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Denoising method of machine 
tool vibration signal based 
on variational mode decomposition 
and Whale‑Tabu optimization 
algorithm
Chengzhi Fang 1,3, Yushen Chen 2,3, Xiaolei Deng 1*, Xiaoliang Lin 1, Yue Han 2 & Junjian Zheng 2

The noise from other sources is inevitably mixed in the vibration information of CNC machine tools 
obtained using the sensors. In this work, a de-noising method based on joint analysis is proposed. 
The variational mode decomposition (VMD), correlation analysis (CA), and wavelet threshold (WT) 
denoising are used to denoise the original signal. First, VMD decomposes noisy signals into multiple 
intrinsic mode functions (IMFs). The penalty factor and decomposition level of VMD parameters 
are selected by the optimization algorithm by combining the whale optimization algorithm (WOA) 
and tabu search (TS). The minimum permutation entropy of IMF is used as the fitness function of 
the proposed fusion algorithm. Then, the IMF is divided into three categories by using the cross-
correlation number. They include the pure components, signals containing noise, and complete noise 
components. Then, the WT method is used to further denoise the signals, and signal reconstruction 
is performed with the pure component to obtain the denoised signal. This joint analysis denoising 
method is named TS-WOA-VMD-CA-WT. The simulation results show that the fusion optimization 
algorithm proposed in this work has better performance as compared to the single optimization 
algorithm. It performs effectively when applied to the actual machine tool vibration signal denoising. 
Therefore, the proposed TS-WOA-VMD-CA-WT method is superior to other existing denoising 
techniques and has good generality, which is expected to be popularized and applied more widely.

Being a critical component in manufacturing industry, it is important to improve the machining accuracy of 
CNC machines1. The vibrations caused due to machine operations and external environment are an key factor 
affecting the machining accuracy of CNC machine tools. With the development of intelligent manufacturing, the 
physical information can be transformed into the digital information based on various sensors and devices. As 
a result, intelligent sensing can be applied for performing analysis and decision-making, and finally for devising 
intelligent product design, and realizing manufacturing and production2. Monitoring the condition of machining 
tools based on sensors can provide additional information related to the the state of the machine tool3. However, 
when acquiring machine tool vibration information, human-related factors, environment, and the influence of 
the sensors inevitably lead to the addition of noise in the original signals. The direct use of these signals is not 
conducive for further analysis. Therefore, it is necessary to de-noise the collected vibration signals of machine 
tools so that they can be effectively used in a larger field.

There are various works presented in literature that focus on signal denoising. Fourier transform4 is a well-
known signal analysis technique. However, this method can not be used for local analysis of non-stationary 
signals, and the effect of noise reduction is poor. As compared with the Fourier transform, the wavelet transform 
has various advantages, including nonlinearity, locality, and good time–frequency characteristics5, thus making it 
very suitable for analyzing the abrupt and non-stationary signals. Wang et al.6 preprocessed the bridge vibration 
signals based on WT denoising to effectively reduce the interference of random noise and obtain accurate natural 
vibration characteristics of bridge structures. Chen et al.7 proposed a correlation calculation method based on 
wavelet packet transform for denoising the blasting vibration signals, which retained the real characteristics 
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of blasting vibration signals. This method is also used in fault diagnosis8, health monitoring9, and electronic 
communication, etc.

The empirical mode decomposition (EMD)10 effectively addresses the limitation of time–frequency analysis 
method and is no longer constrained by linearity and stationarity. It is based on the concept of IMF, which 
adaptively generates the basis functions, i.e., the IMFs generated by the screening process is its basis function. This 
method is suitable for the analysis of nonlinear and non-stationary signals, and achieves high accuracy in time 
and frequency domains. Although EMD is an adaptive time–frequency analysis method, its end effect and mode 
aliasing hinder the development and application of EMD. As improved algorithms for EMD, such as ensemble 
empirical mode decomposition (EEMD)11, which takes advantage of the uniform frequency distribution of white 
Gaussian noise and performs empirical mode decomposition several times by adding white Gaussian noise. Jia 
et al.12 proposed a vibration signal denoising method based on EEMD and grey theory to effectively extract the 
vibration feature information of hob tools. Zheng et al.13 also proposed a mean optimization decomposition 
method to improve the performance of EMD in mean curve construction.

The variational mode decomposition (VMD) is an adaptive and completely non-recursive signal processing 
algorithm14. As compared with EMD and the improved EMD algorithm, VMD not only has a solid theoretical 
basis, but is robust to sampling and noise15. Xiao et al.16 proposed an adaptive denoising algorithm based on 
probability density function and VMD, and they evaluated the effectiveness of the method through mean square 
error and signal-to-noise ratio. The result of VMD is determined by the penalty factor α and the number of 
decomposition layers k. The adaptive parameter optimization VMD method proposed in17 determines the 
optimal number of decomposition layers k by analyzing the ratio of the center frequencies of two adjacent IMFs. 
Yu et al.18 determined the number of decomposition layers of VMD by using permutation entropy and verified 
the superiority of this method based on the simulated and actual vibration signals. Hu et al.19 constructed an 
improved optimization algorithm, and computed the root mean square error as the fitness function to obtain 
the number of decomposition layers and the optimal penalty factor.

In order to reduce the noise from the vibration signals of machine tools, this work proposes a joint analysis 
denoising method, which consists of VMD, correlation analysis, and WT denoising. The preset parameters α 
and k in VMD are obtained by the parameter optimization algorithm fused with whale optimization algorithm 
(WOA) and tabu search (TS). This name of this method is TS-WOA-VMD-CA-WT. The minimum permutation 
entropy of decomposed IMFs are computed as the fitness function, and [α, k] is considered as the population 
individual. The optimal fitness value is searched based on the fusion algorithm to decompose.Then, according to 
the correlation coefficient, the decomposed imf is divided into the following categories, including complete noise 
components, signals containing noise, and pure components. The complete noise components are discarded and 
the pure components are retained. Then, the signals containing noise are processed by using WT and the signal 
is reconstructed to obtain the denoised signal.

The rest of this manuscript is organized as follows. Section “Signal denoising theory” presents the basic theory 
of WT and VMD methods. Section “Intelligent Optimization Algorithm” presents the basic theory of WOA 
and TS. Section “Method” presents the fusion algorithm and the overall process of noise reduction. Section 
“Simulations” verifies the effectiveness of TS-WOA-VMD-CA-WT based on two groups of analog signals. Section 
“Application of machine tool vibration test” applies this method to the vibration signal processing of test machine 
tools to denoise the real-world data. Finally, Section “conclusion” concludes this work.

Signal denoising theory
Variational mode decomposition (VMD).  VMD is an adaptive signal decomposition method, and the 
major steps of its decomposition are summarized below17:

The signal is decomposed adaptively into k modal functions with central frequency ωk , i.e., the intrinsic modal 
function. The k-th order IMF component is mathematically expressed as:

where, Ak(t) and ϕk(t) are the instantaneous amplitude and frequency of µk(t) respectively .
Apply Hilbert transform on each mode function µk(t) and calculate the corresponding analytical signal The 

exponential harmonic signal ejϕk(t) is added in each modal component to correct the central frequency of the 
analytical signal of each mode. Then, each modal component is modulated to the corresponding fundamental 
frequency band. In order to estimate the corresponding bandwidth of each modal component, a constrained 
variational model is constructed as follows.

where,δ(t) denotes the unit impulse function, j denotes the imaginary unit, and t denotes the time. {uk} and {ωk} 
denote the set of modal components and the corresponding center frequencies, respectively, δ(t) denotes the 
Dirichlet function, and ∂t represents the derivative with respect to time. To obtain the optimal solution of (2), 
the Lagrange multiplier � and the quadratic penalty factor α are introduced as follows.
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The alternating direction method of multipliers (ADMM) is used to iterate multiple sub-optimization 
problems. un+1

k  , ωn+1
k  and �n+1 are alternately updated to find the optimal solution of the above problem20.

Correlation analysis.  Correlation analysis usually uses correlation coefficient, and it can measure the 
independence and correlation between the data points21, and is mathematically defined as follows:

where, x(t) and uk(t) represent the original signal and the kth IMF component obtained using VMD, respectively. 
The closer the absolute value of R is to 1, the higher is the correlation between x(t) and uk(t).

Wavelet threshold denoising (WT).  In this work, we adopt the soft threshold method for denoising, 
and the original signal x(t) is decomposed based on n layers of wavelet. The low frequency coefficient αi and 
high frequency coefficient di from each layer are extracted. Then, the threshold thr = σ

√

2 logN  is determined, 
where σ represents the standard deviation of noise and N denotes the length of the signal. The high frequency 
coefficient is processed by the soft threshold function as follows[26]:

where, xi(t) denotes the high-frequency wavelet coefficient of layer i in wavelet decomposition and x′
i(t) denotes 

the high-frequency wavelet coefficient of layer i after threshold processing.

Intelligent optimization algorithm
Whale optimization algorithm (WOA).  WOA is a meta-heuristic optimization algorithm developed to 
imitate whale predation behavior and it has simple mechanism and strong universality. Suppose that each X is 
an individual whale among the population participating in the hunt, and p denotes the probability of predation 
strategy, which satisfies the random distribution of [0, 1]. This process comprises following major steps22:

Step 1: Surround the prey.  When the probability p < 0.5 and the coefficient vector |A| ≤ 1 , the whales identify 
the prey and surround it. The current location of the prey is marked as X∗

t  . Other whales update their position 
by swimming towards X∗

t  . During this process, the positions of the whales are updated as follows:

where, X t+1 denotes the updated position vector, X t denotes the position vector, X∗
t  denotes the current optimal 

solution, and A and C represent the coefficient vectors.

Step 2: Spiral bubble attack.  When the coefficient vector |A| ≤ 1 and the probability of the whale’s predation 
strategy p ≥ 0.5 , the whales use bubbles to attack the prey and move toward the optimal whale in a spiral manner. 
In this process, the position of the whale is updated as follows:

where, D denotes the search distance that satisfies D =
∣

∣C · X∗
t − X t

∣

∣ . b denotes the helical shape constant, which 
is usually equal to 1. l denotes a random number ranging from [− 1, 1] and its size determines the distance of an 
individual whale from the optimal whale.

Step 3: Random search for prey.  When the constriction and encircling mechanism is not satisfied at |A| > 1 , 
the whales no longer move towards the location of current optimal whale. Instead, they move randomly. During 
this process, the position of the whale is updated as follows:

where, Xr
t  denotes the position vector of a whale randomly selected from the current population.

Tabu search algorithm (TS).  The TS algorithm is based on the initial solution. This algorithm uses tabu 
and amnesty criteria, thus enabling it to avoid the repeated search during the search process. In addition, it can 
effectively jump out of the local optimal solution, and finally obtains the global optimal solution. The major steps 
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of this process are presented below: 1. Set the relevant parameters of tabu algorithm. 2. Generate a neighborhood 
based on the current solution and select an appropriate solution in the neighborhood as the candidate solution. 3. 
Conduct corresponding operations according to whether the candidate solution meets the contempt criterion23. 
4. Repeat steps 2–3 until the maximum number of iterations is reached.

Method
In this work, the advantages of two aforementioned methods are combined to construct a new optimization 
algorithm, i.e., TS-WOA-VMD, which assists the whale algorithm to avoid the local optima with the support 
of tabu table. At the same time, the key to the optimization algorithm is the selection of fitness function. This 
work adopts the minimum permutation entropy as the fitness function. As a parameter used for measuring the 
complexity of chaotic time series, the permutation entropy has stronger anti-interference ability, and better 
robustness24. The smaller the entropy value is, the more regular is the time series distribution, thus showing 
that the IMF contains more effective information. Based on the theory presented in Sections “Signal denoising 
theory” and “Intelligent Optimization Algorithm”, this work proposes a joint analysis noise reduction method, 
named TS-WOA-VMD-CA-WT. The major steps of the proposed algorithm are presented below:

Step 1:  The parameters of the signal to be denoised are optimized based on the TS-WOA-VMD optimization 
algorithm.

1)	 The tabu table and the parameters required by the algorithm are initialized. The quadratic penalty term α 
in VMD and the number of decomposition levels k are defined as population individuals (α, k). The tabu 
objects are set as the lower limits of two variables lb1 and lb2 in the WOA in order to control the search area 
of the whales and conduct accurate local optimization.

2)	 After setting the first tabu object, whale algorithm is initialized for computing the initial solution L = 1.
3)	 In the WOA-VMD program, the VMD is performed for the first-generation population. We set G = 1 and 

calculate the minimum permutation entropy value of k IMF components. This computed value is recorded 
as the initial value in the iteration curve. The position update method is judged according to the value of |A| , 
the update method referring to (6), (7), and (8). Then, the next cycle (G = G + 1) is performed. The WOA 
is executed until the maximum number of iterations is reached, or the convergent whale optimal position, 
namely the local optimal point, is obtained.

4)	 The local optimum also represents the solution of TS. After the initial solution is determined, it is tentatively 
determined as the global optimal solution, and the candidate solution is generated by neighborhood search 
and solved by using 3). If the candidate solution is better than the current global optimal solution, it is 
replaced. On the other hand, if it is not better than the current global optimal solution, the optimal solution 
that is not tabu in the candidate solution is replaced, so as to update the current solution in the tabu table. 
Then, the next iteration (L = L + 1) is started. Repeat this process until reach the maximum number of 
iterations, and then stop. Based on the tabu object corresponding to the global optimal solution, i.e., the 
parameters α and k, finally VMD is performed.

Step 2:  After VMD processing based on optimized parameters, k IMF components are obtained. According 
to15, the threshold of correlation coefficient is set to 0.2. The IMF whose correlation coefficient is less than the 
threshold is regarded as noise components. The largest IMF component of correlation coefficient is the pure 
component. The rest are components containing noise.

Step 3:  Retain the pure component and discard the complete noise component. For the signals containing noise, 
the wavelet three-layer decomposition and soft threshold function are used for denoising.

Step 4:  Reconstruct the useful signal components to obtain the denoised signal. The flow of TS-WOA-VMD-
CA-WT algorithm proposed in this work for signal denoising is shown in Fig. 1.

Simulations
To verify the superiority of the proposed method for denoising, this work first performs denoising experiments 
on the simulation signals. The machine tool is affected by various environmental factors, and the noise source 
and intensity are constantly changing. In this section, two analog signals, i.e., single frequency and noise signal, 
and mix of frequency and noise signals, are sampled at 1000 Hz for the construction of simulation signals. The 
two signals are defined as follows:

where, f1 = 50 and A1 = 2 represent the amplitude and frequency of c1 signal, respectively. f2 = 40, f3 = 50, f4 = 10, 
A2 = 1, A3 = 2, and A4 = 3 represent the three different frequencies of c2 mixed frequency signal and their 
corresponding amplitudes, respectively. Afterwards, the white Gaussian noise with different intensity is added 
respectively in the signal to simulate the actual situation. This is mathematically expressed as follows:

(9)c1(t) = A1 sin(2π f1t)

(10)
c2(t) = A2 sin(2π f2t)+ A3 sin(2π f3t)

+A4 sin(2π f4t)
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where, ci(t)(i = 1, 2) represents the pure signal, nj(t)(i = 1, 2, 3, 4, 5) represents the white Gaussian noise. Please 
note that random noise signals of 10 dB, 5 dB, 0 dB, -5 dB, and -10 dB are added for simulating the signals 
affected by different intensities of noise. xij(t) denotes the signal to be denoised. xij(t) is the signal processed by 
the proposed joint denoising analysis.

method TS-WOA-VMD-CA-WT. The denoising effect is evaluated by using SNR and mean square error 
RMSE, which are mathematically expressed as follows:

(11)xij(t) = ci(t)+ nj(t)

Figure 1.   The denoising process based on the proposed TS-WOA-VMD-CA-WT.
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where, m represents the length of the signal, xi represents the original signal sequence, x′i represents the denoised 
signal sequence, and ci is the simulation signal sequence. The larger SNR and smaller RMSE indicate a better 
signal denoising effect.

The proposed method is compared with other denoising methods, including WOA-VMD-CA-WT, TS-VMD-
CA-WT, EMD-CA-WT and EEMD-CA-WT. In the two former algorithms, the proposed fusion algorithm is 
replaced by a single optimization algorithm, and in the two later algorithms, the VMD decomposition is replaced 
by the EMD and EEMD methods, respectively.

Single frequency signal denoising.  For the simulation signal c1(t) , five noise signals with different 
intensities are added to obtain five groups of original signals. The method described in Section “Method” is used to 
denoise the five groups of signals. Finally, we will take the simulation signal containing 10 dB, 0 dB, − 10 dB noise 
to show the denoising effect. Table 1 shows the initialization parameters of the fusion optimization algorithm. 
Figure 2 shows the iterative processes of TS-WOA-VMD, WOA-VMD and TS-VMD algorithms for achieving 
optimization. Figure  3 shows the correlation coefficients of each modal component after the decomposition 
of the c1(t) . Figures 4, 5, 6 show the signal denoising results for 10 dB, 0 dB, and -10 dB original signals by 
using TS-WOA-VMD-CA-WT, WOA-VMD-CA-WT, TS-VMD-CA-WT, EMD-CA-WT, and EEMD-CA-WT 
methods, respectively. Table 2 shows the denoising effects of five denoising methods on five groups of signals 
with different degrees of noise. The values in bold highlight the results based on the method presented in this 
paper.

Figure 2 shows the iterative process of VMD parameter optimization of the three algorithms by considering 
the 5 dB original signal. The Figures show that different algorithms achieve convergence within 20 epochs. The 
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Table 1.   The initial parameters of the optimization algorithm.

Parameter Region or value

Penalty factor: α α ∈ [1000, 20000], α ∈ Z

Number of IMFs: k k ∈ [3, 12], k ∈ Z

Step length of TS: h1 & h2 1000 & 1

The span of the upper and lower limits: d1 & d2 2000 & 3

The length of the neighborhood 5

Number of candidate solutions 5

Initial solution lb1 & lb2 5000 & 7

The size of population for WOA 20

The maximum iteration of TS & WOA 20
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Figure 2.   The iterative process of the proposed algorithm under 5 dB. (a) TS-WOA-VMD. (b) WOA-VMD. (c) 
TS-VMD.
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minimum fitness values of the fusion algorithm, WOA, and TS proposed in this paper are 0.2554, 0.2580, and 
0.2667, respectively. The smaller the permutation entropy is, the better the signal decomposition performance 
is. Therefore, the proposed fusion algorithm achieves the optimal effect and effectively improves the ability of 
parameter optimization. The whale algorithm is prone to fall into the local optima in the later stages due to its 
enveloping characteristic. As a result, the best VMD parameters cannot be obtained. Although the TS avoids the 
cycle of the search process based on the tabu table in the limited space, it is difficult to find the exact solution 
outside the range of step size. In the proposed method, because of the addition of tabu table, the whale method 
can perform accurate search in the local scope, while avoiding the repeated search in the global scope. As a 
result, it effectively avoids the problems, i.e., the whale algorithm is prone to falling in the local optima and the 
TS is unable to find the exact solution.
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Figure 3.   Correlation coefficients corresponding to different IMFs.

Figure 4.   A comparison of denoising effect comparison under 10 dB. From top to bottom: (1) TS-WOA-VMD-
CA-WT; (2) WOA-VMD-CA-WT; (3) TS-VMD-CA-WT; (4) EMD-CA-WT; (5) EEMD-CA-WT.
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Figure 5.   A comparison of denoising effect under 0 dB. From top to bottom: (1) TS-WOA-VMD-CA-WT; (2) 
WOA-VMD-CA-WT; (3) TS-VMD-CA-WT; (4) EMD-CA-WT; (5) EEMD-CA-WT.

Figure 6.   A comparison of denoising effect under -10 dB. From top to bottom: (1) TS-WOA-VMD-CA-WT; 
(2) WOA-VMD-CA-WT; (3) TS-VMD-CA-WT; (4) EMD-CA-WT; (5) EEMD-CA-WT.
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In Fig. 3, the first 8 signal components are selected for comparison due to the different optimal parameters 
obtained by different original signals and the number of decomposition layers. It can be found that as the signal-
to-noise ratio decreases, the correlation coefficient tends to average gradually, which indicates that when the 
signal-to-noise ratio is small, the effective information in the obtained modal component will decrease. In this 
case, the useful information contained in IMF2 will flow to other components. As usual, for those signals which 
are highly disturbed by noise, it is necessary to extract effective information from other components by means 
of wavelet threshold for further reconstruction.

Figures 4, 5, 6 show that no matter which method is used, it can de-noise the mixed noise signal and improve 
its matching degree with the pure signal. The decibel value here represents the ratio between the effective part and 
the noise part of the signal. Therefore, the process of adding 10 dB, 5 dB, 0 dB, − 5 dB, and − 10 dB white Gaussian 
noise gradually increases the influence on the pure signal. It is evident from Table 2 that with an increase in the 
proportion of the original signal noise, the index of SNR decreases, while the value of RMSE keeps increasing. 
This indicates that the denoising effect of various denoising methods decreases to a certain extent. Based on 
the horizontal analysis, i.e., the comparison of the same signal decibels, the TS-WOA-VMD-CA-WT method 
proposed in this work achieves the optimal effect for five kinds of noisy signals. The proposed method has the 
smallest mean square error and largest SNR. WOA-VMD-CA-WT and TS-VMD-CA-WT are second in terms 
of performance, whereas EEMD-CA-WT and EMD-CA-WT have low performance. The denoising performance 
of EEMD is better than EMD as EEMD effectively.

In addition, as compared with the decomposition methods of EMD and EEMD, the denoising result of 
VMD is smoother and closer to original signal without sharp and burr phenomenon. This is because the VMD 
overcomes the mode aliasing problem in EMD and determines the number of mode decomposition. For different 
signals, VMD can adaptively adjust its decomposition components to achieve the optimal effect. EEMD is 
essentially an improved EMD and the white noise is added in the decomposition process to avoid the appearance 
of mode aliasing. However, due to its characteristics, it inevitably introduces residual noise, which also affects 
its denoising performance. The method of TS-WOA-VMD-CA-WT obtains the optimal penalty factor and 
decomposition level of VMD by using fusion algorithm, thus making the denoising results closer to the pure 
signal. Moreover, it effectively avoids the burr and signal distortion.

Mixed frequency signal denoising.  When dealing with mixed frequency signals, the white Gaussian 
noise of 10 dB, 5 dB, 0 dB, − 5 dB, and − 10 dB is added in the original analog signal. The parameters of the fusion 
algorithm are initialized as presented in Table  1. The denoising process based on TS-WOA-VMD-CA-WT, 
WOA-VMD-CA-WT, TS-VMD-CA-WT, EMD-CA-WT, and EEMD-CA-WT methods is performed. The 

Table 2.   The denoising effect of five methods for single frequency simulation signal.

Noise intensity Indicator EMD-CA-WT EEMD-CA-WT TS-VMD-CA-WT WOA-VMD-CA-WT
TS-WOA-VMD-
CA-WT

+ 10 dB
RMSE 0.3248 0.1881 0.1847 0.1849 0.1571

SNR 12.8272 17.4676 17.3932 17.3854 18.8987

+ 5 dB
RMSE 0.3920 0.3441 0.2173 0.2151 0.2143

SNR 11.2907 12.5846 16.2832 16.3069 16.3386

+ 0 dB
RMSE 0.5267 0.4338 0.2706 0.2603 0.2600

SNR 9.2311 10.5910 14.5909 14.6792 14.6841

− 5 dB
RMSE 0.8428 0.7009 0.5413 0.3415 0.3364

SNR 5.8859 7.0212 9.2685 12.6553 12.8218

− 10 dB
RMSE 1.0186 0.9306 0.8460 0.8134 0.5818

SNR 3.1336 3.6410 4.7740 5.2666 7.2527

(b)                               (a)                               (c)
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Figure 7.   The iterative process of the proposed algorithm under 5 dB. (a) TS-WOA-VMD. (b) WOA-VMD. (c) 
TS-VMD.
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iterative results of the parameter optimization algorithm are shown in Fig. 7. The correlation coefficients of each 
modal component of the signal are shown in Fig. 8. The results of five signal denoising methods are presented 
in Table 3.The values in bold highlight the results based on the method presented in this paper. Figures 9, 10, 11 
shows the effect drawings of mixed frequency signal denoising with 10 dB, 0 dB and − 10 dB noise respectively.

In Fig. 7, the minimum fitness values obtained by three different parameter optimization algorithms are 
0.1732, 0.1745, and 0.1739, respectively. It is evident that for the simulation signals with mixed frequencies, 
the fusion algorithm proposed in this work still achieves better results during the optimization process, which 
is helpful for subsequent denoising. In Figs. 9, 10, 11, the curve obtained after denoising by using TS-WOA-
VMD-CA-WT method is more consistent with the pure signal and is smoother as well. Meanwhile, the analysis 
presented in Table 3 shows that the proposed algorithm in mixed frequency signal denoising effectively removes 
the noise components. For the proposed method, all signal-to-noise ratios reach the maximum and all root mean 
square errors reach the minimum, thus showing the versatility and stability.

In order to further verify the advantages of VMD decomposition based on parameter optimization algorithm 
over EMD, 5 dB noise signal is selected as an example for specific analysis. Figures 12 and 13 show the waveforms 
of signal components decomposed by VMD and EMD, respectively, where the parameters of VMD are obtained 
by using the fused parameter optimization algorithm TS-WOA-VMD. It is evident from Fig. 12(a) that the 
original noise-containing signal is decomposed into several IMFs, among which IMF1, IMF2, and IMF3 belong to 
relatively stable sub-sequences with different frequency scales. Based on the frequency domain analysis presented 
in Fig. 12, it is evident that their corresponding frequencies are exactly the three frequency values of simulation 
signal c2(t), i.e., 10 Hz, 50 Hz, and 40 Hz. For the IMFs obtained by EMD processing, the time-domain and 
frequency-domain waveforms in Fig. 13 show that there is frequency aliasing of IMF3 component. The serious 
endpoint effect appears on the left side of IMF4 and the energy leakage can be seen in the frequency domain 
corresponding to IMF4.These problems affect the decomposition accuracy of EMD to a certain extent. The VMD 
decomposition based on parameter optimization obtains better modal components adaptively, which effectively 
improves the ability of signal denoising.
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Figure 8.   Correlation coefficients corresponding to different IMFs.

Table 3.   The denoising effect of five methods for mixed frequency simulation signals.

Noise intensity Indicator EMD-CA-WT EEMD-CA-WT TS-VMD-CA-WT WOA-VMD-CA-WT
TS-WOA-VMD-
CA-WT

10db
RMSE 0.4297 0.3153 0.2250 0.2336 0.1906

SNR 15.7530 17.8848 21.3406 20.9175 22.7397

5db
RMSE 0.9150 0.6665 0.6730 0.5020 0.2751

SNR 9.0169 11.7289 11.5550 14.0098 19.6446

0db
RMSE 1.1660 0.7305 0.7608 0.5704 0.4647

SNR 7.3636 10.8547 10.3003 12.8753 14.8075

− 5db
RMSE 0.9630 0.8981 0.8503 0.6397 0.5952

SNR 8.7674 9.3238 9.5828 11.9271 12.7117

− 10db
RMSE 1.3259 1.3159 1.1091 1.1011 0.9299

SNR 6.2013 6.2645 7.2902 7.0898 8.8481
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Figure 9.   A comparison of denoising effect under 10 dB. From top to bottom: (1) TS-WOA-VMD-CA-WT; (2) 
WOA-VMD-CA-WT; (3) TS-VMD-CA-WT; (4) EMD-CA-WT; (5) EEMD-CA-WT.

Figure 10.   A comparison of denoising effect under 0 dB. From top to bottom: (1) TS-WOA-VMD-CA-WT; (2) 
WOA-VMD-CA-WT; (3) TS-VMD-CA-WT; (4) EMD-CA-WT; (5) EEMD-CA-WT.
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Figure 11.   A comparison of denoising effect under -10 dB. From top to bottom: (1) TS-WOA-VMD-CA-WT; 
(2) WOA-VMD-CA-WT; (3) TS-VMD-CA-WT; (4) EMD-CA-WT; (5) EEMD-CA-WT.

(a) Time domain waveform of IMF component.    (b) Frequency domain waveform of IMF component.

Figure 12.   The component waveforms after VMD processing.
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Application of machine tool vibration test
The actual signal source is based on the vibration data collected by the machine tool multi-source information 
acquisition platform. The experimental environment is located in a common machine tool workshop. There 
are multiple machines operating simultaneously and the personnel flow is high as well. There is a large amount 
of unknown noise in the workshop, which seriously impacts the vibration signals and is not conducive to the 
analysis of the performance of machine tools. The collected vibration signals are denoised based on the proposed 
TS-WOA-VMD-CA-WT method. In order to verify the feasibility and superiority of the proposed method, we 
compare it with other denoising methods. The vibration signal acquisition system used in the experiment is 
composed of IEPE piezoelectric acceleration sensor, DHDAS dynamic data acquisition and analysis device, and 
computer. The acquisition and analysis device is presented in Fig. 14(a). The vibration of each part of the machine 
tool is monitored by using the magnetic suction acceleration sensor and is then connected with the computer 

(a) Time domain waveform of IMF component.    (b) Frequency domain waveform of IMF component.

Figure 13.   The component waveforms after EMD processing.

Figure 14.   Vibration information acquisition experiment of machine tool.
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through 1394 bus for storage and subsequent analysis and processing. Figure 14(b) shows the sensor measuring 
point arrangement on the machine tool. The acceleration sensors are placed on the front of the headstock (A1), 
the side of the headstock (A2), and the bench vice position (A3) of the machine tool for collecting the vibration 
data for a long time. Figure 14(c) shows the interface of the signal acquisition software used in the experiment.

The sampling frequency set in the experiment is 1000 Hz. The sampled data with a length of 1000 is randomly 
selected from three measuring points for denoising.TS-WOA-VMD-CA-WT,WOA-VMD-CA-WT, TS-VMD-
CA-WT, EMD-CA-WT, and EEMD-CA-WT methods are used to denoise the three groups of signals. Since the 
pure vibration signal cannot be obtained, we introduce noise rejection ratio (NRR)25 as the evaluation index of 
signal denoising effect. NRR reflects the prominence of effective signals before and after denoising. The larger 
the value of NRR, the better is the denoising effect. The expression of NRR is expressed as follows:

where, σ 2
1  and σ 2

2  are the variance of the denoised signal before and after denoising, respectively. In this 
part the denoised results of a group of signals at the measurement point A1 are selected for visualization, as 
shown in Fig. 15. The corresponding NRR values of the three groups of signals denoised by different methods 
are shown in Table 4, where group 1, group 2, and group 3 signals are from the measured data of points A1, A2, 
and A3, respectively.①denotes TS- WOA-VMD-CA.②denotes WOA-VMD-CA. ③ denotes TS-VMD-CA. ④ 
denotes EMD-CA. ⑤ denotes EEMD-CA. In addition, the table compares the direct signal reconstruction in 
real vibration signal processing and the secondary processing through wavelet threshold method. ‘ − ’ represents 
the direct reconstruction, and ‘ + WT’ represents the complete signal denoising method proposed in this paper.

(14)NRR=10
(

lg σ 2
1 − lg σ 2

2

)

Figure 15.   The denoising results of 5 different methods. (a) original signal. (b) TS-WOA-VMD-CA-WT. (c) 
WOA-VMD-CA-WT. (d) TS-VMD-CA-WT. (e) EMD-CA-WT. (f) EEMD-CA-WT.
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As presented in Fig. 15, the five methods compared in this work have corrected the baseline drift phenomenon 
in the original signal to a certain extent. In addition, they have also reduced many burrs and protrudes in the 
original signal. A comparison of these five methods shows that the proposed TS-WOA-VMD-CA-WT retains 
more useful information in the signal, while reducing the noise. Moreover, the abrupt points in the denoising 
signal are reduced, and the whole signal becomes relatively smooth and clear. However, the denoising effect 
of EMD-CA-WT and EEMD-CA-WT is poor, and the noise of abnormal mutation of some signals cannot be 
removed. Since the intensity of noise added in the three groups of signals is different, the same method will have 
different NRR values for different signals. However, when processing the same group of data, the TS-WOA-
VMD-CA-WT method achieves the optimal effect, and the NRR values of the three groups of denoised signals 
are 4.1755, 3.4145, and 0.8184, respectively. Table 4 shows that the proposed method has the best denoising effect 
on the vibration data from different parts of the machine tool. It not only removes the noise signal adaptively, but 
also has good robustness in terms of adapting the vibration information of various parts of the machine tool. By 
comparing the signal reconstructed directly with the signal processed by wavelet threshold, we can find that the 
effect of wavelet threshold processing is better. This is because the result of direct reconstruction of decomposed 
signals will depend on the set correlation coefficient threshold. Especially for EMD and EEMD methods, direct 
reconstruction will even lead to almost no denoising effect due to the existence of modal aliasing and white noise 
residue in their obtained components. When using VMD method, it is also inevitable that the modal components 
used for reconstruction still carry a large amount of noise. However, the wavelet threshold method can further 
denoise these components, so as to obtain a better denoising effect. In short, TS-WOA-VMD-CA-WT also has 
advantages in denoising performance of real signals as compared with other methods.

Conclusions
In order to reduce the noise mixed in the vibration signals of machine tools, this work proposes a joint analysis 
denoising method TS-WOA-VMD-CA-WT. The VMD optimized by the new fusion algorithm is used to 
decompose the signal, and the effective signal components are selected based on the CA and denoised by the 
three-layer WT. Finally, the denoised signal is obtained by reconstruction. The significance of this study lies in 
that the useful information collected by the sensor can be extracted as much as possible through a complete set 
of vibration signal adaptive denoising method, and the discernability of the information can be enhanced. It lays 
a foundation for subsequent information fusion, and can be used in machine tool characteristic identification 
and fault diagnosis in the future.

The analysis and comparison of simulation experiment and actual experimental data shows that:

(1) The proposed denoising method can play a role in the preprocessing of machine tool vibration signals 
and achieve satisfactory noise suppression effect.
(2) As compared with the traditional EMD method and the improved EMD method, the VMD can adaptively 
adjust the optimal mode number according to the application situation, so as to obtain the appropriate mode 
component.
(3) As the key parameters of VMD, the penalty factor α and the number of decomposition layers k have a 
significant effect on the decomposition. Based on the parameter optimization algorithm proposed in this 
work, appropriate relevant parameter values can be obtained to improve the subsequent denoising ability.
(4) As compared with the typical WOA and TS algorithm, the parameter optimization based on fusion 
algorithm has higher accuracy and stability.
(5) TS-WOA-VMD-CA-WT, WOA-VMD-CA-WT, TS-VMD-CA-WT, EMD-CA-WT, and EEMD-CA-WT 
are used to denoise different signals mixed with different noise intensity. In addition, it is verified that the 
proposed method have larger SNR and smaller root mean square error. Therefore, its denoising ability is 
stronger.

Data availability
The data that support the findings of this study are openly available at https://​github.​com/​cheny​ushen​12138/​
denoi​sing.​git.
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Table 4.   Evaluation of vibration data of machine tools processed by different denoising methods.

Group ① ② ③ ④ ⑤

1
−  0.3254 0.3034 0.2528 0.0331 0.2294

+ WT 4.1755 3.5320 2.9554 2.7097 3.2160

2
−  0.2280 1.0140 0.4035 0.0839 0.0187

+ WT 2.6870 2.6691 2.5775 2.4208 2.6253

3
−  0.8184 0.6927 0.6731 0.0104 0.0596

+ WT 0.8184 0.7231 0.7176 0.7924 0.7970

https://github.com/chenyushen12138/denoising.git
https://github.com/chenyushen12138/denoising.git


16

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1505  | https://doi.org/10.1038/s41598-023-28404-7

www.nature.com/scientificreports/

References
	 1.	 Luo, W. et al. A hybrid predictive maintenance approach for CNC machine tool driven by digital twin. Rob. Comput. Integr. Manuf. 

65, 101974 (2020).
	 2.	 Kang, H. et al. Smart manufacturing: Past research, present findings, and future directions. Int. J. Process. Eng. MAN-GT 3, 111–128 

(2016).
	 3.	 Zhou, Y. & Xue, W. A multisensor fusion method for tool condition monitoring in milling. Sensors 18, 3866 (2018).
	 4.	 Soon, I. & Koh, S. N. Speech enhancement using 2-D fourier transform. IEEE Trans. Speech Audio Process. 11, 717–724 (2003).
	 5.	 Zhang, C. et al. Noise reduction in the spectral domain of hyperspectral images using denoising autoencoder methods. Chemom. 

Intell. Lab. Syst. 203, 104063 (2022).
	 6.	 Wang, X. et al. Integration of wavelet denoising and HHT applied to the analysis of bridge dynamic characteristics. Appl. Sci. Basel 

10, 3605 (2020).
	 7.	 Chen, G. et al. Main frequency band of blast vibration signal based on wavelet packet transform. Appl. Math. Modell. 74, 569–585 

(2019).
	 8.	 Wan, L. et al. Rolling bearing fault prediction method based on QPSO-BP neural network and Dempster–Shafer evidence theory. 

Energies 13, 1094 (2020).
	 9.	 Pan, Y. et al. Structural health monitoring and assessment using wavelet packet energy spectrum. Saf. Sci. 120, 652–665 (2019).
	10.	 Huang, N. et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. 

Proc. R. Soc. A Math. Phy. 454, 903–995 (1998).
	11.	 Wu, Z. & Huang, N. Ensemble empirical mode decomposition: A noise-assisted data analysis method. Adv. Adapt. Data Anal. 1, 

1–41 (2011).
	12.	 Jia, Y. et al. A novel denoising method for vibration signal of hob spindle based on EEMD and grey theory. Measurement 169, 

108490 (2021).
	13.	 Zheng, J. & Pan, H. Mean-optimized mode decomposition: An improved EMD approach for non-stationary signal processing. 

ISA Trans. 106, 392–401 (2020).
	14.	 Dragomiretskiy, K. & Zosso, D. Variational mode decomposition. IEEE Trans. Signal Process. 62, 531–544 (2014).
	15.	 Li, Y. et al. Research on ship-radiated noise denoising using secondary variational mode decomposition and correlation coefficient. 

Sensors 18, 48 (2018).
	16.	 Xiao, Q. et al. A small leak detection method based on VMD adaptive de-noising and ambiguity correlation classification intended 

for natural gas pipelines. Sensors. 16, 2116 (2016).
	17.	 Wang, C. et al. Early fault diagnosis for planetary gearbox based on adaptive parameter optimized VMD and singular kurtosis 

difference spectrum. IEEE Access 7, 31501–31516 (2019).
	18.	 Yu, M. et al. Variational Mode Decomposition and Permutation Entropy Method for Denoising of Distributed Optical Fiber 

Vibration Sensing System. Acta Optica Sin 42, 62–73 (2022).
	19.	 Hu, H. et al. Signal denoising based on wavelet threshold denoising and optimized variational mode decomposition. J Sensors 

2021, 1–23 (2021).
	20.	 Peng, Y. et al. A smooth denoising model of tunnel blasting vibration signal based on VMD. J. Vib. Shock 40, 173–179 (2021).
	21.	 Johnstone, I. & Silverman, B. Wavelet threshold estimators for data with correlated noise. J. R. Stat. Soc. B 59, 319–351 (1997).
	22.	 Yan, H. et al. MEMS hydrophone signal denoising and baseline drift removal algorithm based on parameter-optimized variational 

mode decomposition and correlation coefficient. Sensors 19, 4622 (2019).
	23.	 Wang, Y. et al. Ship cabin intelligent layout design based on tabu search algorithm. J. Huazhong Univ. Sci. Technol. Bat. Sci. Ed. 46, 

49–53 (2018).
	24.	 Zanin, M. & Zunino, L. Permutation entropy and its main biomedical and econophysics applications: A review. Entropy 14(8), 

1553–1577 (2012).
	25.	 Haiku, S., Kwok, L. & Feng, L. Partial discharge feature extraction based on ensemble empirical mode decomposition and sample 

entropy. Entropy 19, 439 (2017).

Acknowledgements
This research was financially supported by the National Natural Science Foundation of China (No. 52175472), 
Zhejiang Provincial Natural Science Foundation of China (No. LZY21E050002), Zhejiang Provincial 
Public Welfare Technology Application Research Project (No. LGG22E050031), National Innovation and 
Entrepreneurship Training Program for College Students(No.202211488023) , and Quzhou Science and 
Technology Plan Project(No.2022K90) .

Author contributions
C.F. and Y.C. contributed equally to this work, they are co-first authors. All authors reviewed the manuscript. 
C.F.: Writing-Reviewing  and Editing; Y.C.: Validation, Writing-Original Draft; X.D.: Conceptualization, Model 
Establishment; X.L., J.Z., Y.H.: Model Establishment.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to X.D.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

www.nature.com/reprints


17

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1505  | https://doi.org/10.1038/s41598-023-28404-7

www.nature.com/scientificreports/

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2023, corrected publication 2023

http://creativecommons.org/licenses/by/4.0/

	Denoising method of machine tool vibration signal based on variational mode decomposition and Whale-Tabu optimization algorithm
	Signal denoising theory
	Variational mode decomposition (VMD). 
	Correlation analysis. 
	Wavelet threshold denoising (WT). 

	Intelligent optimization algorithm
	Whale optimization algorithm (WOA). 
	Tabu search algorithm (TS). 

	Method
	Simulations
	Single frequency signal denoising. 
	Mixed frequency signal denoising. 

	Application of machine tool vibration test
	Conclusions
	References
	Acknowledgements


