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Deep learning based 
diagnostic quality assessment 
of choroidal OCT features 
with expert‑evaluated 
explainability
S. P. Koidala 1,6, S. R. Manne 1,6, K. Ozimba 2, M. A. Rasheed 3, S. B. Bashar 4, M. N. Ibrahim 5, 
A. Selvam 5, J. A. Sahel 5, J. Chhablani 5, S. Jana 1 & K. K. Vupparaboina 5*

Various vision-threatening eye diseases including age-related macular degeneration (AMD) and 
central serous chorioretinopathy (CSCR) are caused due to the dysfunctions manifested in the highly 
vascular choroid layer of the posterior segment of the eye. In the current clinical practice, screening 
choroidal structural changes is widely based on optical coherence tomography (OCT) images. 
Accordingly, to assist clinicians, several automated choroidal biomarker detection methods using 
OCT images are developed. However, the performance of these algorithms is largely constrained by 
the quality of the OCT scan. Consequently, determining the quality of choroidal features in OCT scans 
is significant in building standardized quantification tools and hence constitutes our main objective. 
This study includes a dataset of 1593 good and 2581 bad quality Spectralis OCT images graded by 
an expert. Noting the efficacy of deep-learning (DL) in medical image analysis, we propose to train 
three state-of-the-art DL models: ResNet18, EfficientNet-B0 and EfficientNet-B3 to detect the 
quality of OCT images. The choice of these models was inspired by their ability to preserve the salient 
features across all the layers without information loss. To evaluate the attention of DL models on the 
choroid, we introduced color transparency maps (CTMs) based on GradCAM explanations. Further, we 
proposed two subjective grading scores: overall choroid coverage (OCC) and choroid coverage in the 
visible region(CCVR) based on CTMs to objectively correlate visual explanations vis-à-vis DL model 
attentions. We observed that the average accuracy and F-scores for the three DL models are greater 
than 96%. Further, the OCC and CCVR scores achieved for the three DL models under consideration 
substantiate that they mostly focus on the choroid layer in making the decision. In particular, of the 
three DL models, EfficientNet-B3 is in close agreement with the clinician’s inference. The proposed 
DL-based framework demonstrated high detection accuracy as well as attention on the choroid layer, 
where EfficientNet-B3 reported superior performance. Our work assumes significance in bench-
marking the automated choroid biomarker detection tools and facilitating high-throughput screening. 
Further, the methods proposed in this work can be adopted for evaluating the attention of DL-based 
approaches developed for other region-specific quality assessment tasks.

Many eye diseases that lead to permanent vision impairment originates due to structural changes in the cho-
roid, a vascular layer located between retinal and scleral layers of the posterior segment of the eye (see Fig. 1a). 
Some of the prevalent diseases associated with choroid include central serous chorioretinopathy (CSCR), age-
related macular degeneration (AMD) and macular edema1–3. In deed, choroid is responsible for the health of 
the retina and the other structures of the eye as it supplies oxygen and nutrient to them. Accordingly, detection 
of structural changes in the choroid play a crucial role in disease diagnosis and management. In the current 
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clinical practice, ubiquitous optical coherence tomography (OCT) imaging has enabled clinicians with in-vivo 
substructural visualization of retina, choroid and scleral layers4–7. A sample OCT B-scan (cross-sectional) image 
is depicted in Fig. 1a. In particular, OCT imaging facilitates clinicians to screen the choroid both qualitatively 
and quantitatively8–11. Specifically, clinicians seek to quantify various biomarkers including choroidal thickness 
(CT), choroidal volume (CV) and choroidal vascularity index (CVI) based on OCT images12–14. Accurate quan-
tification of such clinical determinants determine the diagnostic accuracy. In the recent past, several attempts 
have been made towards development of automated tools for accurate detection of choroidal biomarkers13–15. In 
particular, almost all the automated algorithms reported presume that the datasets considered are of good quality 
OCT images. However, in practice, datasets may be of varied quality and the performance of those algorithms 
is majorly constrained by the input image quality16–19.

For instance, often times algorithms developed based on good quality B-scans may end up encountering bad 
quality images and produce a spurious measurement. Specifically, the performance of an algorithm developed 
for choroidal biomarker detection majorly depends on the quality of the choroidal features such as (i) contrast 
between luminal (vessel) and stromal (non-vessel) region, (ii) contrast between choroid and retina (or sclera), 
(iii) speckle-noise due to coherence of light and (iv) signal attenuation due to retinal structural changes. Against 
this backdrop, it is imperative to assess the choroid quality of the OCT scans determining their clinical gradabil-
ity to facilitate automated disease screening and prognosis (as shown in Fig. 1b). Such a quality assessment tool 
may also enable clinicians with high-throughput screening in resource-constraint scenarios.

Image quality assessment (IQA) is a well-posed problem for natural images especially in the context of 
transmission and broadcasting20. There has been a huge leap forward in developing accurate methods, both 
formula- and learning-based, to find the quality of natural images21,22. However, attempts at IQA of medical 
images i.e, diagnostic quality assessment (DQA), especially in relation to ophthalmological disease diagnosis are 
very limited23,24. More specifically, majority of attempts were directed towards DQA of fundus photography (FP) 
images focusing on accurate detection of specific diseases such as diabetic retinopathy (DR)25. Further, DQA of 
FPs has been addressed using traditional features26, wavelet-based deep scattering features27 and deep learning 
(DL)-based methods28,29. On the other hand, DQA of OCT images is relatively less explored. Very few attempts 
were made at OCT image DQA in relation to disease detection. Early attempts in assessing IQA of OCT images 
were based on traditional approaches that use image histograms30,31, intensity histogram decomposition model32, 
and complex wavelet based local binary pattern features33. Further, very limited works have been reported using 
DL-based models for IQA of OCT A-scans and B-scans34,35. Recently, an attempt using transfer learning was made 
for multi-class IQA of OCT images in distinguishing images with signal occlusion and off-center36.

Unfortunately, there are not many studies on both FP and OCT at determining quality of image with attention 
to specific structure such as choroid layer. Recently, a method has been reported for detecting the region-specific 
quality of FP focusing on visibility and clarity of regions such as optic disc and fovea28. However, DQA of OCT 
(OCT-DQA) images is not explored much in this direction. Consequently, there are no attempts to assess the 
quality of choroid region in OCT images which may enable development of standardized choroidal biomarker 
detection tools. In response, we propose to develop an approach to determine the DQA of OCT images to enable 
the accurate detection of choroidal biomarkers. Specifically, noting the performance of the DL-based learning 
methods over the traditional methods, we propose to train three state-of-the-art DL-models, namely, ResNet18, 
EfficientNet-B0 and EfficientNet-B3 towards OCT-DQA37,38. Further, to understand how these models detect 
the DQ of OCT with attention on choroidal features, we employ recently introduced concepts of explainability 

Figure 1.   (a) Sagittal cross-section of the eyes (Left); Sample OCT cross-sectional image (B-scan) depicting 
posterior segment layers including retina, choroid, and sclera (Middle); and OCT B-scan depicting choroidal 
boundaries and vessels (Right), and (b) Desired disease screening pipeline with quality assessment as an 
essential step.
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for DL models such as gradient weighted class activation maps (Grad-CAM)39. The summary of the proposed 
approach and contributions are enumerated in the following.

•	 Attempted choroid region-specific diagnostic quality assessment of OCT images.
•	 Trained three state-of-the-art DL models, namely, ResNet18 and EfficientNet-B0 & -B3 for OCT-DQA and 

demonstrated performance over 96% detection accuracy.
•	 Created an OCT dataset of 4174 B-scan images graded by an expert for binary classification (good/bad) based 

on the quality of the choroid layer.
•	 Introduced color transparency maps (CTM) based on Grad-CAM that aid clinicians in visualizing the rel-

evant regions of the model’s decision
•	 Proposed two grading scores based on transparency maps, namely, overall choroid coverage (OCC) and 

choroid coverage within visibility region (CCVR), for evaluating the attention of DL models on the choroid 
layer.

•	 Demonstrated the importance of choroid quality assessment in screening chorioretinal diseases.

Results
We now proceed to evaluate the performance of the three models under consideration. First, we compare the 
performance indices obtained by the three models vis-à-vis that of other state-of-the-art methods. Subsequently, 
we discuss the CTM visualizations obtained based on Grad-CAM followed by a pilot study on the impact of 
choroid quality assessment in chorioretinal disease screening.

OCT choroid quality assessment.  The performance indices obtained from various models are presented 
in Table 1. Clearly, the proposed DL-based models: ResNet18, ENet-B0, and ENet-B3 perform significantly better 
than previously reported natural IQA-metric-based methods including BRISQUE40, NBIQA41, and ScatNets26. 
In particular, among natural IQA-metric-based methods, BRISQUE and NBIQA, respectively, achieved mean 
accuracy values of 62.73 and 71.14% which is relatively poor vis-à-vis corresponding accuracy value 87.54% 
obtained by ScanNet based approach. This probably can be attributed to the structure-preserving nature of the 
ScatNets. In contrast, the mean accuracy values of ResNet18, ENet-B0 and ENet-B3 are observed to be 97.69, 
96.99 and 97.92%, respectively, demonstrating significantly high performance against previous methods. Among 
the DL-Methods under consideration, ENet-B3 performed marginally better than ResNet18 and ENet-B0, espe-
cially in terms of variability (0.41%). This observation is consistent with other metrics including F-score, AUC, 
recall. ResNet18 is marginally better in terms of precision.

Visual explanations.  We now proceed to evaluate the DL-Models based on the CTMs to understand their 
focus areas in performing the detection task. Figure 2 depicts representative images for good and bad quality 
OCT scans with CTMs obtained for all the three models under consideration. Notice that, for all the repre-
sentative images, actual labels match the predicted labels of all three models. More interestingly, across all three 
models, the visibility region in the CTMs that contributes to the model’s decision is observed to be around the 
choroid. Recalling our primary task of discriminating the OCT images based on the quality of the choroidal 
features, the visual explanations of the DL models considered in this work strongly correlate with the desired 
outcome. However, among the three models, ENet-B3 appears to be largely confined to the choroid whereas the 
other models appear to be spanning into other layers including the retina and the sclera.

To corroborate the same, we now move towards analyzing subjective grading performed on CTMs. As men-
tioned earlier, we obtained subjective scores OCC and CCVR on a subset of 180 images (60 per model) by two 
masked observers. Next, we computed the Bland-Altman correlation between both the observers across OCC 
and CCVR. Encouragingly, the correlation between the respective OCC and CCVR scores obtained by both 
the graders is observed to be 97.32 and 94.61%, indicating good reliability of the subjective scores. Noting the 
high correlation between the graders, we considered average values of scores obtained by both the observers for 
further analysis on OCC and CCVR. To perform comprehensive evaluation, we computed the mean OCC and 
CCVR values for overall and sub-groups (Healthy-Good, Healthy-Bad, Diseased-Good, & Diseased-Bad) for all 
the three models under consideration (see Table 2). Further, we have also obtained absolute difference between 
OCC and CCVR values which measures the agreement between the both measures. Ideally, we desire high OCC 
and CCVR values and a low |OCC-CCVR| value.

Table 1.   Performance indices over 5-fold cross-validation (%). ‡ Values recorded at operating point with 
maximum accuracy Significant values are in bold.

Model AUC​ Accuracy‡  Precision‡  Recall‡  F1-Score‡ 

BRISQUE40 0.648± 0.012 62.73± 1.59 52.39± 4.31 25.38± 3.09 34.14± 3.49

NBIQA41 0.741± 0.021 71.14± 1.15 67.56± 2.31 47.03± 2.50 55.41± 2.01

ScatNet26 0.939± 0.013 87.54± 1.88 84.41± 3.27 82.74± 2.22 83.54± 2.36

ResNet18 0.997± 0.002 97.69± 0.62 98.66± 0.38 96.72± 1.05 97.67± 0.64

EfficientNet-B0 0.995± 0.002 96.99± 0.59 97.82± 0.32 96.12± 1.08 96.96± 0.61

EfficientNet-B3 0.997 ± 0.001 97.92± 0.41 98.65± 0.60 97.17 ± 0.57 97.90± 0.41
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For the three DL-models: ENet-B0, ResNet and ENet-B3, the overall mean OCC scores achieved are observed 
to be 73.58, 74.12 and 76.21% while the mean CCVR scores achieved are observed to be 50.33, 50.45, 61.08%, 
respectively (see Table 2). In comparison, both OCC and CCVR scores are high for ENet-B3 buttressing the 
qualitative observation made earlier on CTMs. Subsequently, the overall |OCC-CCVR| values for ENet-B0, 
ResNet and ENet-B3 models are observed to be 24.92, 25.58 and 20.37%, respectively, which also corroborates 
the ENet-B3’s relative performance efficacy.

Further, the mean OCC and CCVR scores for sub-groups indicate that good-quality (for Healthy and Dis-
eased) images achieved low OCC and CCVR values for all three models while bad-quality (for Healthy and 
Diseased) images achieved high OCC and CCVR scores for all three models. The low scores corresponding to 
the diseased good-quality images may be because of the possible model’s attention only on depleted choroidal 
regions. Overall, ENet-B3 achieved high CCVR scores for all sub-groups and high OCC for healthy-good and 
diseased-good cases. However, |OCC-CCVR| values indicate that ENet-B3 is performing better. Notice, although 
for Diseased-Good case, ResNet18 is marginally better than ENet-B3, the mean OCC and CCVR values are high 
for ENet-B3 indicating its superiority over ResNet18.

Finally, we investigate our hypothesis on the importance of choroid quality assessment in OCT images by 
considering a practical scenario. Specifically, we consider an automated tool for detecting choroidal inner bound-
ary (CIB) and choroid outer boundary (COB)42, a primary step in screening or quantification of chorioretinal 
diseases. As a pilot study, we randomly selected few OCT images from both good and bad quality of our dataset, 
and obtained manual annotations of choroid boundaries by expert. Next, we pass the same set of images through 
the choroid detection tool42. As anticipated, on good quality images, both CIB and COB delineations by the 
automated tool are in agreement with the corresponding manual annotations (see Fig. 3a) while on bad quality 

Raw OCT EfficientNet-B0 ResNet18 EfficientNet-B3

Actual : Bad Pred : Bad Pred : Bad Pred : Bad

Actual : Bad Pred : Bad Pred : Bad Pred : Bad

Actual : Good Pred : Good Pred : Good Pred : Good

Actual : Good Pred : Good Pred : Good Pred : Good

Figure 2.   Representative images of OCT images with CTMs corresponding to all three models. While top two 
rows correspond to bad quality OCT image, the bottom two rows correspond to good quality OCT image.

Table 2.   Mean scores of subjective grading performed on CTMs. Significant values are in bold.

OCC (%) CCVR (%) |OCC-CCVR| (%)

ENet-B0 ResNet18 ENet-B3 ENet-B0 ResNet18 ENet-B3 ENet-B0 ResNet18 ENet-B3

Healthy Good 66.50 72.50 74.67 37.50 43.00 56.33 29.00 31.83 24.33

Bad 83.67 78.16 82.67 60.17 56.00 67.67 24.83 23.50 15.00

Diseased Good 63.50 70.50 73.67 36.33 45.5 50.00 28.17 25.33 27.00

Bad 80.67 75.33 73.83 67.33 57.33 70.33 17.67 21.67 15.17

Overall 73.58 74.12 76.21 50.33 50.46 61.08 24.92 25.58 20.37
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OCT images, COB delineations by the automated deviated significantly from the corresponding manual ones 
(as shown in Fig. 3b), buttressing the need for a quality assessment tool as preprocessing step in the choroidal 
biomarker quantification pipeline (Fig. 1b).

Discussion
In this paper, we attempted a DL-based quality assessment of the choroid layer in OCT images. Specifically, we 
examined three state-of-the-art models ResNet18, ENet-B0 and ENet-B3, and demonstrated their efficacy. In 
particular, all three models exhibited high performance with more than 96% accuracy and F1-score which is 
observed to be a significant leap vis-à-vis the performance of other IQA methods. We observed that ENet-B3 
achieved marginally better performance which probably can be attributed to its higher input image size and 
depth. Further, we obtained novel color transparency maps a.k.a visual explanation maps to evaluate the mod-
els for their attention on choroidal features. Specifically, the mean subjective grading scores of overall choroid 
coverage and choroid visible region are observed to be high for ENet-B3.

The proposed work assumes significance in (i) standardizing the OCT image quality for automated choroid 
biomarker quantification tools. To this end, we plan to evaluate methods reported by our group13,43; (ii) enabling 
clinicians to identify clinically gradable images from years of retrospective data available in the tertiary centers 
like UPMC; (iii) facilitating clinicians in accurate and high throughput screening at tertiary centers and (iv) 
teleophthalmology based on portable OCT imaging. Further, the proposed methods including CTMs and grad-
ing scores (OCC and CCVR) can be adopted in evaluating the attention of DL-based tools developed for other 
region-specific quality assessment problems.

We envisage making the framework more robust by improving the data preparation and training. Accordingly, 
to improve the data, we plan to build a robust and large database of OCT images graded by multiple observers. 
Further, we plan to extend the current binary (good/bad) classification framework to multi-class classification 
defined based on multiple levels of quality including good, bad and usable.

In this work, as the selected DL models achieved satisfactory performance we did not get a chance to explore 
any architectural improvements of the DL models. However, we plan to modify the DL model architectures in the 
future work involving our modified database as alluded earlier. Further, we also plan to examine other recently 
reported DL-based methods including vision transformers (ViT) that are optimized to yield higher accuracies 
under resource-constrained settings44.

Methods
This was a retrospective study conducted at University of Pittsburgh Medical School, USA.The study was 
approved by the institutional review board of the University of Pittsburgh Medical School. Informed consent 
was obtained from all participants to include their retrospective data in the study. All the methods adhered to 
tenets of the Declaration of Helsinki. All the subjects underwent optical coherence tomography (OCT) exami-
nation of the posterior pole of the eye. In particular, the OCT images were acquired using Heidelberg Retina 
Angiograph (HRA) Spectralis OCT machine. The axial and transverse scanning resolution was 7 and 14 µ m, 
respectively. Further, the scanning speed of the Spectralis OCT device was 40,000 amplitude scans (A-scans) 
per second. Each B-scan captured is an average of 25 frames scanned. Overall, we have collected 1094 healthy 
and 3080 diseased B-scans.

Data annotation The images were graded subjectively into two classes ‘good’ and ‘bad’ by a trained expert. 
Various parameters including visibility of the choroid, contrast between choroidal luminal (vessel) and stromal 
(regions), contrast between the choroid and scleral especially at choroid sclera interface (choroid outer boundary, 
COB) were considered while grading. After grading, we obtained 1593 good quality images (of which 488 are 
healthy and 1105 are diseased) and 2581 bad quality images (606 are healthy and 1975 are diseased). Figure 4, 
gives illustrative OCT images with both good quality and bad quality graded by the expert.

Figure 3.   Choroid boundary (CIB & COB) detection on OCT images via both manual(red) and 
algorithm(yellow) with : (a) good quality, and (b) bad quality.
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In the proposed workflow, as outlined in Fig. 5, we seek to investigate the efficacy of deep-learning features 
in distinguishing the choroidal quality of OCT images. A detailed description on DL variants (EfficientNet and 
ResNet), Grad-CAM explanations and evaluation criteria are presented in the following subsections.

Deep learning approach.  Deep learning (DL) models attempt to perform image classification by employ-
ing convolution neural networks (CNN) to extract features that mimic human perception. To develop an effi-
cient DL model, the crux lies in the optimal choice of the design parameters including input image resolution, 
the number of layers (depth), and the number of filters in each layer (width). The depth and the width determine 
the respective ability to learn the rich and complex features while the input resolution determines the ability 
to learn the fine-grained features38. Accordingly, several task-specific architectures have been developed with a 
trade-off among aforesaid design parameters. The last decade has witnessed tremendous breakthroughs in DL 
in the context of image classification where various models achieved near-perfect detection performance. In 
recent times, the two popular state-of-the-art DL models, namely ResNet (residual networks) and EfficientNet, 
trained on large public datasets of natural images have become the ubiquitous choice for transfer learning37,38. 
In particular, these models are known to preserve the salient features of the images across all the layers without 
information loss. Further, they train on a relatively less number of parameters when compared to other DL mod-
els. On the other hand, there have been efforts toward making the DL models explainable i.e, to understand the 
attention of DL models while learning the features. In particular, the explainability of the DL model may facili-
tate us to understand its agreement with human perception. Such explainability may be crucial in applications 
including disease screening based on images45,46. To this end, the recently proposed Grad-CAM visualization 
has been widely accepted to depict DL model attention map. Against this background, we adopt the aforemen-
tioned pretrained models, ResNet and EfficientNet, to detect the quality of choroidal features in OCT images. In 
particular, we consider ResNet/EfficientNet as the base network (initialized with pretrained ImageNet-weights) 
and replace the output layer with a binary classification head to suit the current application. The modified archi-
tectures are then trained on the OCT dataset at hand. Further, we investigate their performance based on Grad-
CAM visualizations to understand their agreement with the clinician’s decision making. The details of the pro-
posed methodology in connection to ResNet and EfficientNet architectures as well as Grad-CAM visualization 
are described in the following subsections.

ResNet.  In feed-forward DL models, as the number of layers (depth) increase, the amount of information 
about the input (or gradients while backpropagation) may vanish as one approaches the final layers (or initial 
layers), and hence pose difficulty in the training process. To overcome this, a residual learning framework37 was 
proposed by introducing skip-connections between layers of network. In particular, as shown in Fig. 6a, the skip 
connections are introduced between each residual block F(x) which sequentially performs 3× 3 convolution, 
rectified linear unit (ReLU) activation, and another 3× 3 convolution operations. As a result, these skip connec-
tions not only allow the instances of previous layers in the feed-forward path, but also ensure that the gradients 
are always greater than one. Further, the number of such residual blocks determines the complexity of the model. 

good (healthy) good (abnormal) bad (healthy) bad (abnormal)

Figure 4.   Representative OCT images annotated based on choroid quality by expert.

Figure 5.   Schematic of the proposed pipeline for assessing quality of an OCT image.
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In this paper, we consider the ResNet18 variant that takes the input of size 224× 224 with 18 layers and has 
approximately 11.8M parameters37. More details of the model are provided in Table 3.

EfficientNet.  On the other hand, the EfficientNet employs compound scaling of the three aforesaid design 
parameters (image resolution, depth and width), and caters to practical resource constraints while main-
taining model efficiency38. The original variant EfficientNet-B0 (ENet-B0) considers a baseline architecture 
MobileNetV147, and performs compound scaling to optimize the three design parameters to meet the compu-
tational resource constraint (Fig. 6b). In particular, ENet-B0 takes images of resolution 224× 224 at the input 
layer and consists of a total of 237 layers with 5.3M parameters. The subsequent variants ENet-B1,..., ENet-B7 
take higher resolutions at the input which resulted in a respective increase in complexity. For instance, ENet-B3 
takes images of size 300× 300 at the input and has 384 layers, while ENet-B7 takes images of size 600× 600 at 
the input and has 813 layers38. However, an increase in complexity demands higher data and resources to train. 
Acknowledging this, we examined two Efficient variants including ENet-B0 and ENet-B3. Table 3 presents the 
design parameters of both the variants.

Evaluation methods.  Performance measures.  We consider the ubiquitous metrics such as accuracy, pre-
cision, recall and F1-score for evaluating the performance of the DL models which are defined as

where TP, TN, FP and FN, respectively, denote the number of true positives, true negatives, false positives and 
false negatives obtained.

Stratified K‑fold cross validation.  To obtain a mean performance of the models on different training data sub-
sets, we perform stratified K-fold cross-validation. In particular, the dataset is randomly partitioned into K(= 5) 
folds preserving the class ratios, and each fold is successively used as a test set while considering the union of 
the remaining K − 1(= 4) as the training set. Finally, the average performance on the test set over K-folds is 
reported as model performance.

(1)Accuracy = (TP + TN)/(TP + FP + TN + FN)

(2)Precision = (TP)/(TP + FP),

(3)Recall = (TP)/(TP + FN),

(4)
F1-score = (2/(Precision−1

+ Recall−1))

= (TP)/(TP + 0.5(FP + FN)),

Figure 6.   Frameworks in DL models: (a) Residual block; (b) Compound scaling.

Table 3.   Implementation details of both EfficientNet and ResNet models

Input Learning rate Epochs Parameters Loss

ResNet18 (224, 224) 0.0001 35 11.8M Cross Entropy

ENet-B0 (224, 224) 0.0001 65 5.3M Cross Entropy

ENet-B3 (300, 300) 0.0001 35 12M Cross Entropy
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Visual explanations.  At their inception, inner workings of high-performance DL models, owing to their com-
plex architecture (consisting of convolution blocks, activation maps, FC layers and other components as shown 
in Fig. 7a), were not amenable to human intuition, and the outcomes could not be authenticated48. Machine-
generated explanations, such as those generated by the ubiquitous gradient-based Grad-CAM technique39, have 
begun to overcome the aforementioned limitation. Specifically, as shown in Fig.  7b, gradients g1, g2, ..., gn (n 
being the number of activation maps) corresponding to a specific class (‘good’, in the illustration) were com-
puted with respect to respective activation maps A1,A2, ...,An of the final convolution layer. Importance weights 
w1,w2, ...,wn corresponding to the activation maps are obtained via global average pooling (GAP) of the gradi-
ents. Subsequently, the weighted sum 

∑
k wkAk was computed and passed through the ReLU function ( max(0, x) 

in variable x) to take only positive correlations into account. The resulting map is finally up-sampled to the input 
image size, and overlaid on the input image as a heat-map of explanation, with ‘hotter’ shades indicating higher 
relevance.

Subjective evaluation of visual explanations.  We propose to perform subjective scoring on the Grad-CAM visu-
alizations to objectively evaluate the extent of localization of the choroidal layer by the DL models under consid-
eration while determining the quality. However, in the usual Grad-CAM generated heatmaps, the interest region 
underneath the hot (focus) areas gets occluded making it difficult for the grader to access it. For each pixel in the 
OCT image, Grad-CAM generates a value ( gc ) between 0 to 1, respectively, representing ‘low’ to ‘high’ relevant 
regions of the OCT for the deep learning model. In view of this, for a representative OCT image (shown in the 
Fig. 8a,c), we generated the color transparency map (CTM) (as shown in the Fig. 8d) using the corresponding 
Grad-CAM based heatmap (see Fig. 8b). In particular,to obtain CTM, we first generated a red channel mask 
where the red channel value is taken as 1 - gc . Subsequently, we modified the raw OCT image by multiplying each 
of its intensity with its corresponding Grad-CAM value and converted the resultant image into a three channel 
(Red-Green-Blue) color image. Finally, we appended the red channel mask to the modified raw OCT image to 
generate the CTM. Such a map facilitates the grader to clearly visualize the structures relevant to the model’s 
decision-making. Based on these CTMs we designed the subjective grading strategy. Specifically, we proposed 
two scores, namely, overall choroid coverage (OCC) and choroid coverage within the visible region (CCVR). 
OCC is a relative score defined as the ratio between the visible choroid region in the CTM and the actual choroid 
region in the raw OCT image. On the other hand, the CCVR score is computed solely based on only the trans-

Figure 7.   Schematic illustration of generating class-specific (Good) Grad-CAM output on a trained 
architecture/model.
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parent region of CTM by taking the ratio of visible choroid region to the total visible region. Mathematically, 
OCC and CCVR can be written as

where T and C denote the transparent region in the CTM and choroid region in the raw-OCT image, respectively.
In this setting, to facilitate graders performing the subjective grading, we developed a web-based user interface 

(UI) which displays the images and the list of parameters with respective scoring boxes to grade. Specifically, for 
each instance, grader is shown two pairs of images that constitute the raw OCT with corresponding CTM (see 
Fig. 8c,d) and the raw OCT image with corresponding CTM with an overlaid grid(see Fig. 8e,f). The second 
pair of images with overlaid grids are provided to further assist the grader in cases of any difficulty in comparing 
areas based only raw OCT image and its corresponding CTM (Fig. 8c,d). The UI is designed to have unique user 
credentials for graders to maintain between graders. As part of subjective analysis, we considered two graders 
for the current task. Further, we considered a subset of 60 OCT images from the dataset for grading the CTMs 
across three models. Finally, the reliability of grading among the graders were evaluated based on the Bland-
Altman correlation score between the two graders given by 

∑N
i=1(xiyi)/(

√
(
∑N

i=1(xi)
∑N

i=1(yi))) , where xi and 
yi correspond to the scores given by two graders49.

Data availability
The dataset considered in the current study is part of an ongoing work and hence can not be made publicly avail-
able. However, the dataset is available from the corresponding author on reasonable request.
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