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Oil viscosity plays a prominent role in all areas of petroleum engineering, such as simulating 
reservoirs, predicting production rate, evaluating oil well performance, and even planning for 
thermal enhanced oil recovery (EOR) that involves fluid flow calculations. Experimental methods of 
determining oil viscosity, such as the rotational viscometer, are more accurate than other methods. 
The compositional method can also properly estimate oil viscosity. However, the composition of oil 
should be determined experimentally, which is costly and time-consuming. Therefore, the occasional 
inaccessibility of experimental data may make it inevitable to look for convenient methods for fast 
and accurate prediction of oil viscosity. Hence, in this study, the error in viscosity prediction has 
been minimized by taking into account the amount of dissolved gas in oil (solution gas–oil ratio: 
Rs) as a representative of oil composition along with other conventional black oil features including 
temperature, pressure, and API gravity by employing recently developed machine learning methods 
based on the gradient boosting decision tree (GBDT): extreme gradient boosting (XGBoost), CatBoost, 
and GradientBoosting. Moreover, the advantage of the proposed method lies in its independence 
to input viscosity data in each pressure region/stage. The results were then compared with well-
known correlations and machine-learning methods employing the black oil approach applying least 
square support vector machine (LSSVM) and compositional approach implementing decision trees 
(DTs). XGBoost is offered as the best method with its greater precision and lower error. It provides 
an overall average absolute relative deviation (AARD) of 1.968% which has reduced the error of the 
compositional method by half and the black oil method (saturated region) by five times. This shows 
the proper viscosity prediction and corroborates the applied method’s performance.
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AARD	� Average absolute relative deviation, %
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ANN	� Artificial neural network
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N	� Number of data points
NaN	� Not a Number
Oiexp	� Experimental/actual output
Oipred	� Predicted/estimated output
O	� Mean of outputs
P	� Pressure, psia
PVT	� Pressure–volume–temprature
R2	� Coefficient of determination
RET	� Regression ensembles tree
RF	� Random forest
RMSE	� Root mean square error, unit of the original value
SMLR	� Supervised machine learning regression
Std	� Standard deviation, unit of the original value
vis	� Viscosity, cp/pa.s
x	� Features of interest
XGBoost	� EXtreme gradient boosting
y	� Target data

As a measure of fluid resistance to flow, viscosity is found in any equation dealing with fluid flow, including equa-
tions of flow in porous media1–3. The oil viscosity is an essential parameter employed in reservoir performance 
evaluation and simulation, surface facility design, and identification of the optimal production scenario in a 
reservoir4–8. It is also crucial in tertiary recovery techniques, e.g., thermal enhanced oil recovery (EOR), affect-
ing the oil viscosity directly9,10. Therefore, it is essential to accurately calculate the viscosity of crude oil using 
advanced and accurate techniques in petroleum engineering.

The viscosity of crude oil is often measured experimentally. Oil samples can be produced under subsurface/
underground (reservoir) conditions or collected at surface conditions. In the latter, they are produced through 
the recombination of the gas and fluid from the separators. Experimental techniques are expensive and, in most 
cases, time-consuming. Hence, it is necessary to perceive numerical methods in order to accurately predict the 
viscosity of crude oil at different pressures and temperatures, particularly when pressure–volume–temperature 
(PVT) experimental data are unavailable.

Based on input parameters, there are two types of equations for estimating oil viscosity7. The first, known as 
the black oil method, uses conventional oil field data such as temperature, reservoir pressure, saturation pressure, 
solution gas-oil ratio (Rs), and API gravity. However, for proper calculation in the compositional material balance, 
the reservoir oil and gas viscosity should be accurately estimated based on their components11. Therefore, the 
second type has been developed based on the effect of oil composition (the type and fraction of components). 
The input parameters of the compositional method include oil composition, critical temperature, molecular 
mass, acentric factor, normal boiling point, and pour point7,12–14. It is worth noting that the supplementary 
file-comparison with the preexisting models provides well-known equations for black oil and compositional 
material balance models.

At the same time, the pressure reduction in the sub-bubble-point region along with solution gas reduction 
in oil adds to the weight and viscosity of the oil. In other words, the oil composition below the bubble pressure 
changes upon a decreased pressure, altering the oil viscosity. Therefore, there is a need to apply another pressure-
based type division to current methods (computational approaches and correlations) as a classifier to categorize 
oil viscosity into three regions: (1) dead oil, (2) saturated oil, and (3) undersaturated oil. The first step in applying 
these equations is calculating the dead oil viscosity. Hence, an accurate calculation of dead oil viscosity must be 
conducted prior to the next steps (i.e., viscosity at the bubble point and viscosity at the reservoir pressure and 
temperature)1,15.

Despite the simple use of empirical equations to predict viscosity, each is developed based on a particular 
dataset (input parameters) and regions. So, deployment of them would be inaccurate for other datasets and 
regions. In other words, a given empirical equation cannot be generalized. Hemmati-Sarapardeh et al.16 listed 
common empirical equations for oil viscosity prediction with the datasets and regions used in their development.

Accordingly, soft computing techniques (artificial intelligence (AI) and machine learning (ML)) are devel-
oped based on optimization algorithms as efficient methods in order to predict viscosity16–25 accurately. These 
techniques have mainly been developed based on the black oil model.

Using an artificial neural network (ANN) code in MATLAB, Lashkenari et al.17 provided a model aiming 
to estimate the viscosity of Iranian (reservoir) oil samples. Input parameters including temperature, pressure, 
solution gas-oil ratio (Rs), and API gravity, at three different regions relative to the bubble-point pressure were 
applied in the prediction procedure of the viscosity. It was concluded through considering previous studies that, 
the ANN model has higher precision as well as better efficiency.

In another attempt for the same regions and the same input parameters, Hemmati-Sarapardeh et al.19 applied 
the least squares support vector machine (LSSVM) method. In their study, API gravity, temperature, pressure, 
and most importantly viscosity (experimental) were defined as input parameters. Predictions showed that the 
LSSVM model performed notably better than the well-known correlations with acceptable agreement compared 
to the experimental data.

In another study, through the application of coupled simulated annealing technique in the optimization of 
least square support vector machine modelling, Hemmati-Sarapardeh et al.16 attempted to improve the results 
merely for the saturated region.
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In an attempt of an obtaining efficient polynomial correlation for estimating oil viscosity, Ghorbani et al.18 
applied a hybrid group method of data handling (GMDH) artificial neural network, optimized with genetic 
algorithm (GA). Hence, A large data set of Iranian crude oils employing multiple variables, including API grav-
ity, (saturation) pressure, and reservoir temperature was used. Their results indicated that these models can be 
considered fine estimations.

Using various soft computing techniques purposefully decision tree (DTs) and random forest (RF), Taleb-
keikhah et al.20 developed a compositional model for undersaturated, saturated, and dead oil regions. It is note-
worthy to mention that, in their model, the molecular weight of C12

+ and the molar fractions of C1 − C11 were 
added as input parameters, besides the black oil parameters. They concluded that DTs outperforms the available 
approaches.

In a multiphase reservoir oil system, and through the application of machine learning approaches Shao et al.21 
developed three viscosity prediction models. Input data, including gas-oil and water–oil molar ratios, reservoir 
pressure, and reservoir temperature were used. It was concluded that random forest (RF) model performance 
had considerable accuracy in estimating the viscosity of existing phases in the reservoir. Moreover, sensitivity 
analysis indicated that the gas-oil molar ratio is the determining factor in affecting the viscosity of each phase, 
in a multiphase reservoir.

In an attempt of predicting viscosity, Aladwani and Elsharkawy22 implemented three supervised machine 
learning regression (SMLR) models. The density parameter was their opted additional input parameter in addi-
tion to the common black oil parameters (API, temperature, and pressure). It should be noted that while the 
density parameter is always considered as an input parameter in compositional modelling, the inclusion of the 
density parameter as black oil model input parameter was a contrast in their study. Finally, they concluded that 
the Gaussian process regression (GPR) and the regression ensembles tree (RET) had the best performance.

It is noteworthy to mention the fact that, considering the dead oil viscosity as an input feature in prediction 
of the saturated oil viscosity, numerous studies using machine learning and artificial intelligence approaches 
have already been performed for the precise estimation of this parameter13,26–28.

This study accurately estimates crude oil viscosity under reservoir conditions using ensembled machine 
learning methods through only black oil parameters and without costly oil compositional analysis. In this com-
munication, a large databank of Iranian oil reservoirs, measured using a Rolling Ball viscometer (Ruska, series 
1602) is applied in developing the new models (Refer to supplementary file-materials and methods). This dataset 
covers a wide range of Iranian oil reservoirs’ PVT data, and it can be inferred that; the developed models could 
be reliable for the prediction of other Iranian oil reservoirs’ viscosity. For this purpose, based on 1368 Iranian oil 
reservoir data points, three new models are proposed in an attempt of predicting the under-saturated, saturated, 
and dead oil viscosity regions. Therefore, three rigorous soft computing schemes were implemented, namely 
extreme gradient boosting (XGBoost), CatBoost, and GradientBoosting. Input parameters including pressure, 
temperature, API gravity, and solution gas-oil ratio (Rs) are employed. A quantitative and qualitative analysis of 
the model is carried out aiming to establish the adequacy and accuracy of the model. The performance of new 
models is evaluated in comparison with the earlier ML models under black oil and compositional approaches 
through statistical error analysis. The novelty of the proposed method lies in its independence to input viscos-
ity data. This indicates that neither numerically calculated viscosity data using soft computing techniques nor 
empirical viscosity data (experimental/available data) are used to predict viscosity at higher pressures.

The remainder of the manuscript is organized as follows: “Model” section highlights the basics and algorithms 
of each implemented soft computing technique in the study. “Results and discussion” section, description of the 
methodology, model development, as well as results & discussion are given. Lastly, in “Conclusion” section, the 
main findings are summarized.

Model
In the present study, the ensemble type of machine learning method, an emerging line of research, is employed. 
An ensemble classifier integrates multiple classifiers to increase robustness and represent an improved version of 
classification performance from any of the constituent classifiers. Additionally, this technique, in comparison to 
a single classifier technique, is more resilient to noise29. The following ensemble methods are used in this study: 
GradientBoosting, CatBoost, and XGBoost machines that all these methods are developed using a gradient 
boosting decision tree (GBDT)30,31.

GradientBoosting32.  The boosting technique focuses on iteration and reconsideration of the errors in each 
step to develop a strong learner by integrating multiple weak learners. The data selected to train the model can 
be defined by assuming x = {x1, x2, . . . , xn} as the features of interest and y as the target data. In general, this 
method aims to find the approximate value of F̃(x) for F(x) according to this condition:

where Ly,x
(
y, F(x)

)
 is the cost function and argmin

F(x)
Ly,x

(
y, F(x)

)
 is the value of F(x) for which Ly,x

(
y, F(x)

)
 

achieves its minimum. The cost function improves the parameter prediction accuracy by reaching the smallest 
value. Each of the weak learners tries to improve and reduce the previous weak learner’s error. In the end, the 
desired regression tree function (i.e.,h(xi; a) ) for parameter a representing a weak learner should be obtained. 
Each decision tree is then matched and adapted to its determined slope. Fm(x) is updated in the final step based 
on each iteration done33. For more detailed information please refer to the supplementary 
file-GradientBoosting.

(1)F̃(x) = argmin
F(x)

Ly,x
(
y, F(x)

)
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CatBoost34,35.  CatBoost is a relatively novel GBDT based method. A feature of GBDT is that it operates 
properly on datasets with numerical features. However, some datasets may include string features (e.g., gender 
or country) rather than merely numerical features. Hence, these features might be of great importance and have 
substantial effects on the accuracy of our final prediction, it is impossible to ignore or remove them. Therefore, 
it is customary to convert categorical (string) features into numerical features before a dataset is trained. Unlike 
some other GBDT based methods, an outstanding advantage of the CatBoost model is that it can handle cat-
egorical features in the training process.

As defined earlier, categorical features are non-numerical. So, for using them in our model, we must first 
convert them into numbers and then begin the training process of the model. For more information about these 
conversion methods and Catboost solution for possible problems36 during this proccess, please refer to the sup-
plementary file-CatBoost.

XGBoost37.  The extreme gradient boosting (XGBoost) algorithm, designed and introduced by Chen et al.38, 
is among the modern machine learning methods based on the gradient boosting decision tree. This algorithm 
aims to approximate the estimated value to the real value as much as possible by creating a large number of trees 
(e.g., k) in order to minimize errors and maximize adaptability. This algorithm integrates weak learners to cre-
ate a strong learner. However, weak learners are created through residual fitting in this algorithm39,40. XGBoost 
model extends the cost function of the first-order Taylor and presents the second-order derivative information 
to make the model converge faster when the model is learning. Due to adding a regularization section to the cost 
function, the XGBoost algorithm prevents complexity and reduces the risk of overfitting. For more information 
about the general process of the XGBoost algorithm please refer to the supplementary file-XGBoost.

Figure 1 demonstrates the proposed algorithm structure for a simpler and more tangible understanding41.

Results and discussion
Model development.  The studied databank includes experimental viscosity measurements at various pres-
sures using a rolling-ball viscometer (Ruska, Series 1602). The experimental pressure ranged substantially above 
and below the bubble point of each sample (the supplementary file-materials and methods provides additional 
complementary describing the measurement procedure using the aforementioned tools and methods). Accord-
ingly, 1368 experimental data were collected, fully describing the Iranian crude oil samples. These data were 
employed to develop efficient models for predicting viscosity more accurately. The input features for each sample 
were pressure, temperature, API gravity, and solution gas-oil ratio (Rs).

In this study, five steps are used for data preprocessing which can be given as follows:
a) data duplication, b) noise and outliers, c) missing data, d) encoding, e) rescaling features.

Figure 1.   Schematic of XGBoost algorithm.
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a.	 Using the same data for both training and test might lead to inaccurate prediction in the process, therefore 
data duplication was checked in the first step.

b.	 Checking outliers are the second step of data preprocessing. For this purpose, two joint plots are applied to 
analyze the points that have the potential of being outliers.

	   By analyzing these Fig. 2. it can be concluded that the indicated point in both subfigures can be assumed 
to be an outlier. Therefore, it was decided that this point should be removed from the dataset.

c.	 This dataset consists of no missing data values.
d.	 This dataset includes no string features and all of the features are numerical. Therefore, there is no need for 

using any type of encoding.
e.	 Rescaling or normalization is an important part of preprocessing and plays an important role in model 

accuracy. It should be noted that tree-based models can do it by themselves, therefore there is no need to 
implement the rescaling process separately.

Table 1 summarizes data employed for model development and the range of experimental viscosity. It is 
noteworthy that the experimental databank was randomly divided into two sub-groups: the first group, including 
80% of experimental data, was used for training models, and the second group, including the remaining 20%, 
was used to measure the efficiency and reliability of models relative to the blind cases. The method mentioned 
above for data allocation often produces desirable and reliable results.

In this study, the grid search algorithm is used to optimize the model hyperparameters. This algorithm pro-
posed by GridSearchCV creates candidates from a grid of hyperparameters values that could be specified then. 
The GridSearchCV instance uses the usual estimator/predictor API: when fitting it on a dataset all the combina-
tions of hyperparameter values that can happen are considered and the outputs are the best hyperparameters 
that significantly affect the model’s final evaluation. It should be noted that, the estimator/predictor API provides 
methods to train the model, to judge the model accuracy42.

The result of hyperparameters is presented as control parameters in Table 2 for each modeling technique 
used in this study.

Figure 2.   Data joint plots to check the outliers.

Table 1.   Statistical ranges and parameters related to inputs/outputs employed for developing models.

No Parameters Unit Count Mean Std Min 25% 50% 75% Max

1 Pressure Psi 1368 2675.665 1824.740 14.700 1303.250 2442.000 3933.250 10,072.000

2 Temperature F 1368 218.410 40.202 110.000 190.000 220.000 250.000 290.000

3 Solution GOR(Rs) SCF/STB 1368 641.155 572.991 0.000 334.517 478.831 772.248 4499.164

4 API – 1368 26.913 6.481 13.350 21.520 26.740 31.000 44.520

5 Oil viscosity C.P 1368 2.028 2.049 0.044 0.878 1.657 2.275 18.322
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Performance evaluation.  Statistical and graphical criteria were used to evaluate the efficiency of the pro-
posed algorithms and models. The statistical indices used for this purpose are:

1.	 Average Absolute Relative Deviation (AARD).

2.	 Coefficient of Determination (R2).

3.	 Root Mean Square Error (RMSE).

In Eqs. (2), (3) and (4) Oi represents the output (viscosity) and exp and pred denote the actual and estimated 
viscosity values, respectively. In addition, O is the mean of outputs, and N is the number of data points. In addi-
tion to statistical analysis, graphical evaluations were also carried out to visually show the models’ capability 
and efficiency in accurately predicting viscosity. In this evaluation method, cross-plots are drawn to present and 
analyze the distribution of predictions nearby the straight line X = Y (ideal model). Figure 3 illustrates the cross-
plots describing the results of the aforementioned soft computing techniques for viscosity prediction. This figure 
shows a uniform distribution of predictions around the slope line in XGBoost, CatBoost, and GradientBoosting 
models, demonstrating the efficiency of these models in properly predicting viscosity. Comparing these models 
reveal that the XGBoost model exhibited perfect behavior without any considerable deviation around the X = Y 
line, outperforming the other two models.

Some statistical indices were also reported in Table 3 for further analysis of the models. According to the 
results, the XGBoost model outperformed other models, with an AARD and a coefficient of determination 
of 1.968% and 0.9976, respectively. The same statistical indices were then employed to compare the XGBoost 
model with other models proposed in previous studies. The better performance of the XGBoost model can be 
attributed to the improvement and development of the Gradient Boosting Decision Tree (GBDT) technique in 
three main aspects. First, traditional GBDT uses the first-order Taylor expansion, whereas XGBoost uses the 
second-order Taylor expansion with the first and second orders as improved residuals. Therefore, the XGBoost 
model has a wider range of applications. Second, XGBoost adds a regularization term to the objective function 
to regulate the model’s complexity. This term can reduce variance and the likelihood of training an overfitted 

(2)AARD(%) =
1

N

N∑

i=1

∣∣∣∣
Oiexp − Oipred

Oiexp

∣∣∣∣× 100

(3)R2 = 1−

∑N
i=1

(
Oiexp − Oipred

)2
∑N

i=1

(
Oipred − O

)2

(4)RMSE =

√√√√ 1

N − 1

N∑

i=1

(
Oiexp − Oipred

Oiexp

)2

Table 2.   Control parameters used for the development and application of soft computing techniques.

Parameters Value

GradientBoosting

n-estimators 45

Max depth 7

Learning rate 0.10

Subsample 1

Alpha 0.90

Min samples split 2

XGBoost

n-estimators 99

Max depth 9

Learning rate 0.07

Subsample 0.75

Gamma 0

Col sample by tree 1

CatBoost

Depth 8

Learning rate 0.07

Iterations 700

Best model min trees 1

Bootstrap type MVS

Leaf estimation method Newton
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Figure 3.   Cross plots of the implemented models: (a) XGBoost, (b) CatBoost, and (c) GradientBoosting.

Table 3.   Statistical indices used for describing the performance of proposed models.

Models

Train Test Overall

RMSE R2 AARD (%) RMSE R2 AARD (%) RMSE R2 AARD (%)

GradientBoosting 0.071 0.999 3.266 0.235 0.988 5.929 0.103 0.996 3.798

CatBoost 0.069 0.999 2.246 0.181 0.993 4.380 0.091 0.998 2.672

XGBoost 0.063 0.999 1.394 0.192 0.993 4.264 0.088 0.998 1.968
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model. Finally, XGBoost uses the random forest column sampling method to further reduce the likelihood of 
overfitting. XGBoost has demonstrated a great learning performance and training speed41.

To show the robustness of the model we also provide a tenfold cross-validation that is performed on the 
training dataset. In k-fold cross-validation, the training set is divided into k subsets then a model is trained 
with k − 1 folds and the resulting model is validated on the remaining part of the data. The performance measure 
reported by k-fold cross-validation is then the average of the values computed for each fold. We reached a 95.24% 
R2-score for the average of our tenfold cross-validation. According to the obtained value of the R2-score, it can 
be concluded that the XGBoost model has a fairly high performance not only for the 20% data that we used for 
the test but also for the whole dataset that we used for training.

For better evaluation of the models’ performances, the relative deviation of each model’s predictions compared 
with the actual viscosity for test and train data is depicted in Fig. 4. As shown, the XGBoost model estimated most 
data with an absolute relative deviation of less than 5%, confirming the accuracy and efficiency of this model.

Comparison of the XGBoost model with previously developed approaches.  After it was shown 
that the XGBoost model outperformed other machine learning models, its capability and application in predict-
ing viscosity for different pressure zones (undersaturated, saturated, and dead oil) were compared with other 

Figure 4.   Relative deviation (%) of estimated viscosity values using the (a) XGBoost, (b) CatBoost, and (c) 
GradientBoosting model for test and train data points.
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available approaches. Hemmati-Sarapardeh et al. introduced two approaches based on machine learning and 
the division of input parameters into black oil19 and compositional20 methods. The approaches were then dem-
onstrated to outperform earlier methods and equations (supplementary file-comparison with the preexisting 
models).

Since 2020 till now, 326 data points are collected and added to the existing data bank. Therefore, the current 
study is performed based on 1368 data points. It should be noted that for a fair comparison between XGBoost 
and Hemmati-Sarapardeh’s19,20 studies, the aforementioned 326 data points are excluded from the current data 
bank, and as a consequence, the remained 1042 data points, the same as Hemmati-Sarapardeh’s19,20 studies are 
considered. In the following, the results will be reviewed and compared to the results of Hemmati-Sarapardeh’s19,20 
studies.

Comparison with black oil study.  The black oil method input parameters of the19 study includes API gravity, 
temperature, pressure, and most importantly viscosity (experimental). The viscosity obtained in each step is 
used along with the other inputs to predict the viscosity in the next step. For example, dead oil viscosity is used 
to calculate oil viscosity at or below the bubble point, and the bubble-point viscosity is employed as an input to 
calculate oil viscosity at pressures above the bubble point.

Considering the fact that the oil viscosity estimation/prediction was the tangible outcome of this study, 
excluding viscosity from the input parameters would be reasonable. Therefore, viscosity is replaced with Rs 
in the input parameters (as mentioned in Table 1). Table 4 compares the XGBoost model (this study) with the 
LSSVM model proposed by19 for deal oil, saturated oil, and undersaturated oil regions. XGBoost outperformed 
the LSSVM approach, particularly in the saturated oil region. It is worth noting that, the most considerable 
curvature in the viscosity vs. pressure diagram is obtained in the saturated oil region, which is predicted by the 
XGBoost model with the lowest error.

Comparison with compositional study.  The compositional model of20 used sixteen components of oil (methane 
to C11 and Non-hydrocarbons), C12

+ molecular weight, temperature, pressure, and most importantly, viscosity 
(computed/predicted in each step) as input parameters. The viscosity estimated in each step was used along with 
the other inputs to predict oil viscosity in the next step (similar to the black oil model calculation approach).

As mentioned, the inputs of the XGBoost model include API gravity, temperature, pressure, and Rs. Table 5 
compares XGBoost and the DTs model of20 in the dead oil, saturated oil, and undersaturated oil regions. It can 
be observed that XGBoost outperformed the DTs model, except in the dead oil region, reducing the error by 
approximately 1.5%. It is noteworthy to emphasize that, XGBoost uses fewer input parameters than the DTs 
model of20 (4 versus 21), yielding more accurate estimates in a shorter time at a lower cost (independently of oil 
composition analysis), without using viscosity estimations in the previous step.

Table 4.   Performance of the XGBoost model in comparison with the LSSVM model. a XGBoost model (This 
Study). b LSSVM model19.

Models

Train Test Overall

RMSE (cP) R2 AARD (%) RMSE (cP) R2 AARD (%) RMSE (cP) R2 AARD (%)

Under saturated
XGBoosta 0.040 0.999 0.576 0.048 0.999 1.194 0.042 0.999 0.699

LSSVMb 0.030 0.999 1.500 0.040 0.999 1.400 0.040 0.999 1.400

Saturated
XGBoosta 0.029 0.998 2.058 0.083 0.981 5.416 0.040 0.994 2.730

LSSVMb 0.310 0.988 13.500 0.770 0.838 13.200 0.380 0.979 13.480

Dead oil
XGBoosta 0.632 0.928 7.018 0.748 0.867 12.542 0.431 0.931 7.982

LSSVMb 1.780 0.959 21.300 1.650 0.914 19.700 1.820 0.955 21.200

Table 5.   Performance of the XGBoost model in comparison with the DTs model. a XGBoost model (This 
Study). b DTs model20. NR Not Reported.

Models

Train Test Overall

RMSE (Pa.s.) R2 AARD (%) RMSE (Pa.s.) R2 AARD (%) RMSE (Pa.s.) R2 AARD (%)

Under saturated
XGBoosta 4.038E−5 0.999 0.576 4.830E−5 0.999 1.194 4.198E−5 0.999 0.699

DTs NR NR NR NR NR NR 1.000E−4 0.999 2.255

Saturated
XGBoosta 2.956E−5 0.998 2.058 8.305E−5 0.981 5.416 4.026E−50 0.994 2.730

DTsb NR NR NR NR NR NR 1.000E−4 0.996 4.485

Dead oil
XGBoosta 6.320E−4 0.928 7.018 7.481E−4 0.867 12.542 4.315E−4 0.931 7.982

DTsb NR NR NR NR NR NR 4.000E−5 0.992 6.524

All data
XGBoosta 2.525E−5 0.998 1.212 5.437E−5 0.992 2.728 3.107E−5 0.997 1.515

DTsb 1.000E−4 0.997 2.688 1.000E−4 0.994 6.148 1.000E−4 0.997 3.379
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Investigating viscosity vs. pressure curves indicates insignificant variations of oil viscosity above the bubble 
point. This observation is related to the fact that the composition remains unchanged above the bubble point, 
and oil viscosity is only a function of expansion, like the other liquids. However, the fraction of dissolved gases 
in oil decreases at pressures below the bubble point (oil and gas phases are in an equilibrium phase within the 
reservoir), resulting in a notable increase in the viscosity. In fact, the oil composition influences its viscosity below 
the bubble point, and a reduction in the dissolved gases raises the oil viscosity. In other words, a change in the 
dissolved gas fraction represents a change in the oil composition. Consequently, the inclusion of Rs into the set 
of input parameters in the XGBoost model based on the black oil approach yielded more accurate oil viscosity 
estimates than earlier compositional work20.

Moreover, asphaltene and resin affect the viscosity which could be considered in two parts. Firstly, the direct 
effect of the content of these components on the bulk properties of the oil (crude or live), e.g. density and (dead 
oil) viscosity (thermodynamic effect). For this part, even small content of asphaltene will lead to a considerable 
increase in viscosity and density while for resins much higher content can lead to higher viscosity and density. 
The second perspective is the precipitation of these fractions into the new distinct phase that results in a drastic 
increase in oil viscosity, the kinetic and hydrodynamic effects. It should be noted that resins increase the solu-
bility of asphaltenes in oil and also contribute to the dispersion of asphaltene. Therefore, the amount of resin 
and asphaltene affect the amount of viscosity and density directly when they are soluble in the oil. However, as 
suspensions and colloids, they should be correlated with other distinct methods and approaches43.

Next, in order to improve the reliability of comparison, the reason for the superiority of the XGBoost model 
to other decision tree methods should be discussed. The XGBoost model is based on the GBDT technique, in 
which the boosting strategy is adopted to integrate several (i.e., n) decision trees through a powerful and efficient 
technique. The number of trees depends on the number and type of data; hence, a strong learner is created. How-
ever, the DTs model is among the machine learning approaches that employ a tree-like framework to handle a 
wide range of input types and find the appropriate path for the prediction of results. At the same time, the DTs 
model can sometimes be vulnerable to overfitting. It is also sensitive to the noise in data. The concurrent use and 
integration of several DTs models can compensate for the lack of accuracy in each model and reduce the overall 
error. As a result of this procedure, the models like XGBoost that have been developed through the GBDT can 
outperform the DTs models in estimating the outputs23.

Samples.  Table 6 presents the experimental viscosity values and the XGBoost model estimations for four 
Iranian oil samples at different pressures. Also, in order to provide a better outlook a graphical illustration is 
presented corresponding to each sample in Fig. 5. Hence, it can be concluded more confidently that the XGBoost 
model can accurately estimate viscosity regardless of the pressure range and oil type.

Conclusion
In this study, GBDT based machine learning algorithms, including GradientBoosting, CatBoost, and XGBoot 
were adapted in order to predict oil viscosity in the reservoir as a function of pressure with the black oil approach. 
The results showed that the XGBoost model is relatively superior to other methods (CatBoost and GradientBoost-
ing). The following two conclusions can be inferred:

1.	 Compared to the black oil approach employing the LSSVM model, the results showed that the XGBoost 
model provided a significant 10% error reduction in the saturated region.

2.	 Compared to the compositional approach employing the DTs model, the results showed that despite using 
21 input parameters, the XGBoost model provided a 1.4% error reduction with only four input parameters 
and no need for oil composition information.

The following points can be presented to complete the aforementioned discussion:

1.	 The XGBoost algorithm is a relatively new GBDT based method. In this algorithm, trees of equal depths are 
created consecutively. An advantage of this model is the much shorter runtime than those of other GBDT 
based models in all computational environments due to the use of parallel processing.

2.	 Another important advantage of this model is that it avoids retaining the training data, which prevents 
overfitting. It is also due to the use of L1 and L2 regularization.

•	 L1 regularization prevents the overfitting of the model by shrinking the parameters towards 0. This can 
remove the effect of some features.

•	 L2 regularization prevents the overfitting of the model by making weights to be small, but not forcing 
them to be absolutely 0.

3.	 this model can also handle NaN or missing data values.
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Table 6.   Experimental viscosity values and the XGBoost model estimations for four Iranian oil samples at 
different pressures. Bubble point pressure values are shown in [bold].

P (psia) Real vis (c.p) Model vis (c.p) P (psia) Real vis (c.p) Model vis (c.p)

Sample 1 Sample 2

5050 1.013337 1.005351 5058 3.271139 3.068417

4550 0.994974 0.995953 4057 3.045688 2.973398

4449 0.991199 0.995935 3054 2.819787 2.806714

4349 0.987460 0.995935 2551 2.706499 2.691341

4249 0.983736 0.996364 2248 2.638256 2.621846

4149 0.980025 0.993490 2148 2.615733 2.612640

4030 0.975609 0.990494 2046 2.592760 2.591791

3553 0.999333 1.048907 1942 2.569337 2.573254

3045 1.024600 1.048801 1842 2.546814 2.545099

2542 1.062203 1.054982 1692.4 2.513119 2.523687

2039 1.122385 1.122989 1386 2.618059 2.595768

1532 1.183673 1.128482 1036 2.786707 2.510240

1030 1.269898 1.241801 682 3.069599 2.923910

521 1.380175 1.402066 330 3.525551 3.460288

14.7 2.132610 2.167524 14.7 6.746075 6.707733

Sample 3 Sample 4

5548 4.000876 3.931077 5058 3.484792 3.461583

4050 3.689539 3.614249 4057 3.255271 3.244958

3047 3.484213 3.486671 3054 3.025292 3.036069

2543 3.381709 3.343235 2551 2.909958 2.895391

2140 3.294197 3.277449 2148 2.817554 2.802215

1938 3.250343 3.236980 2046 2.794166 2.774242

1837 3.228422 3.217844 1942 2.770319 2.754894

1736 3.205814 3.212879 1842 2.747390 2.733122

1635 3.182533 3.188726 1743 2.724690 2.715401

1534 3.159252 3.183109 1688.8 2.712198 2.714444

1454.4 3.140811 3.182876 1348 2.727040 2.742313

1281 3.233294 3.188648 1019 2.962749 2.980694

1028 3.369125 3.282739 688 3.398542 3.267978

773 3.654729 3.621993 358 4.025803 3.907511

520 4.026668 3.94458 14.7 7.854152 6.910652

266 4.522285 4.587628

14.7 7.734326 7.578169
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