin County. Tis electricity consumption is clearly higher in the central part of Yunlin County than in its other parts.

Percentage of fne‑grained soil. According to the unifed soil classifcation system, fne-grained soils are whose≥50% of content passes through the No. 200 sieve. Particles that pass through this sieve can typically not

4

Figure 5. Electricity consumption of wells per unit square meter in Yunlin County. This figure was created using ArcGIS 10.6.1 sofware.

be observed with the naked eye, even with the aid of a magnifying glass. Fine-grained soils contain fne sand, silt, and clay. Percentage of fne-grained soil is defned as the ratio of the thickness of fne sand, silt, and clay layers in a borehole to the total drilling depth.

Percentage of fne-grained soil is calculated as follows:

$$
S_f = \frac{H_f}{H_t},\tag{3}
$$

where S_f denotes the percentage of fine-grained soil, H_f denotes the thickness of fine-grained soil, and H_t denotes total drilling depth. In total, 75 borehole logs (24 from the WRA MLCWs and 51 from the CGS) were collected and used to calculate the fne-grained soil percentage.

Figure [6](#page-5-0) presents the WRA and CGS borehole locations and the corresponding fne-grained soil percentages. The percentage of fine-grained soil in the western coastal zone is clearly higher than that in eastern Yunlin County.

Average maximum drainage path length. With consideration of the top and bottom drainage of the soil layer, average maximum drainage path length is defned as average drainage path length and is calculated as follows:

$$
H_{dr} = \frac{1}{n} \sum_{i=1}^{n} (H_{if}/2),
$$
\n(4)

where H_{dr} denotes the length of the average maximum drainage path during compaction and H_{if} denotes the thickness of fne-grained soil. If the stress of a saturated soil layer increases, the pore water pressure increases suddenly, which causes a reduction in the soil mass volume and subsequently results in settlement. The logging data from the 75 WRA and CGS boreholes were used to calculate the average maximum drainage path length (Fig. [7\)](#page-5-1). The average maximum drainage path length in eastern Yunlin County is larger than that in western Yunlin County.

Accumulated subsidence depth. The land subsidence from 2015 to 2020 in Yunlin County was evaluated using data from leveling surveys conducted at a depth of 0–60 m. The inverse distance weighting interpolation in GIS was applied to estimate subsidence. The results are presented in Fig. [8](#page-6-0); the greatest subsidence is observed at Yuanchang and Tuku Townships.

Figure 6. Percentage of fine-grained soil in Yunlin County. This figure was created using ArcGIS 10.6.1 software.

Figure 7. Average maximum drainage path length in Yunlin County. This figure was created using ArcGIS 10.6.1 software.

Figure 8. Accumulated subsidence from 2015 to 2020 at 0–60 m. Tis fgure was created using ArcGIS 10.6.1 software

Artifcial neural network. Figure [9](#page-7-0) displays a fowchart of the structure of the proposed ANN for modeling land subsidence in Yunlin County. The human variables were groundwater withdrawal and agricultural land use, and the innate variables were fne-grained soil percentage and average maximum drainage path length. A backpropagation neural network (BPNN) was used to evaluate land subsidence risk. The performance of the proposed GIS-based ANN prediction model was evaluated on the basis of the correlation coefficient (Fig. [9](#page-7-0)).

The functions of the training phase and the progress results are expressed as follows:

$$
y_i = F(X_j) = \left[W_{oj} + \sum_{i=1}^{I} (W_{ij} x_i) \right],
$$
 (5)

$$
Z_k = F(Y_k) = \left[W_{ok} + \sum_{j=1}^{J} (W_{kj} y_i) \right],
$$
 (6)

where X_i and Y_k denote the results obtained before adopting the activation function; W_{oj} and W_{ok} denote the bias weights for determining the threshold values; F denotes an activation function ranging from 0 to 1; and x_i , y_i , and Z_k denote the input, hidden, and output layers, respectively.

The hyperbolic tangent sigmoid function was selected as the activation function. The hidden and output layers are expressed as follows:

$$
y_i = F(X_j) = F\left(\frac{1}{1 + e^{-X_j}}\right),
$$
 (7)

$$
Z_k = F(Y_k) = F\left(\frac{1}{1 + e^{-Y_k}}\right),\tag{8}
$$

Moreover, the error function is defned as follows:

$$
E = \frac{1}{2} \sum_{k=1}^{K} (\varepsilon_k^2) = \frac{1}{2} \sum_{k=1}^{K} (t_k - z_k)^2,
$$
\n(9)

Figure 9. Flowchart of the proposed model.

where *E* denotes the error, t_k denotes the target value, and ε_k denotes the error of each output node. Equation ([9](#page-6-1)) was applied for error backpropagation weight training. The weighting between the hidden and output layers is expressed as follows:

$$
\Delta w_{jk} = \eta \times y_i \times \delta_k,\tag{10}
$$

where η denotes the learning rate. Equation [\(10](#page-7-1)) can be rewritten as follows:

$$
w_{jk}(n+1) = w_{jk}(n) + \Delta w_{jk}(n),
$$
\n(11)

where *n* denotes the iteration number. Derived from the derivative with respect to w_{ij} , Eq. [\(9\)](#page-6-1) is

$$
\frac{\partial E}{\partial w_{ij}} = \sum_{k=1}^{K} \frac{\partial E}{\partial z_k} \frac{\partial z}{\partial Y_k} \frac{\partial_k}{\partial y_i} \times \frac{\partial y_i}{\partial X_j} \times \frac{\partial X_j}{\partial w_{ij}} = -\Delta_j x_i,
$$
(12)

$$
\Delta_j = F'(X_j) \sum_{k=1}^{K} (\delta_k w_{jk}). \tag{13}
$$

The new weighting between the input and hidden layers is then given as follows:

$$
\Delta w_{ij} = \eta \times x_i \times \Delta_j, \tag{14}
$$

$$
w_{ij}(n+1) = w_{ij}(1) + \Delta w_{ij}(n).
$$
\n(15)

The correlation coefficient was used as the performance metric for the proposed GIS-based ANN predictive model. This coefficient is defined as follows:

$$
R = \frac{\sum_{i=1}^{n} (t_i - \overline{t})(o_i - \overline{o})}{\sqrt{\sum_{i=1}^{n} (t_i - \overline{t})^2 \sum_{i=1}^{n} (o_i - \overline{o})^2}},
$$
\n(16)

where *R* denotes the correlation coefficient, t_i denotes the target value, o_i denotes the output value, \bar{t} denotes the average target value, and \bar{o} denotes the average output value. Figure [10](#page-8-0) illustrates the structure of the proposed model, which includes a BPNN algorithm, with four input variables: percentage of agricultural land use, electricity consumption of wells, percentage of fne-grained soil, and average maximum drainage path length.

The output was the predicted land subsidence in Yunlin County from 2015 to 2020. Thematic maps were established for percentage of fne-grained soil, length of average maximum drainage path, percentage of agricultural land use, electricity consumption of wells, and accumulated depth of land subsidence. A cell-based model was produced through GIS spatial analysis for 5607 cells in the study area, each of which had a size of 500 m. The buffer radius around the input features was 250 m; thus, in accordance with the maximum buffer zone length or diameter of 500 m.

Figures [11,](#page-9-0) [12](#page-9-1), [13,](#page-10-0) [14](#page-10-1) and [15](#page-11-0) present the agricultural land use percentage, electricity consumption of wells per square meter, fne-grained soil percentage, average maximum drainage path length, and accumulated subsidence, respectively, at 0–60 m from 2015 to 2020 for the cell-based model. Figure [15](#page-11-0) reveals that the highest subsidence is 10 cm. All the input data were normalized to the range of 0–1, and the initial weights were assigned randomly.

Figure 10. Proposed GIS-based ANN structure. This figure was created using ArcGIS 10.6.1 software.

Figure 11. Cells of agricultural land use. This figure was created using ArcGIS 10.6.1 software.

Figure 13. Cells of fine-grained soil. This figure was created using ArcGIS 10.6.1 software.

Figure 15. Cells of accumulated subsidence. This figure was created using ArcGIS 10.6.1 software.

Results

Results obtained with the proposed GIS-based ANN model. The land subsidence data set was split into training, test, and verifcation data sets in the ratio of 70%:15%:15%. Table [2](#page-11-1) lists the model parameters. The proposed land subsidence prediction model had four input layers, ten hidden layers, and one output layer. The Levenberg-Marquardt function was used for training, and the model performance was evaluated using the mean squared error (MSE).

In training, the MSE was reduced from $10²$ to 0.47 over 55 iterations. The MSE considerably decreased in the frst fve epochs before gradually declining until epoch 55. Figure [16](#page-12-0) presents the training data for the correlation coefficient (R) . The R values for the training, validation, and testing data sets were 0.880, 0.881, and 0.879, respectively, which indicated that the historical subsidence data and the predictions of the proposed model were strongly correlated. The aforementioned results validate that the proposed GIS-based ANN model can effectively predict land subsidence.

Land subsidence prediction. *Validation.* To facilitate visualization and interpretation, the model outputs were exported using a GIS. The land subsidence was qualitatively analyzed using the natural breaks classification technique. The predicted subsidence values for areas with five risk classes—very high, high, moderate, low, and very low—were compared with the measured WRA subsidence values in these areas. Table [3](#page-12-1) presents the accuracy of the proposed model. The model classified 20.98% (278.25 km²) of the area of Yunlin County as

Table 2. Model parameters. Data division: random; training function: Levenberg–Marquardt function; performance function: MSE.

Figure 16. Correlation coefficients in training.

Table 3. Land subsidence prediction accuracy.

having high (16.7%) or very high (4.28%) risk of land subsidence. This area should be prioritized for land subsidence management.

Figure [17](#page-13-0) presents a comparison of the predicted and ground-truth (WRA) accumulated land subsidence for all strata in Yunlin County. Overall, the model predictions agree well with the WRA survey results.

The developed model was established for data from irrigation wells with a depth of at most 60 m. In conjunction with the WRA leveling survey data, the accumulated subsidence greater than 60 m can be directly obtained by subtracting the ground-level leveling survey data from the 0–60 m MLCW data. Accordingly, by superpositioning the predicted 0–60-m accumulated subsidence of the proposed model with the leveling survey data, the settlement of all strata can be obtained (Fig. [17](#page-13-0)).

Figure 17. Land subsidence in Yunlin County. This figure was created using ArcGIS 10.6.1 software.

Analysis of various electricity consumption scenarios. Practically, the pumping discharge cannot be measured for each of the over 100,000 wells in the survey area. However, electricity consumption is proportional to pumping discharge; thus, electricity consumption can be used as a proxy measurement for groundwater pumping discharge. Five scenarios of reducing electricity usage were considered: reducing electricity usage to 90%, 80%, 70%, 60%, and 50% of its original value. Tese scenarios are denoted Cases 1–5, respectively.

Figure [18](#page-14-0) presents the prediction results for the fve scenarios. According to the WRA, areas with an average annual subsidence rate of greater than 4 cm critically require subsidence management. Accordingly, the total subsidence area with an average annual subsidence rate of greater than 4 cm (critical subsidence area) was evaluated for each scenario (Table [4\)](#page-15-11).

For Case 1 (90% electricity consumption), the critical subsidence area was 50.50 km² (Fig. [18](#page-14-0)a), which represents a reduction of approximately $6.25 \text{ km}^2 (11.01\%$ of the total area) compared with the 100% case. For Cases 2–5, the critical subsidence areas were $43.00, 35.25, 30.00,$ and 24.75 km^2 (Fig. [18b](#page-14-0)–e), respectively. Table [4](#page-15-11) reveals that the reduction of the critical subsidence areas for these cases was 7.50, 7.75, 5.25, and 5.25 km², respectively, compared with that for the next-highest energy usage level.

Figure [19](#page-15-12) reveals that the electricity usage reduction and the size of the critical area have an inversely proportional, approximately linear relationship. A decrease of approximately 10% in electricity consumption causes a decrease of 10% in critical subsidence area. Of the fve scenarios considered in this study, reducing electricity consumption from 80 to 70% of the original consumption exhibited the best efficiency for decreasing the critical subsidence, with the decrease in the critical subsidence being 13.66% (Table [4\)](#page-15-11).

The predictions of the proposed GIS-based ANN model are based on the assumption that a corresponding decrease occurs in the groundwater usage for irrigation. Moreover, an accumulated subsidence of greater than 60 m is not considered in the proposed model.

Discussion

A GIS-based ANN model for predicting land subsidence in Yunlin County was developed in this study. The correlation coefficients for the training, validation, and testing data sets were 0.880, 0.881, and 0.879, respectively. Tus, the historical subsidence data and the model predictions were strongly correlated, which indicated that the proposed model efectively predicted land subsidence in the study area.

Moreover, the model was used to evaluate the efect of reducing electricity consumption to 90–50% of the current value on land subsidence in Yunlin County. The area with an average annual subsidence rate of greater than 4 cm was reduced by 7.50, 7.75, 5.25, and 5.25 $km²$ for the 80%, 70%, 60% and 50% scenarios, respectively. A reduction in the electricity consumption from 80 to 70% resulted in the maximum proportional reduction in the critical subsidence area (13.66%); thus, this scenario has the highest efficiency decreasing the critical subsidence. The findings of this research can be practically applied to develop sustainable management strategies for areas with severe subsidence.

Conclusions

In this study, an ANN-based land subsidence prediction model was developed for Yunlin County, Taiwan. Tis pioneering study accurately predicted land subsidence in Yunlin County, Taiwan, and the conclusions of this study are as follows:

(1) Maps of fne-grained soil percentage, average maximum drainage path length, agricultural land use percentage, electricity consumption of wells, and accumulated land subsidence depth were established for 5607 cells in Yunlin County through GIS spatial analysis. Te proposed GIS-based ANN model, which

(c) Case 3 (d) Case 4

Figure 18. Land subsidence for each scenario. This figure was created using ArcGIS 10.6.1 software.

included a BPNN, was then developed to predict the accumulated land subsidence depth. The predictions of the proposed model were compared with WRA leveling survey data to validate its accuracy.

- (2) The effect of reducing electricity consumption on land subsidence in Yunlin County was investigated, and reduction in electricity consumption has an approximately linear relationship with reduction in total area with severe land subsidence $(>4$ cm per year).
- (3) A decrease of approximately 10% in the total electricity consumption caused a reduction of approximately 10% in the area with severe land subsidence. In particular, reducing the electricity consumption from 80

Table 4. Reduction of the critical subsidence area.

Figure 19. Relationship between reduction in electricity consumption and critical subsidence area.

to 70% of the current value was the most efficient strategy, under which the severe land subsidence area decreased by 13.66%.

Data availability

The datasets of this study are available from the corresponding author on reasonable request.

Received: 25 November 2022; Accepted: 10 March 2023 Published online: 11 March 2023

References

- 1. Schulte, D. M., Dridge, K. M. & Hudgins, M. H. Climate change and the evolution and fate of the Tangier Islands of Chesapeake Bay, USA. *Sci. Rep.* **5**(1), 1–7 (2015).
- 2. Kaczan, D. J. & Orgill-Meyer, J. Te impact of climate change on migration: A synthesis of recent empirical insights. *Clim. Change* **158**(3), 281-300 (2020).
- 3. Pang, S. C., Yeh, T. K., Hong, J. S. & Chen, C. H. Variability and climatology of precipitable water vapor from 12-year GPS observations in Taiwan. *Adv. Space Res.* **67**(8), 2333–2346 (2021).
- 4. Hwang, C. *et al.* Time-varying land subsidence detected by radar altimetry: California, Taiwan and north China. *Sci. Rep.* **6**(1), 1–12 (2016).
- 5. Chu, H. J., Lin, C. W., Burbey, T. J. & Ali, M. Z. Spatiotemporal analysis of extracted groundwater volumes estimated from electricity consumption. *Groundwater* **58**(6), 962–972 (2020).
- 6. Hung, W. C. *et al.* Measuring and interpreting multilayer aquifer-system compactions for a sustainable groundwater-system development. *Water Resour. Res.* **57**(4), e2020WR028194 (2021).
- 7. Chu, H. J., Ali, M. Z. & Burbey, T. J. Development of spatially varying groundwater-drawdown functions for land subsidence estimation. *J. Hydrol.* **35**, 100808 (2021).
- 8. Lu, C. Y., Hu, J. C., Chan, Y. C., Su, Y. F. & Chang, C. H. The relationship between surface displacement and groundwater level change and its hydrogeological implications in an alluvial fan: Case study of the Choshui River, Taiwan. *Remote Sens.* **12**(20), 3315 (2020).
- 9. Li, A., Tsai, F. T. C., Yuill, B. T. & Wu, C. A three-dimensional stratigraphic model of the Mississippi River Delta, USA: Implications for river deltaic hydrogeology. *Hydrogeol. J.* **28**(7), 2341–2358 (2020).
- 10. Chen, Y. A. *et al.* Space-time evolutions of land subsidence in the Choushui river alluvial fan (Taiwan) from multiple-sensor observations. *Remote Sens.* **13**, 2281 (2021).
- 11. Lizárraga, J. J. & Buscarnera, G. A geospatial model for the analysis of time-dependent land subsidence induced by reservoir depletion. *Int. J. Rock Mech. Min. Sci.* **129**, 104272 (2020).
- 12. Pham, H. V. & Tsai, F. T. C. Modeling complex aquifer systems: A case study in Baton Rouge, Louisiana (USA). *Hydrogeol. J.* **25**(3), 601–615 (2017).
- 13. Foroughnia, F., Nemati, S., Maghsoudi, Y. & Perissin, D. An iterative PS-InSAR method for the analysis of large spatio-temporal baseline data stacks for land subsidence estimation. *Int. J. Appl. Earth Obs. Geoinf.* **74**, 248–258 (2019).
- 14. Ghorbanzadeh, O., Blaschke, T., Aryal, J. & Gholaminia, K. A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping. *J. Spat. Sci.* **65**(3), 401–418 (2020).
- 15. Tosi, L., Teatini, P. & Strozzi, T. Natural versus anthropogenic subsidence of Venice. *Sci. Rep.* **3**(1), 1–9 (2013).
- 16. Tsangaratos, P., Ilia, I. & Loupasakis, C. Land subsidence modelling using data mining techniques. The case study of Western Tessaly, Greece. In *Natural Hazards GIS-Based Spatial Modeling Using Data Mining Techniques* (eds Pourghasemi, H. R. & Rossi, M.) 79–103 (Springer, Cham, 2019).
- 17. Vasilyeva, M., Tyrylgin, A., Brown, D. L. & Mondal, A. Preconditioning Markov chain Monte Carlo method for geomechanical subsidence using multiscale method and machine learning technique. *J. Comput. Appl. Math.* **392**, 113420 (2021).
- 18. de Wit, K. *et al.* Identifying causes of urban diferential subsidence in the Vietnamese Mekong Delta by combining InSAR and feld observations. *Remote Sens.* **13**, 189 (2021).
- 19. Pradhan, B., Abokharima, M. H., Jebur, M. N. & Tehrany, M. S. Land subsidence susceptibility mapping at Kinta Valley (Malaysia) using the evidential belief function model in GIS. *Nat. Hazards* **73**(2), 1019–1042 (2014).
- 20. Ghorbanzadeh, O., Feizizadeh, B. & Blaschke, T. An interval matrix method used to optimize the decision matrix in AHP technique for land subsidence susceptibility mapping. *Environ. Earth Sci.* **77**(16), 1–19 (2018).
- 21. Aimaiti, Y., Yamazaki, F. & Liu, W. Multi-sensor InSAR analysis of progressive land subsidence over the Coastal City of Urayasu, Japan. *Remote Sens.* **10**(8), 1304 (2018).
- 22. Na, T., Kawamura, Y., Kang, S. S. & Utsuki, S. Hazard mapping of ground subsidence in east area of Sapporo using frequency ratio model and GIS. *Geomat. Nat. Hazards Risk* **12**(1), 347–362 (2021).
- 23. Najaf, Z., Pourghasemi, H. R., Ghanbarian, G. & Fallah Shamsi, S. R. Land-subsidence susceptibility zonation using remote sensing, GIS, and probability models in a Google Earth Engine platform. *Environ. Earth Sci.* **79**(21), 1–16 (2020).
- 24. Bagheri, M., Dehghani, M., Esmaeily, A. & Akbari, V. Assessment of land subsidence using interferometric synthetic aperture radar time series analysis and artifcial neural network in a geospatial information system: case study of Rafsanjan Plain. *J. Appl. Remote Sens.* **13**(4), 044530 (2019).
- 25. Ayyad, M., Hajj, M. R. & Marsooli, R. Machine learning-based assessment of storm surge in the New York metropolitan area. *Sci. Rep.* **12**(1), 1–12 (2022).
- 26. Kumar, S., Kumar, D., Donta, P. K. & Amgoth, T. Land subsidence prediction using recurrent neural networks. *Stoch. Environ. Res. Risk Assess.* **36**(2), 373–388 (2022).

Author contributions

C.-Y.K. designed the study and revised the manuscript. C.-Y.L. collected the data, performed the analysis and wrote the manuscript. All authors reviewed the manuscript.

Funding

The funding was provided by National Science and Technology Council (Taiwan) (Grant No. MOST 111-MOEA-M-008-001).

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to C.-Y.L.

Reprints and permissions information is available at [www.nature.com/reprints.](www.nature.com/reprints)

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International $\overline{\odot}$ \mathbb{C} License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit<http://creativecommons.org/licenses/by/4.0/>.

 $© The Author(s) 2023$