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The effects of distractors 
on brightness perception based 
on a spiking network
Weisi Liu 1,2 & Xinsheng Liu 2*

Visual perception can be modified by the surrounding context. Particularly, experimental observations 
have demonstrated that visual perception and primary visual cortical responses could be modified 
by properties of surrounding distractors. However, the underlying mechanism remains unclear. To 
simulate primary visual cortical activities in this paper, we design a k-winner-take-all (k-WTA) spiking 
network whose responses are generated through probabilistic inference. In simulations, images with 
the same target and various surrounding distractors perform as stimuli. Distractors are designed 
with multiple varying properties, including the luminance, the sizes and the distances to the target. 
Simulations for each varying property are performed with other properties fixed. Each property 
could modify second-layer neural responses and interactions in the network. To the same target 
in the designed images, the modified network responses could simulate distinguishing brightness 
perception consistent with experimental observations. Our model provides a possible explanation of 
how the surrounding distractors modify primary visual cortical responses to induce various brightness 
perception of the given target.

Brightness perception is a fundamental function of the primary visual cortex and has been explored by previ-
ous studies1–5. Brightness perception of a given stimulus has been demonstrated to depend on the surrounding 
contexts1,6. Particularly, it is a common situation that the surrounding context consists of distractors which could 
modify visual perception of the given stimulus7–10. However, the underlying mechanism of how the distractors 
modulate visual cortical responses to generate different brightness perception of the same stimulus remains 
unclear.

In brightness perception of the same stimulus, neural responses are modulated by contexts around the 
stimulus. Contextual modulation is a common phenomenon during visual perception, including brightness 
perception2,6,11–16. Perceived brightness of a stimulus is affected by the surrounding context2,6. A recent experi-
mental study has suggested that illusory brightness perception known as simultaneous brightness contrast is 
associated with low-level visual process prior to binocular fusion2. In experiments with complex stimuli, bright-
ness perception of the target is influenced strongly by perceptual organizations and considered to be relative with 
high-level visual system6. The previous study on brightness perception has found that primary visual cortical 
neurons accomplish spatial integration of contextual information rather than response to illumination of the 
retina strictly3. Over extracellular recordings made in the retina, the lateral geniculate nucleus and the striate 
cortex during experiments, neural responses in the striate cortex were found to be correlated with brightness 
perception under all the designed conditions4. Besides brightness perception, contextual modulation also occurs 
during other visual experiments11,12. Through experiments with oriented flanking stimuli, short-range connec-
tions within local neural circuitry have been found to mediate contextual modulation of neural responses to 
angular visual features11. In experiments, the varying relative contrast of stimuli in neural receptive visual fields 
can cause contextual effects and impact the neural stimulus-selectivity12. Contextual modulation also appears in 
visual experiments of the figure-ground segregation, the shape aftereffect, the neural sensitivity to naturalistic 
image and the recognitions to associated objects13–16. Particularly, in the surrounding context, properties of dis-
tractors have been demonstrated in experiments with influences on neural responses and visual perception17,18. 
For example, the sizes of distractors, the contrast between distractors and the stimulus, as well as the distance 
from distractors to the stimulus, have effects on visual perception7–9. Through analyses of visual neural responses 
and the contrast of images, Rodriguez and Granger present a generalized formulation of visual contrast energy 
and provide an explanatory framework for performances of identifying targets when distractors have the varying 
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flanking distance and number7. Through experiments with designed flanking stimuli, Levi and Carney has found 
that the bigger flanks can lead to the smaller crowding phenomena9. Recently, with primary visual cortical neural 
responses of macaque monkeys to oriented stimuli, the influence of distances between distractors and the visual 
stimulus has been explained as a kind of spatial contextual effect on primary visual cortical activities8. In this way, 
effects of surrounding distractors on visual perception might be interpreted as a kind of contextual modulation 
of primary visual neural responses.

The primary visual cortex is a basic biological structure associated with a broad range of visual researches, 
including sparse responding, object recognition, contextual modulation and brightness perception2,4,11–13,19–28. 
The unsupervised learning within the primary visual cortex has been considered widely in neuroscience research, 
including the emergence of visual misperception29–32. In contextual modulation, both neural responses and 
neural interactions in the primary visual cortex could be modified11,13,33. Based on experimental observations, 
various models have been presented to explore visual perception. Batard and Bertalmío have improved a type of 
image processing technique which is based on differential geometry with properties of the human visual system 
and covariant derivatives, applying the image processing technique in exploration of brightness perception and 
color images correction5. The networks have performed as the effective models in exploring visual recognition 
and perception32,34–36. Considering interactions between boundary and feature signals in brightness perception, 
Pessoa, Mingolla and Neumann have developed a neural network which can implement boundary computa-
tions and provide a new interpretation of feature signals through the explicit representation of contrast-driven 
and luminance-driven information35. To simulate the visual cortex combined binocular information, Grossberg 
and Kelly have designed a binocular neural network which computes image contrasts in each monocular chan-
nel and fuses these discounted monocular signals with nonlinear excitatory and inhibitory signals to represent 
binocular brightness perception36. Considering influences of neural interactions, both contextual modulation 
and brightness perception in the visual cortex could be explored through the neural networks37,38. To explore 
the influence of distractors in brightness perception, contextual modulation of primary visual cortical neural 
responses and interactions might be the possible factors.

Probabilistic inference performs as the feasible exploring method for the mechanism of visual perception 
and neural coding39–44. Murray has presented a probabilistic graphical model with assumptions about light-
ing and reflectance to infer globally optimal interpretations of images, exhibiting partial lightness constancy, 
contrast, glow, and articulation effects39. To estimate brightness perception of images with spatial variation 
considered, Allred and Brainard have developed a Bayesian algorithm with the prior distributions designed to 
allow spatial variation in both illumination and surface reflectance and explored changes in image luminance 
from the aspect of spatial location44. Based on probabilistic inference, the winner-take-all (WTA) networks are 
designed for researches on visual cortical computational functions45–48. For simplification, these WTA networks 
are designed in the two-layer structure45–47. With neural spiking sequences generated, the plastic weights in 
these WTA networks have the learning rules as the Hebbian spike-timing-dependent plasticity (STDP) which 
is a kind of unsupervised learning49. With the Hebbian STDP, primary visual cortical sparse responses could be 
simulated from the WTA network28,46. The temporal structure of the neural spiking train could contribute to the 
information transformation compared to the rate-based neural coding50. The WTA networks consist of excitatory 
pyramidal neurons with lateral inhibitions, following neural microcircuits observed in layers 2/351. Besides, the 
k-winner-take-all (k-WTA) network could simulate the observed simultaneous activities of multiple neurons 
in experiments45. Constructing the k-WTA spiking networks, our previous studies have explored the primary 
visual cortical neural responding variability and illusory stereo perception52,53. Yet, these WTA networks have 
not considered the influence of distractors on cortical neural responses and brightness perception.

In this paper, the plastic two-layer k-WTA spiking network is constructed to explore how varying properties 
of distractors induce contextual modulation of neural responses to generate different brightness perception of 
the given stimulus. Connective weights have the STDP learning rule. Afferent neurons in the first layer of the 
network transform the visual information into feedforward Poisson spiking trains towards the second layer. 
There are inter-connected excitatory and inhibitory neurons in the second-layer network. Both excitatory and 
inhibitory neurons in the second layer generate responses in the stochastic methods. The network recognizes 
outside images depending on second-layer excitatory responses. In simulations, visual images are designed with 
the given target stimulus and various surrounding distractors. Distractors are designed with different grayscale 
values, sizes and distances to the target. The influence of one varying property is explored through simulations 
with other properties fixed. Modulations on neural responses and lateral interactions induced by each prop-
erty are measured over simulations. Brightness perception is simulated with responses from the network. Our 
simulations show that, to designed stimuli, varying properties of distractors could modulate second-layer neural 
responses and lateral interactions, inducing different brightness perception of the same target.

This article is structured as follows. In Materials and methods, the network and the corresponding probabil-
istic model are introduced. In the section of Results, images with various distractors perform as visual stimuli. 
For the designed network, neural responding modulations and brightness perception induced by distractors are 
investigated. With the same target stimulus and the same background, varying distractors can induce modula-
tions of second-layer excitatory neural spiking responses and interactions, leading to different brightness per-
ception. Finally, a conclusion is given.

Materials and methods
The structure of the spiking network.  In this subsection, the construction of our k-WTA network was 
introduced (Fig. 1). The network was designed following the basic neural circuit in the layer 2/3 for simulating 
primary visual cortical neural activities45,51. In the network, there were N first-layer afferent excitatory neurons, 
K second-layer excitatory neurons and J second-layer inhibitory neurons. In the second layer, inter-connections 
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among neurons were designed according to specific connective probabilities in the previous experiment and 
the study45,51. With connective probabilities, the structure of the network accorded with the observed neural 
circuit in the layer 2/3. Influences of both neural interactions and connective plasticity in visual perception were 
considered in the network54,55.

In Fig. 1, the black circle and triangle performed as example neurons while the gray ones indicated the other 
neurons. The black lines presented for the synaptic connections from the example neurons while the gray lines 
indicated the other connections. The excitatory and inhibitory connective weights were presented by arrows and 
squares, respectively. The thin lines indicated the fixed weights. The plastic excitatory connective weights were 
expressed by the thick lines with arrows.

Each second-layer excitatory neuron received excitatory inputs from both first-layer afferent neurons and 
other second-layer lateral excitatory neurons. Matrices W ∈ RK×N and V ∈ RK×K were excitatory feedforward 
and lateral connective weights, respectively. Each second-layer excitatory neuron had random connections from 
a subset of second-layer inhibitory neurons. With pEI = 0.6 as the special connective probability, each excitatory 

Figure 1.   The construction of the designed k-WTA spiking network. Solid circles indicated excitatory neurons. 
Solid triangles indicated inhibitory neurons. The network contained first-layer afferent excitatory neurons, 
second-layer excitatory neurons and second-layer inhibitory neurons. Lines with arrows indicated excitatory 
connections. Lines with squares indicated inhibitory connections. Plastic connections were represented by thick 
lines. Fixed connections were represented by thin lines. The dotted circular region within the bottom image 
indicated the afferent neural receptive field. Afferent neurons were induced by stimuli within receptive fields to 
generate Poisson spikes.
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neuron was randomly decided to be connected by an inhibitory neuron or not. With the inputs mentioned above, 
the kth second-layer excitatory neuron had the temporal membrane potential at the t  th timestep as:

where uztk was the temporal neural membrane potential, wknx̃tn and vkk′ z̃tk′ determined values of feedforward 
excitatory postsynaptic potentials (EPSP) induced by the n th first-layer afferent neuron and the k′ th second-layer 
excitatory neuron, respectively. wkn was the excitatory feedforward weight from the n th neuron in the first layer. 
vkk′ was the excitatory lateral weight from the k′ th second-layer excitatory neuron. The feedforward weights, as 
well as the lateral weights between excitatory neurons in the second layer were plastic and limited in (0, 1) . The 
excitability of the kth second-layer excitatory neuron was controlled by the parameter bk . In our simulations, bk 
was sampled from the uniform distribution of (0, 1) . Indices of second-layer inhibitory neurons projecting to 
the kth second-layer excitatory neuron were collected into a set as Jk . At the t  th timestep, the jth inhibitory 
neuron among Jk induced the inhibitory postsynaptic potential (IPSP) as vEI ỹtj . Lateral connective weights 
projected to excitatory neurons from inhibitory neurons were fixed in our network and expressed as a common 
parameter vEI . Because excitatory weights were limited in (0, 1) , vEI was equal to the mean excitatory connective 
strength of 0.5 in our simulations. With neural spiking trains from corresponding neurons, x̃tn , z̃tk′ and ỹtj were 
the synaptic traces at the t  th timestep. If the k′th second-layer excitatory neuron generated its spikes at 
{

t
(1)
k′ , t

(2)
k′ , t

(3)
k′ , · · ·

}

 , its temporal synaptic trace was given as:

where ε(·) was the synaptic response kernel, t(g)k′  was the generated time of the g th neural spike. The rise-
time constant and the fall-time constant in the synaptic response kernel were set as τr = 1 timestep, τf = 10 
timesteps45. With the common kernel ε(·) , x̃tn and ỹtj in Eq. (1) could be expressed similarly.

At the timestep t  , whether a neuron generated a spike or not was presented by another variable as the tem-
poral neural active state. In this paper, 1 ms in experiments was represented by a timestep in simulations. It was 
assumed in the simulations that only one spike could be generated by each neuron at most during each timestep. 
Under this assumption, the kth excitatory neural active state at t  was defined as a variable zkt ∈ {0, 1} . Depending 
exponentially on the temporal neural membrane potential, the distribution of zkt could be expressed as:

where the neural active state was denoted as ztk at t, uztk was the temporal neural membrane potential in Eq. (1). 
For normalization, another variable z′tk in the denominator took all the possible values of the neural active state. 
At each timestep t, a sample was generated from the distribution in Eq. (3) as the value of ztk . ztk = 1 indicated 
that the k th excitatory neuron emitted a spike at t. ztk = 0 indicated the silence of this neuron. If the k th excita-
tory neuron generated a spike, it had a refractory period of 5 timesteps and was set to be silent56. Neural active 
states reflected neural spiking responses generated from the network.

The network could simulate identifications of stimuli at each timestep t through the comparisons of the vector 
of excitatory neural responses �zt = (zt1, · · · , ztK )

′ in the second layer and the clustering sets53. If there were S 
stimuli in simulations, the network identified the temporal stimulus through its temporal action at ∈ {1, 2, · · · , S} . 
With the s th outside stimulus presented, the identification from the network was correct if at = s or incorrect 
otherwise. The network could receive the temporal reward as rt = 1 from the correct identification and rt = 0 
from the incorrect identification. From previous correct identifications to each stimulus, excitatory neural 
responses in the second layer were collected into the clustering set for comparisons and identifications in the 
next. To S stimuli, clustering sets were marked as C = {cs , s = 1 · · · , S} with a matrix cs containing previous 
neural responses to the s th stimulus. The network received temporal rewards from identifications to update 
both clustering sets and plastic connective weights, which was introduced in the next subsection and the sup-
plementary material.

In the second layer, the inhibitory neural spikes were generated in the stochastic method. With the frequency-
current (f-I) curve, the instantaneous firing rate of the jth second-layer inhibitory neuron was given as45:

where uytj was the membrane potential of the jth lateral inhibitory neuron at t. ρy
tj was the temporal neural 

firing rate. σrect(·) was the linear rectifying function. For uytj ≥ 0 , σrect
(

u
y
tj

)

= u
y
tj . Otherwise, σrect

(

u
y
tj

)

= 0 . 
With pIE = 0.575

(

pII = 0.55
)

 as the specific connective probability, each excitatory (inhibitory) neuron in the 
second layer was decided to have the lateral connection to the given inhibitory neuron or not. ϕj

(

ςj
)

 included 
the indices of second-layer excitatory (inhibitory) neurons those connected to the jth second-layer inhibitory 
neuron. Through stochastic decisions of second-layer lateral connections, the network could have the structure 
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as the experimental observations51. Second-layer excitatory (inhibitory) neurons connected to each inhibitory 
neuron with the common lateral connective weight as vIE

(

vII
)

 . Same with vEI in Eq. (1), vIE = 0.5
(

vII = 0.5
)

 in 
our simulations. In Eq. (4), the temporal synaptic trace of the kth lateral excitatory neuron (the j′th lateral inhibi-
tory neuron) was expressed as z̃tk(ỹtj′ ). With the temporal neural firing rate ρy

tj , Poisson spikes of the jth second-
layer inhibitory neuron were generated. The absolute refractory period of 3 timesteps was set for inhibitory 
neurons45. The temporal active state of the jth second-layer inhibitory neuron was expressed as ytj ∈ {0, 1}.

Through Poisson spikes, the afferent neurons transmitted visual stimuli towards the second-layer network. 
For the visual images in simulations, the stimulus projected into the receptive field could induce afferent neural 
responses. Various kinds of Gaussian filters had been applied to explore brightness perception57,58. In this paper, 
the receptive field of the nth afferent neuron was modeled with the Difference-of-Gaussians filter59:

where −→x = (x1, x2) was the point in the image, −→x n = (xn1, xn2) was the center of the n th afferent recep-
tive field. The nth afferent neural receptive field included center and surround Gaussian functions as gcn(·) and 
gsn(·) . Two Gaussian functions had the spatial radii as σ c

n and σ s
n . The ratio between two Gaussian functions was 

described as the parameter φ . Parameters in DoG functions were generated from the distributions in59. With 
a spacing distance of 2 pixels, the afferent neural receptive fields were positioned on a grid to cover the image 
cooperatively60.

Visual images in our simulations were 60× 60-pixel squares with different distractors which were intro-
duced in Results in detail. Because of designed spacing distances between afferent receptive fields, there were 
900 afferent neurons in the first-layer network. The second-layer network consisted of 100 excitatory neurons 
and 50 inhibitory neurons.

Probabilistic model and unsupervised identifications of images.  Through probabilistic inference, 
the network generated neural responses and identified the outside images. The probabilistic model and unsu-
pervised identifications were similar with those in our previous study53. The detail introduction was presented 
in the supplementary material.

In simulations, the image performed as the visual stimulus Sti . The network simulated neural responses in 
the second layer through the Hidden Markov model (HMM)46. At the timestep t, the temporary observed pattern 
−→o t was the instantaneous feedforward input traces �̃xt = (x̃t1, · · · , x̃tN )

T . Second-layer neural responses 
{

�zt , �yt
}

 
and lateral synaptic traces 

{

�̃zt , �̃yt

}

 were included in the temporal hidden state �ht . Plastic parameters in the model 
were collected as � = {W ,V ,C} . W ∈ RK×N and V ∈ RK×Kwere matrices of plastic connections. Clustering sets 
to stimuli were presented as C = {cs , s = 1 · · · , S}.

For the timestep t  , �Ot = (�o1, �o2, · · · , �ot) included occurred observations and �Ht−1 =
(

�h1, �h2, · · · , �ht−1

)

 pre-
sented hidden states up to the timestep t − 1 . The stochastic dynamics of the k-WTA network implemented a 
forward sampling process and sampled a new hidden active state �ht forward in time based on �Ot and �Ht−1 46. In 
the sampling of �ht , excitatory and inhibitory neural responses in the second layer were generated by Eqs. (3) and 
(4), which were introduced in detail in our previous study52. At each timestep, the network generated an action 
at to identify stimuli with second-layer excitatory neural spikes and obtained a temporal reward rt ∈ {0, 1}.

Biologically, the primary visual cortical neural responses are modified by dopaminergic rewards61. The previ-
ous WTA network had considered the reward-modified Hebbian learning62. In this paper, modulations of plastic 
weights at each timestep depended on the temporal reward rt . rt = 1 at the timestep t  indicated that the network 
made a correct identification. Then, plastic weights were updated at t  according to generated neural responses. 
Up to t  , sequences of observed variables and hidden variables were marked as �Ot = (�o1, �o2, · · · , �ot) , 
�Ht =

(

�h1, �h2, · · · , �ht

)

 . For rt = 1 , the connective modulations are impacted by several sub-sequences of dynam-
ics with their lengths as T ∈ {1, · · · , t} . Up to t  , the T-step sub-sequences of observed variables and hidden vari-
ables were marked as �OT = (�ot−T+1, · · · , �ot), �HT =

(

�ht−T+1, · · · , �ht

)

 . With the discount factor γ ∈ (0, 1) , the 
contribution of this pair of T - step sub-sequences to rt was given as α(T) = (1− γ )γ T−1 . With all the sub-
sequences of neural dynamics considered, the likelihood function L(�) was expressed as62:

The joint distributions p
(

�Oτ , �Hτ , Sti, rt
)

 and p
(

�Oτ , �Hτ , Sti;�
)

 could be factorized with the assumption of 
Hidden Markov model:

(5)

fn
(−→x ,−→x n

)

=
[

gcn
(−→x ,−→x n

)

− φ · gsn
(−→x ,−→x n

)]

,

gcn
(−→x ,−→x n

)

= exp
{

−
[

(x1 − xn1)
2 + (x1 − xn2)

2
]

/σ c2

n

}

,

gsn
(−→x ,−→x n

)

= exp
{

−
[

(x1 − xn1)
2 + (x1 − xn2)

2
]

/σ s2

n

}

,

(6)L(�) =

t
∑

τ=1

[

α(τ) ·
〈

rt · log p
(

�Oτ , �Hτ , Sti;�
)〉

p
(

�Oτ , �Hτ ,Sti,rt
)

]

.
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The likelihood function L(�) had the equivalent representation with the factorization in Eq. (7) as:

For the likelihood function L(�) in Eq. (8), the network updated plastic connective weights through an online 
variant of the Expectation–Maximization algorithm. In this paper, the E-step was to estimate the expectation 
with a single sample of neural responses46. With the single sample from p

(

�Oτ , �Hτ , Sti, rt
)

 , L(�) was rearranged 
and approximated as:

Then, with directions given by partial derivatives of L(�) , the network updated its plastic weights in the 
M-step63. In this paper, the directions for updating wkn and vkk′ were given as52,53:

The modification of each weight depended on the pre- and postsynaptic responses, as well as the temporal 
reward rt . rt controlled connective modifications. Connective weights only would be updated with the correct 
identification. In simulations, the discount factor γ = 0.9.

To identify the outside stimuli, the network applied the unsupervised method64. The detail genera-
tions of at and rt were introduced in our previous study53. The brief description of identifications was 
introduced in this subsection. Previous neural responses had been identified and collected into clus-
tering sets for latter identifications. For temporal second-layer excitatory neural spikes �zt and α , we 
calculated energy distances between �zt and clustering sets {cs , s = 1, · · · , S} to estimate parameters 
{

eaccept(α, cs , t), s = 1, · · · , S
}

 through R re-samples64. For {cs , s = 1, · · · , S} , a common parameter was set as 
eaccept(α, t) = min

{

eaccept(α, cs , t), s = 1, · · · , S
}

 . The likelihoods between �zt and clustering sets could be quanti-
fied by the probabilities 

{

p(α, cs , t) = p
(

e(α, cs , t) ≤ eaccept(α, t)
)

, s = 1, · · · , S
}

.
To the outside stimulus, at at the timestep t  performed as the temporal identification. The distribution of at 

was given as:

If at took a value equal to the serial number of the presented stimulus, the temporal identification was cor-
rect. In a First-In-First-Out (FIFO) manner, the clustering set would be updated at a timestep with the correct 
identification. In each update, �zt would be added to the end of the corresponding clustering set. After updating, 
the clustering set would delete redundant components from its beginning if its size exceeds ncluster . Detail intro-
ductions of updating clustering sets were introduced in our previous study53. In our simulations, ncluster = 20 , 
α = 0.05 , R = 50.

Results
Similar with stimuli in the previous study7, gray square images with different contexts are designed in simulations. 
This section is to explore how distractors modify brightness perception of the target stimulus.

The phenomenon of simultaneous brightness contrast.  This subsection is to test whether our net-
work can simulate distinguishing brightness perception of the same stimulus upon opposite backgrounds. In 
simulations, two sets of images are designed as visual stimuli.

(7)

p
(
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)

= p
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∣
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In the first set, two images are designed by combining a grey square with darker and lighter backgrounds, 
respectively65. Each image is a 60× 60-pixel square. The target stimulus is a 20× 20-pixel square in the center 
of each image (Fig. 2A). In the second set, 60× 60-pixel square images have the combined backgrounds. A 
20× 20-pixel target stimulus belongs to different parts in images (Fig. 2F). In both two sets of images, the grey 
target stimulus has a grayscale value of 0.5, the darker background has a grayscale value of 0.2 and the lighter 
background has a grayscale value of 0.8.

For stimuli in Fig. 2A, visual images are encoded by afferent neural spikes. In each learning simulation, two 
images are rearranged into a random sequence. In 200 learning simulations, connective weights and clustering 
sets are updated as introduced in Materials and Methods. Initial values of plastic feedforward and lateral con-
nective weights are sampled independently from a uniform distribution of (0.001, 1). During modifications, 
weights are limited in (0, 1). The testing phase consists of 100 simulations with weights and clustering sets fixed. 
A sequence of images is presented as in Fig. 2A. Neural responses over simulations are measured to explore con-
textual modulation induced by distractors. For images in Fig. 2F, our network is trained and tested in the same 
way. Besides, learning simulations and testing simulations in all the following subsections are designed similarly.

Brightness perception of the target is simulated through reconstructions of images. Over testing simulations, 
a point (x1, x2) in each image is reconstructed with averaged neural responses as:

where −→x = (x1, x2) is a point in the image, fn(·) is the Difference-of-Gaussian filter in Eq. (5) with its center 
as −→x n = (xn1, xn2) . wkn is the modified feedforward weight. zk , yn are averaged spiking rates of corresponding 
neurons over timesteps and simulations. I

(

x′1, x
′
2

)

 is the gray-scale value of a point �x′ =
(

x′1, x
′
2

)

 . Irec(x1, x2) is 
the reconstructed gray-scale value of (x1, x2) . The reconstruction in Eq. (12) performs as averaged brightness 
perception. Reconstructions of two images are normalized before comparison. Reconstructed gray-scale values 
of all the points in two images are collected together into a set. The mean value and standard deviation of this set 
are common parameters for normalizations. In this way, perception of the same target upon different contexts 
can be simulated and compared. For the first set, the target in Sti. 1 appears to be lighter (Fig. 2B). For the second 
set, the target in Sti. 4 appears to be lighter (Fig. 2G). Simulated brightness perception has the relationship as 
same as that in experiments65.

The contextual modulation index (CMI) and the cross-correlation are used to qualify contextual modifications 
of excitatory neural responses and excitatory neural lateral interactions, respectively. For instance, the CMI of 
the k th second-layer excitatory neuron to Sti. 1 and Sti. 2 is calculated as37:

where rk1 and rk2 are spiking counts of the k th excitatory neuron to Sti. 1 and Sti. 2, respectively. If rk1 = rk2 , 
responses of this neuron to two stimuli are same and CMIk = 0 . If rk1  = rk2 , two stimuli induce different 
responses of this neuron and CMIk  = 0 . In this way, a non-zero CMI indicates contextual modulation of neural 
responses. CMI in Eq. (13) is limited within [−1, 1] by the denominator. With an absolute value closer to 1, a 
CMI reflects larger contextual modulation induced by different stimuli. For a neural population, contextual 
modulation of neural responses can be reflected by the histogram of CMIs. For second-layer excitatory neurons, 
non-zero CMIs in Fig. 2C,H indicate that our network can simulate contextual modulation of neural responses 
induced by different backgrounds.

The cross-correlation of each pair of excitatory neurons in the second layer quantify their interactions55. 
Cross-correlations are calculated with the time lag of 0. To reflect influences on neural responding cross-cor-
relations, differences between neural responding cross-correlations to each set of images are calculated. For a 
pair of excitatory neurons, a non-zero difference of neural cross-correlation indicates the context can induce 
the modulation on their interactions. As shown in Fig. 2D,I, our network can simulate contextual modulation 
of neural interactions.

Our spiking network can simulate sparse neural responses to images45,46. To two sets of designed images 
in Fig. 2A,F, temporal averaged firing rates of second-layer excitatory neurons to images are calculated over 
testing simulations. As shown in Fig. 2E,J, neural responding strengths are expressed by the varying color. For 
the convenient observation, the sequence of neurons is re-arranged according to their responding strengths to 
each set of images. At each timestep, the darker rectangular block indicates the stronger responding strength 
of a neuron. The white blocks stand for the minimum responding strength of 0. To an image, some excitatory 
neurons emit spikes intensely while other excitatory neurons generate few spikes. Different images can induce 
intense neural responses of different subsets of second-layer excitatory neurons. After learning, our network can 
simulate sparse and distinguishing responses to different images.

We also provide brief simulations of anchoring66. Images in Fig. 2K perform as another set of visual stimuli. 
The grey target stimulus has a grayscale value of 0.5. The darker background has a grayscale value of 0.2. Other 
lighter backgrounds have grayscale values of 0.8, 0.9 and 1, respectively. Brightness perception simulated from the 
network and the anchoring function in the previous study66 are shown in Fig. 2L. With the background becoming 
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lighter, varying trends of brightness perception in subplots are similar. Our network can provide simulations of 
the basic phenomenon of anchoring.

Simulations in this subsection show that our network can reflect contextual modulation of neural responses 
and interactions, simulating opposite brightness perception of the same target.

Modulations and perception induced by distances between distractors and targets.  Recent 
study has explored illusory brightness perception induced by different orders of presentations of two stimuli67. 
In this paper, the additional gray-scale squares are designed around the target and perform as distractors. It is to 
explore how distractors modify brightness perception of the given target.

In this subsection, distractors are designed to have different distances to targets in visual images. In our 
simulations, the gray patch is upon different contexts in Fig. 3A. Each image is a 60× 60-pixel square. The 
20× 20-pixel grey target has a grayscale value of 0.5, the darker background has a grayscale value of 0.2 and the 
lighter background has a grayscale value of 0.8. 10× 10-pixel distractors have a common grayscale value of 1. 
Distractors in Sti. 3 locate along boundaries of the image. Distractors in Sti. 4 become closer to the target with 
both horizontal and vertical moving steps of 5 pixels.

With images in Fig. 3A, 200 learning simulations and 100 testing simulations are designed for our network. 
Over testing simulations, a reconstruction of an image is given by Eq. (12). Average perception of the target is 
calculated and shown in Fig. 3B. Brightness perception of the target stimulus is darker when the distance from 
distractors to the target is shorter. The varying perception can reflect influences of distances between distractors 
and the target. The contextual modulation index (CMI) and the cross-correlations are used to qualify influences 
on the excitatory neural responses and lateral interactions, respectively. To calculate modulations induced by 
different distances, neural responses to Sti. 1 are collected for comparison. Non-zero CMIs in histograms reflect 
induced responding modifications of second-layer excitatory neurons (Fig. 3C). When distractors become closer 
to the target, there are more CMIs having the absolute value close to 1. It indicates that, for designed images, a 
shorter distance between distractors and the target can induce larger neural responding modulations.

Differences between neural responding cross-correlations to Sti. 1 and other stimuli are calculated. As shown 
in Fig. 3D, a non-zero difference of neural cross-correlation indicates the influence of the varying distance on 
neural interactions. With simulations of Sti. 1 for comparison, different amplitudes of neural interactive modi-
fication reflect influences of distances between distractors and the target.

Simulations show that our network can reflect contextual modification induced by distances between dis-
tractors and the target. Modified neural activities simulate different perception of the same target. For designed 
images in Fig. 3A a shorter distance makes our network simulate darker perception of the same target.

Modulations and perception induced by grayscale values of distractors.  In this subsection, dis-
tractors are designed to have different grayscale values. Four 60× 60-pixel images are designed as in Fig. 4A. The 
target and backgrounds are the same with those in Fig. 3A. The 10× 10-pixel distractors in Sti. 3 has a grayscale 
value of 0.9. The distractors in Sti. 4 has a grayscale value of 1.

200 learning simulations and 100 testing simulations are designed for the network. Over testing simulations, 
brightness perception of the target is simulated and shown in Fig. 4B. Our simulations show that the target with 
lighter distractors appears to be darker. With Sti. 1 for comparison, CMIs modulated by other 3 stimuli are 
measured for each neuron. Induced by different distractors, neural responding modulations are shown in Fig. 4C. 
Simulations show that, to designed images in Fig. 4A, lighter distractors can induce larger neural responding 
modulations. The network can reflect modifications of excitatory neural responses induced by grayscale values 
of distractors. Differences of neural responding cross-correlations are calculated and shown in Fig. 4D. A non-
zero difference of neural cross-correlation shows how grayscale values of distractors affect neural interactions. 
Compared to simulations of Sti. 1, interactive modulations between each pair of neurons are induced by stimuli 
and reflected by amplitudes of non-zero differences.

This subsection explores how grayscale values of distractors modify the neural activities of the network. With 
modulated responses, our network can simulate distinguishing brightness perception induced by grayscale values 
of distractors. For designed images in Fig. 4A, lighter distractors make our network simulate darker perception 
of the target.

Figure 2.   Perception of simultaneous brightness contrast from the network. (A) Images used as the first set 
of visual stimuli in simulations. (B) Averaged brightness perception of target squares with neural responses 
from our network. Perception is averaged over simulations, timesteps and pixels. Perception of the same gray 
square is lighter upon the darker background. (C) The histogram of contextual modulation indices (CMIs) 
about excitatory neural responses to Sti. 1 and Sti. 2. A non-zero CMI indicates contextual modulation of neural 
responses. (D) Difference of excitatory neural cross-correlations to Sti. 1 and Sti. 2. A non-zero difference 
indicates contextual modulation of interactions between paired neurons. (E) Temporal excitatory neural firing 
rates to Sti. 1 and Sti. 2 averaged over simulations. Color of each block indicates neural responding strength. 
Different images can induce intense responses of different subset of neurons. (F) Images used as the second 
set of visual stimuli in simulations. (G) Averaged brightness perception of target squares. (H) The histogram 
of CMIs about excitatory neural responses to Sti. 3 and Sti. 4. (I) Difference of second-layer excitatory neural 
cross-correlations to Sti. 3 and Sti. 4. (J) Temporal second-layer excitatory neural firing rate to Sti. 3 and Sti. 4 
averaged over simulations. (K) Images used as the third set of visual stimuli. (L) Averaged brightness perception 
of the target from both the neural network and the anchoring function. With the background becoming lighter, 
varying trends of estimated brightness perception in subplots are similar.

▸
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Figure 3.   Brightness perception induced by distances between distractors and targets. (A) Images used as 
visual stimuli in our simulations. (B) Averaged brightness perception of target squares. For designed stimuli, 
distractors with a shorter distance induce darker brightness perception of the target. (C) The histogram of 
excitatory neural CMIs to stimuli. A non-zero CMI indicates the neural responding modification induced by 
the varying distance between distractors and the target. For a neural population, the histogram of CMIs reflects 
contextual modulation of neural responses. For designed stimuli, distractors with a shorter distance can induce 
larger neural responding modulations. (D) Difference of excitatory neural responding cross-correlation to 
stimuli. A non-zero difference indicates the modulation of neural interactions induced by the varying distance. 
With simulations of Sti. 1 for comparison, different amplitudes of neural interactive modification reflect 
influences of the varying distance.
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Modulations and perception induced by sizes of distractors.  In this subsection, distractors are 
designed to have different sizes. The 60× 60-pixel images in Fig. 5A have the same target and backgrounds as 
those in Fig. 3A. With a grayscale value of 1, square distractors have different sizes. In our simulations, Sti. 3 has 
5× 5-pixel distractors while Sti. 4 has 10× 10-pixel distractors.

With stimuli in Fig. 5A, the learning phase and the testing phase are designed. Over testing simulations, 
reconstructions of the target given by Eq. (12) perform as brightness perception. As shown in Fig. 5B, for 

Figure 4.   Brightness perception induced by grayscale values of distractors. (A) Images used as visual stimuli 
in our simulations. (B) Averaged brightness perception of target squares. For designed stimuli, the target with 
lighter distractors appears to be darker. (C) The histogram of CMIs of excitatory neurons to images. Non-zero 
CMIs indicate neural responding modifications induced by grayscale values of distractors. For designed stimuli, 
lighter distractors can induce larger neural responding modulations. (D) Differences of excitatory neural 
responding cross-correlation to stimuli. For each pair of neurons, amplitudes of non-zero differences reflect 
influences of the varying grayscale value of distractors.
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designed images in simulations, the stimulus with bigger distractors appears to be darker. With Sti. 1 for com-
parison, CMIs and differences of neural responding cross-correlations are measured for other three stimuli. The 
varying size of distractors could induce neural responding modulations (Fig. 5C). Distractors with larger size 
can lead to larger modulations of neural responses. A non-zero difference of neural cross-correlation indicates 
contextual modulation of neural interactions induced by the varying size (Fig. 5D).

Neural responses and interactions modified by sizes of distractors are measured and reflected from the net-
work. With modulated responses, our network can simulate distinguishing brightness perception induced by the 

Figure 5.   Brightness perception induced by sizes of distractors. (A) Images used as visual stimuli in our 
simulations. (B) Averaged brightness perception of target squares. For designed stimuli, perception of the same 
gray square is darker with bigger distractors. (C) The histogram of CMIs to stimuli. For designed stimuli, larger 
distractors could induce larger neural responding modulations. (D) Differences of excitatory neural responding 
cross-correlation to stimuli. A non-zero difference indicates the modulation of neural interactions induced by 
the varying size of distractors.
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varying size. For designed images in Fig. 5A, bigger distractors make our network simulate darker perception 
of the target.

Conclusion
This paper has provided a probabilistic framework to explore how distractors modify primary visual cortical 
responses and induce different brightness perception of the same stimulus. Recent experimental study has dem-
onstrated that the phenomenon of simultaneous brightness contrast is associated with primary visual cortical 
neural responses2. Besides, contextual effects are also associated with the primary visual cortex13,33,38. While 
brightness perception has been studied for a long time, how distractors modify primary visual cortical neural 
responses to induce different brightness perception of the same stimulus is still not clear. To explore the cor-
responding mechanism, we design a stochastic spiking network with plastic connections in this study. Visual 
images are designed to control varying properties of distractors, excluding undesired factors in simulations.

Our network is constructed with two layers. With neural receptive fields as Difference-of-Gaussians filters, 
first-layer afferent neurons generate Poisson spiking responses to received stimuli. Through forward sampling 
in the Hidden Markov Model, second-layer excitatory and inhibitory neurons generate their spiking responses 
and communicate with each other. With multi-dimensional excitatory neural spiking responses in the second 
layer, the network identifies the presented stimulus and receives rewards which control connective modulations.

Applications of afferent receptive fields in this paper remove the strict limitation on the number of neurons 
in previous WTA networks while simulating sparse neural responses45,46. Compared to neural populational cod-
ing with Gaussian functions58, this model considers neural interactions and synaptic plasticity in the primary 
visual cortex. In this way, besides neural responses, the plasticity-based influence is also considered to explore 
illusory brightness perception induced by distractors54. Compared to the feedforward network model for visual 
perception with distractors, our recurrent network considers influences of neural lateral interactions68. In biology, 
the dopaminergic reward has been found to participate in the synaptic plasticity in the primary visual cortex61. 
Compared to previous networks on brightness perception5,35,36,57, this model provides unsupervised identifica-
tions of stimuli and considers influences of rewards on learning. This unsupervised method only depends on 
generated neural spikes which are easy to obtain from simulations. Without limiting the dimension of neural 
responses, the unsupervised identification can provide online rewards to control connective modifications.

This paper explores how properties of distractors modulate neural responses and induce different brightness 
perception of the given target. For images as visual stimuli in simulations, distractors are designed with the 
varying grayscale value, the size and the distance to the target. Over simulations, both brightness perception of 
the target stimulus and neural responding modulations are measured. Our network can reflect modulations on 
both neural responses and interactions induced by each property of distractors, simulating different brightness 
perception with modulated responses.

Recent experimental observations have localized brightness perception to a site preceding binocular fusion2. 
Following the associated biological structure, our network can simulate both brightness perception and con-
textual modifications at the same time, providing a theoretical framework based on probabilistic inference to 
explore how distractors modulate neural responses and lead to different brightness perception of the same target. 
Our model provides an alternative method to explore brightness perception from contextual modification of 
primary visual cortical neural responses and interactions.

Data availability
Supporting codes and data will be made available upon request to the corresponding author.
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