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Modeling of land subsidence using 
GIS‑based artificial neural network 
in Yunlin County, Taiwan
Cheng‑Yu Ku 1 & Chih‑Yu Liu 2*

In this study, the land subsidence in Yunlin County, Taiwan, was modeled using an artificial neural 
network (ANN). Maps of the fine‑grained soil percentage, average maximum drainage path length, 
agricultural land use percentage, electricity consumption of wells, and accumulated land subsidence 
depth were produced through geographic information system spatial analysis for 5607 cells in the 
study area. An ANN model based on a backpropagation neural network was developed to predict 
the accumulated land subsidence depth. A comparison of the model predictions with ground‑truth 
leveling survey data indicated that the developed model had high accuracy. Moreover, the developed 
model was used to investigate the relationship of electricity consumption reduction with reductions 
in the total area of land with severe subsidence (> 4 cm per year); the relationship was approximately 
linear. In particular, the optimal results were obtained when decreasing the electricity consumption 
from 80 to 70% of the current value, with the area of severe land subsidence decreasing by 13.66%.

Land subsidence due to the overexploitation of water resources has been reported in numerous  countries1. 
Moreover, anomalous recent global temperatures have affected environmental conditions and led to negative 
consequences, including the loss of water resource equilibrium and more frequent drought and  flooding2,3. 
In the 1970s, researchers observed subsidence in the southern coastal areas of the Choshui delta on the west 
coast of central  Taiwan4,5. The severity of this land subsidence increased, which resulted in damage to public 
infrastructure and numerous other problems. Therefore, mitigating land subsidence to prevent coastal hazards 
is critical to ensure that natural environmental resources can be developed  sustainably6,7. The characteristics of 
the subsidence of Choshui delta are strongly affected by changes in the groundwater of inland and coastal areas. 
Over the past 10 years, subsidence has slowed in the coastal areas but has continued in inland  areas8. Currently, 
of all areas of this delta, the central area exhibits the highest subsidence rate.

Various numerical, statistical, and artificial intelligence methods have been proposed for determining land 
subsidence  risk9,10. Numerical approaches, such as the two-dimensional seepage method, quasi-three-dimen-
sional seepage method, and three-dimensional fully-coupled method, are simple to implement and interpret. 
However, these methods may require long calculation times, and their input parameters might be difficult to 
 determine11,12. Statistical approaches, such as time-series analysis, regression analysis, or Grey theory, are simi-
larly easy to implement; however, they might have relatively low numerical  accuracy13–15. Currently, artificial 
intelligence approaches, such as support vector machine (SVM) and artificial neural network (ANN), are fre-
quently applied for land subsidence risk assessments. Although SVM can be effectively implemented in practice 
and requires few computational resources, it might not be applicable for large-scale engineering  problems16–18. 
Increasingly scientifically accurate models are being developed in parallel with the growing understanding that 
these machine-learning approaches may be useful techniques for risk assessment. ANNs for land subsidence risk 
have been developed on the basis of remote sensing, geographic information system (GIS), and interferometric 
synthetic aperture radar  data19–22. The computational process of an ANN algorithm is substantially more com-
plicated than that of other methods. Moreover, an ANN algorithm requires setting numerous input parameters. 
Although it has a long computational time, its superior practical applicability offsets this  cost23–26.

In this study, the land subsidence in Yunlin County, Taiwan, was modeled using an ANN. Two classes of 
variables affecting land subsidence were considered: those innate to the geology of the area and those related to 
human activity, which are denoted as “innate” and “human” variables, respectively. The human variables were 
groundwater withdrawal and agricultural land use, and the innate variables were percentage of fine-grained soil 
and average maximum drainage path length. The proposed GIS-based ANN model was employed to predict the 
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land subsidence, and historical land subsidence data were used to evaluate the model predictions of land subsid-
ence and establish the validity of the proposed model. The study methodology is described in the following text.

Materials and methods
Study area. Yunlin County is located in the south-central area of the Choshui delta in central Taiwan 
(Fig. 1). Yunlin County is flat; 10% of its area is hilly and 90% is covered by plains. This county is a key area 
for industry, agriculture, and aquaculture in central Taiwan. However, long-term overpumping has resulted in 
geohazards due to subsidence. According to the Water Resources Agency (WRA) of the Ministry of Economic 
Affairs of Taiwan, Yunlin County has a maximum annual subsidence rate of 5.5 cm—the highest in Taiwan in 
2022. The areas with the greatest subsidence are in Tuku and Yuanchang Townships in the central Choshui delta.

Geospatial data preparation. The selected variables are listed in Table 1 (i.e., percentage of agricultural 
land use, electricity consumption of wells, percentage of fine-grained soil, average length of the maximum drain-
age path, and accumulated subsidence depth). Land use data with a resolution of 1 m were acquired from the 
National Land Surveying and Mapping Center (NLSC). Electricity consumption data with a resolution of 10 m 
were obtained from the Taiwan’s WRA. Borehole data were obtained from Taiwan’s Central Geological Survey 
(CGS) and WRA. The accumulated subsidence depth was calculated on the basis of data from WRA leveling sur-
veys and multilayer compaction monitoring wells (MLCWs). Maps depicting these data were established using 

Figure 1.  Topography of Yunlin County. This figure was created using ArcGIS 10.6.1 software.

Table 1.  Source data.

No Factors Source data Resolution (m)

1 Percentage of agricultural land use
Land use data
Source: National Land Surveying and Mapping Center, Ministry of 
the Interior

1

2 Electricity consumption of wells Electricity consumption per well for 91,607 wells
Source: Water Resources Agency, Taiwan 250

3 Percentage of fine-grained soil 75 borehole logging data
Source: Central Geological Survey and Water Resources Agency, 
Taiwan

250

4 Length of average maximum drainage path 250

5 Accumulated subsidence depth Levelling surveys and 24 multilayer compaction monitoring wells
Source: Water Resources Agency, Taiwan 250
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GIS spatial analysis to export geospatial layers (Fig. 2). The relationship between the innate and human factors 
causing land subsidence was evaluated using the ANN output.

Percentage of agricultural land use. The land use in Yunlin County is displayed in Fig. 2. Nine land use types 
were identified: agriculture, forestry, transportation, hydrological, construction, public, recreational, mining, 
and other. Most land in Yunlin County is agricultural land, and irrigation is widespread.

The percentage of agricultural land within 250 m of each MLCW was calculated using the ArcGIS buffer 
analysis tool to create a buffer polygon at a specified distance around input features to perform spatial analysis; 
the land areas were then calculated. The percentage of agricultural land use is defined as follows:

where Lf  denotes the percentage of agricultural land use, Fa denotes the area of agricultural land in the considered 
land area, and Ta denotes total considered land area.

Electricity consumption of wells. Land subsidence is induced by the overexploitation of groundwater resources; 
thus, investigating groundwater usage is critical. Data for the groundwater usage related to well discharge are 
not available; however, electricity consumption by wells can be used as proxy indicator for groundwater usage. 
Figure 3 presents the distribution of managed wells in Yunlin County. Over 100,000 wells are located in the study 
area, and of these wells, 91,607 are irrigation wells, which were selected in this study. Most irrigation wells have 
a maximum depth of 60 m; thus, 84,349 irrigation wells with a depth of < 60 m were selected as a representative 
sample.

Land subsidence data were collected from 24 WRA MLCWs in Yunlin County with an average depth of 
288.5 m. The land subsidence at an MLCW is attributable to all groundwater usage within its buffer radius. An 
appropriate buffer radius was determined by identifying the correlation coefficients between electricity consump-
tion of wells and accumulated subsidence for various buffer radii between 150 and 2000 m and subsidence depths 
of 0–60 m (Fig. 4). The highest correlation coefficient of 0.85 was obtained for the buffer radius of 250 m; thus, 
250 m was selected as the buffer radius for the subsequent analyses.

The electricity consumption data for 2015–2020 for the managed wells with a depth of 0–60 m within the 
buffer radius of each MLCW were collected. For spatially analyzing the electricity consumption of the managed 
wells of the area, the point density tool in ArcGIS was used to calculate the feature density in a neighborhood 
around the features. The electricity consumption of the managed water wells per unit area was calculated as 
follows:

(1)Lf =
Fa

Ta
,

Figure 2.  Land use in Yunlin County. This figure was created using ArcGIS 10.6.1 software.
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where We denotes the electricity consumption of the managed wells per unit area and E denotes the total elec-
tricity consumption of these wells in the considered land area. Figure 5 presents the electricity consumption of 
the managed wells of Yunlin County. This electricity consumption is clearly higher in the central part of Yunlin 
County than in its other parts.

Percentage of fine‑grained soil. According to the unified soil classification system, fine-grained soils are 
whose ≥ 50% of content passes through the No. 200 sieve. Particles that pass through this sieve can typically not 

(2)We =
E

Ta
,

Figure 3.  Distribution of managed wells in Yunlin County. This figure was created using ArcGIS 10.6.1 
software.

Figure 4.  Plot of buffer radius versus correlation coefficient.
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be observed with the naked eye, even with the aid of a magnifying glass. Fine-grained soils contain fine sand, silt, 
and clay. Percentage of fine-grained soil is defined as the ratio of the thickness of fine sand, silt, and clay layers 
in a borehole to the total drilling depth.

Percentage of fine-grained soil is calculated as follows:

where Sf  denotes the percentage of fine-grained soil, Hf  denotes the thickness of fine-grained soil, and Ht denotes 
total drilling depth. In total, 75 borehole logs (24 from the WRA MLCWs and 51 from the CGS) were collected 
and used to calculate the fine-grained soil percentage.

Figure 6 presents the WRA and CGS borehole locations and the corresponding fine-grained soil percent-
ages. The percentage of fine-grained soil in the western coastal zone is clearly higher than that in eastern Yunlin 
County.

Average maximum drainage path length. With consideration of the top and bottom drainage of the soil layer, 
average maximum drainage path length is defined as average drainage path length and is calculated as follows:

where Hdr denotes the length of the average maximum drainage path during compaction and Hif  denotes the 
thickness of fine-grained soil. If the stress of a saturated soil layer increases, the pore water pressure increases 
suddenly, which causes a reduction in the soil mass volume and subsequently results in settlement. The logging 
data from the 75 WRA and CGS boreholes were used to calculate the average maximum drainage path length 
(Fig. 7). The average maximum drainage path length in eastern Yunlin County is larger than that in western 
Yunlin County.

Accumulated subsidence depth. The land subsidence from 2015 to 2020 in Yunlin County was evaluated using 
data from leveling surveys conducted at a depth of 0–60 m. The inverse distance weighting interpolation in GIS 
was applied to estimate subsidence. The results are presented in Fig. 8; the greatest subsidence is observed at 
Yuanchang and Tuku Townships.

(3)Sf =
Hf

Ht
,

(4)Hdr =
1

n

n
∑

i=1

(Hif /2),

Figure 5.  Electricity consumption of wells per unit square meter in Yunlin County. This figure was created 
using ArcGIS 10.6.1 software.
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Figure 6.  Percentage of fine-grained soil in Yunlin County. This figure was created using ArcGIS 10.6.1 
software.

Figure 7.  Average maximum drainage path length in Yunlin County. This figure was created using ArcGIS 
10.6.1 software.
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Artificial neural network. Figure 9 displays a flowchart of the structure of the proposed ANN for mod-
eling land subsidence in Yunlin County. The human variables were groundwater withdrawal and agricultural 
land use, and the innate variables were fine-grained soil percentage and average maximum drainage path length. 
A backpropagation neural network (BPNN) was used to evaluate land subsidence risk. The performance of the 
proposed GIS-based ANN prediction model was evaluated on the basis of the correlation coefficient (Fig. 9).

The functions of the training phase and the progress results are expressed as follows:

where Xj and Yk denote the results obtained before adopting the activation function; Woj and Wok denote the bias 
weights for determining the threshold values; F denotes an activation function ranging from 0 to 1; and xi , yi , 
and Zk denote the input, hidden, and output layers, respectively.

The hyperbolic tangent sigmoid function was selected as the activation function. The hidden and output 
layers are expressed as follows:

Moreover, the error function is defined as follows:

(5)yi = F(Xj) =

[

Woj +

I
∑

i=1

(

Wijxi
)

]

,

(6)Zk = F(Yk) =



Wok +

J
�

j=1

�

Wkjyi
�



,

(7)yi = F(Xj) = F

(

1

1+ e−Xj

)

,

(8)Zk = F(Yk) = F

(

1

1+ e−Yk

)

,

(9)E =
1

2

K
∑

k=1

(

ε2k
)

=
1

2

K
∑

k=1

(tk − zk)
2
,

Figure 8.  Accumulated subsidence from 2015 to 2020 at 0–60 m. This figure was created using ArcGIS 10.6.1 
software.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4090  | https://doi.org/10.1038/s41598-023-31390-5

www.nature.com/scientificreports/

where E denotes the error, tk denotes the target value, and εk denotes the error of each output node. Equation (9) 
was applied for error backpropagation weight training. The weighting between the hidden and output layers is 
expressed as follows:

where η denotes the learning rate. Equation (10) can be rewritten as follows:

where n denotes the iteration number. Derived from the derivative with respect to wij , Eq. (9) is

The new weighting between the input and hidden layers is then given as follows:

(10)�wjk = η × yi × δk ,

(11)wjk(n+ 1) = wjk(n)+�wjk(n),

(12)
∂E

∂wij
=

K
∑

k=1

∂E

∂zk

∂z

∂Yk

∂k

∂yi
×

∂yi

∂Xj
×

∂Xj

∂wij
= −�jxi ,

(13)�j = F ′(Xj)

K
∑

k=1

(

δkwjk

)

.

(14)�wij = η × xi ×�j ,

(15)wij(n+ 1) = wij(1)+�wij(n).

Figure 9.  Flowchart of the proposed model.
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The correlation coefficient was used as the performance metric for the proposed GIS-based ANN predictive 
model. This coefficient is defined as follows:

where R denotes the correlation coefficient, ti denotes the target value, oi denotes the output value, t denotes the 
average target value, and o denotes the average output value. Figure 10 illustrates the structure of the proposed 
model, which includes a BPNN algorithm, with four input variables: percentage of agricultural land use, electric-
ity consumption of wells, percentage of fine-grained soil, and average maximum drainage path length.

The output was the predicted land subsidence in Yunlin County from 2015 to 2020. Thematic maps were 
established for percentage of fine-grained soil, length of average maximum drainage path, percentage of agri-
cultural land use, electricity consumption of wells, and accumulated depth of land subsidence. A cell-based 
model was produced through GIS spatial analysis for 5607 cells in the study area, each of which had a size of 
500 m. The buffer radius around the input features was 250 m; thus, in accordance with the maximum buffer 
zone length or diameter of 500 m.

Figures 11, 12, 13, 14 and 15 present the agricultural land use percentage, electricity consumption of wells per 
square meter, fine-grained soil percentage, average maximum drainage path length, and accumulated subsidence, 
respectively, at 0–60 m from 2015 to 2020 for the cell-based model. Figure 15 reveals that the highest subsidence 
is 10 cm. All the input data were normalized to the range of 0–1, and the initial weights were assigned randomly.

(16)R =

n
∑

i=1

(

ti − t
)

(oi − o)

√

n
∑

i=1

(

ti − t
)2

n
∑

i=1

(oi − o)2

,

Figure 10.  Proposed GIS-based ANN structure. This figure was created using ArcGIS 10.6.1 software.
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Figure 11.  Cells of agricultural land use. This figure was created using ArcGIS 10.6.1 software.

Figure 12.  Cells of electricity consumption of wells per square meter. This figure was created using ArcGIS 
10.6.1 software.
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Figure 13.  Cells of fine-grained soil. This figure was created using ArcGIS 10.6.1 software.

Figure 14.  Cells of average maximum drainage path length. This figure was created using ArcGIS 10.6.1 
software.
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Results
Results obtained with the proposed GIS‑based ANN model. The land subsidence data set was split 
into training, test, and verification data sets in the ratio of 70%:15%:15%. Table 2 lists the model parameters. 
The proposed land subsidence prediction model had four input layers, ten hidden layers, and one output layer. 
The Levenberg–Marquardt function was used for training, and the model performance was evaluated using the 
mean squared error (MSE).

In training, the MSE was reduced from  102 to 0.47 over 55 iterations. The MSE considerably decreased in the 
first five epochs before gradually declining until epoch 55. Figure 16 presents the training data for the correla-
tion coefficient (R). The R values for the training, validation, and testing data sets were 0.880, 0.881, and 0.879, 
respectively, which indicated that the historical subsidence data and the predictions of the proposed model were 
strongly correlated. The aforementioned results validate that the proposed GIS-based ANN model can effectively 
predict land subsidence.

Land subsidence prediction. Validation. To facilitate visualization and interpretation, the model out-
puts were exported using a GIS. The land subsidence was qualitatively analyzed using the natural breaks clas-
sification technique. The predicted subsidence values for areas with five risk classes—very high, high, moderate, 
low, and very low—were compared with the measured WRA subsidence values in these areas. Table 3 presents 
the accuracy of the proposed model. The model classified 20.98% (278.25  km2) of the area of Yunlin County as 

Figure 15.  Cells of accumulated subsidence. This figure was created using ArcGIS 10.6.1 software.

Table 2.  Model parameters. Data division: random; training function: Levenberg–Marquardt function; 
performance function: MSE.

Initial value Stopping criteria Target value

Epoch 0 55 1000

Elapsed time – 2 s –

Performance 186 0.441 0

Gradient 312 0.721 10−7

mu 0.001 10−5 1010

Validation checks 0 6 6
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having high (16.7%) or very high (4.28%) risk of land subsidence. This area should be prioritized for land subsid-
ence management.

Figure 17 presents a comparison of the predicted and ground-truth (WRA) accumulated land subsidence for 
all strata in Yunlin County. Overall, the model predictions agree well with the WRA survey results.

The developed model was established for data from irrigation wells with a depth of at most 60 m. In conjunc-
tion with the WRA leveling survey data, the accumulated subsidence greater than 60 m can be directly obtained 
by subtracting the ground-level leveling survey data from the 0–60 m MLCW data. Accordingly, by superposi-
tioning the predicted 0–60-m accumulated subsidence of the proposed model with the leveling survey data, the 
settlement of all strata can be obtained (Fig. 17).

Figure 16.  Correlation coefficients in training.

Table 3.  Land subsidence prediction accuracy.

Classification
Accumulated 
subsidence depth (cm)

Ths study WRA (2021)

Relative
error (%)Subsidence area  (km2)

Percentage
(%) Subsidence area  (km2)

Percentage
(%)

Very low < 6 468.75 35.35 474.61 35.78 − 0.43%

Low 6 ~ 12 359.00 27.07 360.77 27.20 − 0.12%

Moderate 12 ~ 18 220.00 16.59 209.42 15.79 0.80%

High 18 ~ 24 221.50 16.70 213.69 16.11 0.59%

Very high > 24 56.75 4.28 67.92 5.12 − 0.84%
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Analysis of various electricity consumption scenarios. Practically, the pumping discharge cannot be measured 
for each of the over 100,000 wells in the survey area. However, electricity consumption is proportional to pump-
ing discharge; thus, electricity consumption can be used as a proxy measurement for groundwater pumping 
discharge. Five scenarios of reducing electricity usage were considered: reducing electricity usage to 90%, 80%, 
70%, 60%, and 50% of its original value. These scenarios are denoted Cases 1–5, respectively.

Figure 18 presents the prediction results for the five scenarios. According to the WRA, areas with an average 
annual subsidence rate of greater than 4 cm critically require subsidence management. Accordingly, the total 
subsidence area with an average annual subsidence rate of greater than 4 cm (critical subsidence area) was evalu-
ated for each scenario (Table 4).

For Case 1 (90% electricity consumption), the critical subsidence area was 50.50  km2 (Fig. 18a), which repre-
sents a reduction of approximately 6.25  km2 (11.01% of the total area) compared with the 100% case. For Cases 
2–5, the critical subsidence areas were 43.00, 35.25, 30.00, and 24.75  km2 (Fig. 18b–e), respectively. Table 4 reveals 
that the reduction of the critical subsidence areas for these cases was 7.50, 7.75, 5.25, and 5.25  km2, respectively, 
compared with that for the next-highest energy usage level.

Figure 19 reveals that the electricity usage reduction and the size of the critical area have an inversely pro-
portional, approximately linear relationship. A decrease of approximately 10% in electricity consumption causes 
a decrease of 10% in critical subsidence area. Of the five scenarios considered in this study, reducing electricity 
consumption from 80 to 70% of the original consumption exhibited the best efficiency for decreasing the critical 
subsidence, with the decrease in the critical subsidence being 13.66% (Table 4).

The predictions of the proposed GIS-based ANN model are based on the assumption that a corresponding 
decrease occurs in the groundwater usage for irrigation. Moreover, an accumulated subsidence of greater than 
60 m is not considered in the proposed model.

Discussion
A GIS-based ANN model for predicting land subsidence in Yunlin County was developed in this study. The cor-
relation coefficients for the training, validation, and testing data sets were 0.880, 0.881, and 0.879, respectively. 
Thus, the historical subsidence data and the model predictions were strongly correlated, which indicated that 
the proposed model effectively predicted land subsidence in the study area.

Moreover, the model was used to evaluate the effect of reducing electricity consumption to 90–50% of the 
current value on land subsidence in Yunlin County. The area with an average annual subsidence rate of greater 
than 4 cm was reduced by 7.50, 7.75, 5.25, and 5.25  km2 for the 80%, 70%, 60% and 50% scenarios, respectively. 
A reduction in the electricity consumption from 80 to 70% resulted in the maximum proportional reduction in 
the critical subsidence area (13.66%); thus, this scenario has the highest efficiency decreasing the critical subsid-
ence. The findings of this research can be practically applied to develop sustainable management strategies for 
areas with severe subsidence.

Conclusions
In this study, an ANN-based land subsidence prediction model was developed for Yunlin County, Taiwan. This 
pioneering study accurately predicted land subsidence in Yunlin County, Taiwan, and the conclusions of this 
study are as follows:

(1) Maps of fine-grained soil percentage, average maximum drainage path length, agricultural land use per-
centage, electricity consumption of wells, and accumulated land subsidence depth were established for 
5607 cells in Yunlin County through GIS spatial analysis. The proposed GIS-based ANN model, which 

)1202(ARW)b(ledoM)a(

Figure 17.  Land subsidence in Yunlin County. This figure was created using ArcGIS 10.6.1 software.
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included a BPNN, was then developed to predict the accumulated land subsidence depth. The predictions 
of the proposed model were compared with WRA leveling survey data to validate its accuracy.

(2) The effect of reducing electricity consumption on land subsidence in Yunlin County was investigated, and 
reduction in electricity consumption has an approximately linear relationship with reduction in total area 
with severe land subsidence (> 4 cm per year).

(3) A decrease of approximately 10% in the total electricity consumption caused a reduction of approximately 
10% in the area with severe land subsidence. In particular, reducing the electricity consumption from 80 

2esaC)b(1esaC)a(

4esaC)d(3esaC)c(

(e) Case 5 

Figure 18.  Land subsidence for each scenario. This figure was created using ArcGIS 10.6.1 software.
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to 70% of the current value was the most efficient strategy, under which the severe land subsidence area 
decreased by 13.66%.

Data availability
The datasets of this study are available from the corresponding author on reasonable request.
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