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Distinctive physical insights driven 
from machine learning modelling 
of nuclear power plant severe 
accident scenario propagation
K. Hossny 1*, W. Villanueva 1,2 & H. D. Wang 1

The severe accident scenario propagation studies of nuclear power plants (NPPs) have been one 
of the most critical factors in deploying nuclear power for decades. During an NPP accident, the 
accident scenario can change during its propagation from the initiating event to a series of accident 
sub-scenarios. Hence, having time-wise updated information about the current type of accident sub-
scenario can help plant operators mitigate the accident propagation and underlying consequences. 
In this work, we demonstrate the capability of machine learning (Decision Tree) to help researchers 
and design engineers in finding distinctive physical insights between four different types of accident 
scenarios based on the pressure vessel’s maximum external surface temperature at a particular time. 
Although the four accidents we included in this study are considered some of the most extensively 
studied NPPs accident scenarios for decades, our findings shows that decision tree classification could 
define remarkable distinct differences between them with reliable statistical confidence.

Nuclear reactor safety (NRS) is related to studying possible accident scenarios that can occur in a nuclear power 
plant (NPP). The purpose of these studies and research is to ensure the safe operation of the NPP. The importance 
of this field comes from the fact that a single major accident can cause catastrophic damage to the environment, 
not to mention the risk of losses in personnel. Severe accident scenario propagation has been studied extensively 
since the dawn of nuclear power generation1–5. It has been studied from different points of view, including but 
not limited to; accidents initiating events and probabilities, instrumentation faults, initiating events propaga-
tion, neutronic, and thermal–hydraulic and materials behaviour during different accident scenarios. However, 
due to the sensitivity and complexity of the subject matter, most of the studies were performed computationally 
without the use of machine learning (ML). Thanks to the massive advancement in computational power since 
the mid-2000s, ML applications in various fields have been extensively studied in the past decade. This included 
broad research areas such as self-driving vehicles, disease detection, explosives detection, stock market behaviour 
prediction, revolutions and public opinions prediction, etc.6–11. In the past three years, much effort has been 
put into studying ML applications in the NRS field. Most of the ML applications in NRS were oriented toward 
fault detection and quantification, transients quantification, and improving prediction accuracies by coupling 
different optimisation techniques with ML models.

H. Wang et al. coupled support vector machines (SVM) and particle swarm optimisation (PSO) to diagnose 
and analyse different faults in NPPs12. They also used kernel principal component analysis (KPCA) to reduce 
false alarm rates in fault identification by differentiating between the sensors’ malfunctions and anomalies13. 
Liu et al.14 tried to use probabilistic support vector regressors (PSVR) to predict the reactor coolant pump 
(RCP) seal leakage from different internal and external sensors. Zhao et al.15 tried detecting failure during nor-
mal operation and accident scenarios using a dynamic Bayesian network (DBN).  Chae16 worked on detecting 
flow-accelerated corrosion in cooling pipes using SVM, convolutional neural networks (CNN), and long-short 
term memory (LSTM) models . Nicolau et al.17 used a real-time decision tree expert system to identify the root 
cause of accidents from different sensor readings.  Jamil et al.18 studied the use of PCA and fisher discriminant 
analysis (FDA) in identifying control rod withdrawal and external activity insertion faults. Mandal et al.19 tried 
to locate and detect the faulty sensor from a set of sensors’ readings and then classify the fault patterns using 
singular value decomposition (SVD) and symbolic dynamic filter (SDF). Peng et al.20 studied fault detection 
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using deep belief neural networks (DBNN), back propagation neural networks (BPNN), and SVM.  Yu et al.21 
worked on detecting multiple fault detection, isolation, and reconstruction of sensors by coupling PCA with a 
corrected reconstruction algorithm (CRA) and cyclic PCA (CPCA). Meng et al.22 coupled the objective function 
method (OFM) with an SVM classifier to detect the loose parts in an NPP primary coolant circuit. Ayodeji et al.23 
used SVR to detect low-level and large leak rates in the steam generator. Li et al.24 improved the fault diagnosis 
accuracies in NPPs by reporting different models’ weighted voting and popularity voting methods in ensemble 
learning models (ELMs). Hadad et al.25 worked on classifying design basis accidents using multilayer percep-
tron (MLP) models. Kim et al.26 used a recurrent neural network (RNN) to improve the detection accuracies of 
multisensor signal measurements. Vadd et al.27 used a DBN to classify whether the initiating events were caused 
due to safety malfunction or a cyber-attack. Mo et al.28 studied transient severity quantitively and qualitatively 
using dynamic neural network aggregation. Mohapatra et al.29 studied the possibility of detecting and classifying 
possible magnetic position sensor faults in the tokamak using different ML techniques such as MLP, K-nearest 
neighbour (KNN), support vector classifier (SVC), Gaussian naive Bayes (GNB), decision tree classifier (DTC), 
and random forest classifier (RFC) models.

The above literature showed the use of ML applications in NRS. It mainly focused on predicting, identify-
ing, or quantifying accident parameters and root causes. In this study, we propose using a DTC algorithm to 
differentiate between accident scenarios and analyse the data for the studied accident scenarios to gain physical 
insights into their distinctive differences. We studied how a DTC algorithm would view the data and extract the 
thresholds that provided its predictive classification decision capabilities. This can point out significant numerical 
thresholds for each feature that, with further analysis, can point out critical insights that researchers and design 
engineers have been ignoring or missing. Hence, using the proposed analysis method can provide an extra hand 
in exploring the data and the distinctive features’ thresholds for each accident. We used the time-wise pressure 
vessel’s maximum external temperature to differentiate between four overlapping accident scenarios in a light 
water reactor (LWR), which are (1) station blackout (SBO) without in-vessel retention (IVR) by external reactor 
vessel cooling (ERVC), (2) loss of coolant accident (LOCA) in the presence of SBO without IVR-ERVC, (3) SBO 
with IVR-ERVC, and (4) LOCA in the presence of SBO with IVR-ERVC. In the cases with IVR-ERVC, external 
reactor vessel cooling was applied one hour after the accident initiation (time = Zero). The aforementioned acci-
dent scenarios will be referred to by their labels of 0, 1, 2, and 3, respectively. It is assumed that external tempera-
ture sensors have not been subjected to radiation damage, overheating, or rapid temperature changes. Hence, we 
chose the maximum external surface temperature as it is more reliable compared to the internal temperature in 
case of severe accident scenarios. Figure 1 shows the pressure vessel’s time-wise maximum external temperature 
up to 24,000 s which is the calculated time of failure of the pressure vessel in case of any of the accident scenarios 
mentioned above. The difference between the temperature behaviour of the accidents in the first 2000s is due to 
the delay in the automatic depressurization system (ADS) activation in the SBO accidents. The reason behind 
this delay, in case of SBO accidents, is that the coolant level drop rate must be significant to present the need for 
activating the ADS to depressurize the reactor’s RPV. It also demonstrates the overlap between the four studied 
accident scenarios regarding the pressure vessel’s external maximum temperature behaviour. Visually, we can 
observe the temperature profile differences between accidents 0 and 1 and 2 and 3 at times above 5000 s. However, 
we cannot follow or calculate the differences between the four accident scenarios at times below 5000 s with 
proper statistical significance. The same issue is present when trying to find the distinctive differences between 
accident scenarios labelled 2 and 3 at times higher than 10,000 s. Hence, we used the decision tree (DT) paths 

Figure 1.   Pressure vessel’s external maximum temperature vs time.
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of the DTC model we developed to find those distinctive differences. The developed model performance and 
insights we gathered from the decision paths will be extensively presented and discussed in the “Results and 
discussion” section. However, model development will be presented and discussed in the “Methods” section. 
The data provided in Fig. 1. is generated synthetically from MELCOR. MELCOR is an integral code for severe 
accidents in a NPP, which is employed to simulate a variety of severe accident phenomena4,30. In this study, two 
severe accident scenarios were considered: station blackout (SBO) and a large break ( 0.1m2 break area at the 
main steam line) loss-of-coolant accident (LOCA) with station blackout (SBO). In addition, the in-vessel melt 
retention (IVR) strategy, a postulated mitigation strategy, has been applied to these two accident scenarios. 
Thus, there are 4 cases to be calculated in MELCOR: SBO and LOCA, with and without an IVR strategy. In each 
MELCOR simulation, a Nordic BWR with a 3000 MWth nominal power at its original installation is modeled, 
more details can be found in the references4. The thermal–hydraulic response of this reactor is calculated as a 
function of time for accidents 0 and 1 and 2 and 3, respectively, in MELCOR, including surface temperatures 
of the vessel, internal, and external pressures. The mesh configuration in each MELCOR simulation generates 
28 uneven segments along the vessel’s lower plenum. Hence, we obtained the maximum external temperature 
of the RPV wall at a particular time by comparing the external temperatures in different segments, generating 
a sub-dataset including two features, ’Time’ and ’Temp’, for each case. Accordingly, there are 1084 samples in 
the training dataset.

Results and discussion
The developed classifier uses the DT algorithm with 22 minimum samples per leaf. We cross-validated the model 
performance according to four classification metrics; (1) precision score, (2) accuracy score, (3) f1 score, and (4) 
recall score. The four metrics were calculated using Eqs. (1)–(4), respectively. TPC , TNC , FPC , and FNC are true 
positive class, true negative class, false positive class, and false negative class, respectively. Also, wi , is the samples 
weight of the i class in the dataset. We used the Monte Carlo cross-validation method in testing the model’s 
performance robustness. We performed the cross-validation by training and testing the model over 50 iterations. 
The initialising seed of the DT algorithm and the samples included in the training and test dataset were randomly 
changing. Table 1 lists the mean of each training and test metrics and their associated standard deviation and 
relative error. We calculated the relative error using the formula illustrated in Eq. (5). The motive behind report-
ing training and test metrics is to ensure the model’s generalisation capability and avoid overfitting. We used the 
relative error metric as a measure of the standard deviation significance for the training and test metrics which 
were 1% and 3%, respectively. We selected one of the developed models and analysed its performance metrics, 
as listed in Table 2. Although it was not one of the top-performing models, after studying its decision-making 
process, we found that the insights it provides are more general than other top-performing models from the 
metrics point of view. As mentioned earlier, this is a multi-class problem. Hence, Table 2 lists the performance 
metrics for each class regarding precision, recall, and f1 scores. The data recorded in Table 2 shows that classes 
2 and 3 are the top-performing classes. This is due to the distinctive differences that distinguish each class from 
the rest in the accident progression, especially within the time range between 10,000 and 24,000 s, as shown in 
Fig. 1. On the other hand, classes 0 and 1 showed the least performance due to the overlapping behaviour from 
the beginning to the end of the studied time range. To gain further insights into the model performance, we 
plotted the confusion matrices of the training and the test data subsets, as shown in Fig. 2. A confusion matrix 
helps identify which classes have been mislabelled (confused) for another class. The x-axis represents how the 
model predicted the class, while the y-axis represents the true class of the sample. The numbers allocated in each 
position represent the number of samples predicted to be correctly or incorrectly labelled. Hence, ideally, for 
100% classification metrics, the confusion matrix should only include the number of samples in the diagonal with 

Table 1.   Cross-validated developed models performances.

Training 
accuracy

Training 
precision

Training F1 
score

Training 
recall Test accuracy

Test 
precision Test F1 score Test recall

Mean 0.86 0.86 0.86 0.86 0.82 0.81 0.81 0.81

Standard 
deviation 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03

Relative error 0.01 0.01 0.01 0.01 0.03 0.03 0.03 0.03

Table 2.   Selected Model Performance.

Training 
accuracy

Training 
precision

Training F1 
score

Training 
recall Test accuracy Test precision Test F1 score Test recall

Class 0

0.87

0.78 0.81 0.85

0.79

0.71 0.75 0.79

Class 1 0.89 0.80 0.73 0.76 0.66 0.59

Class 2 0.91 0.94 0.97 0.84 0.89 0.94

Class 3 0.9 0.91 0.92 0.88 0.86 0.84

Mean 0.87 0.87 0.87 0.8 0.79 0.79
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zeros in the rest. Studying the confusion matrix presented in Fig. 2. we can observe that the most confused classes 
were class 1, misclassified as class 0. This reflects the nature of overlapping in the behaviour shown in Fig. 1.

We studied the first four layers of the DT of the selected model to extract the Thresholds upon which the 
algorithm chose to split and classify the data, as shown in Fig. 3. The term ’Samples’ reflects the number of studied 
samples, and the set called ‘Classes’ represents the number of samples in each class of 0, 1, 2, and 3, respectively. 
This study aims to show the potential for using ML predictive capabilities in exploratory data analysis. Hence, the 
numerical values of the thresholds we extracted from the developed model were specified by the DT algorithm, 
which is discussed in detail in the “Methods” section. These thresholds represent the critical indicators upon 
which we can classify the different accident scenarios. Although the bottom of the decision tree will have more 
pure nodes and leaves in which several leaves will represent each class. However, we chose to study the thresholds 
that form more significant splits. These kinds of splits are present at the top of the decision tree. The input was 
the time and the pressure vessel maximum external temperature represented in the figure by the terms ‘Time’ 
and ‘Temp’, respectively. At each node, the model checks whether the sample’s time or temperature satisfies the 
condition at the node or not (true (T) or false (F)). Based on that, the sample proceeds to the next Threshold. 
These conditions were determined based on the DT algorithm during the model development. We extracted 
these thresholds to study how the DT algorithm classifies between the different classes (accidents). We reported 
all (training and test data sets) the predicted class outcomes from the developed model. We studied which path 
they followed to calculate the prediction accuracy for each path, as listed in Table 3 where column ‘Label’ denotes 
the label of the path, which represents a chain of thresholds that the sample must satisfy to fall within the path. 
From Table 3, we observed that the most reliable paths were the ones labelled P1, P2, P4, P6, and P7, as these 
paths’ accuracies were higher than 90% in both training and test. Hence, we calculated their weighted accuracies 
weighted on the number of samples in both training and test datasets, as listed in Table 4.

Weighted path accuracies listed in Table 4 represent how many samples were predicted correctly by applying 
the series of thresholds of each path. We used this metric to measure the reliability of the sequential thresholds 
forming each path. Hence, we chose to study the paths that scored weighted accuracies higher than 90%. Finally, 
we applied the chosen paths’ thresholds on the four studied accidents’ time-wise propagation to study the insights 

(1)Precision =

n
∑

i

wi
TPC

TPC+ FPC
,

(2)Accuracy =
TPC+ TNC

TPC+ TNC+ FPC+ FNC
,

(3)F1Score =

n
∑

i

wi
2(Recall ∗ Precision)

Recall + Precision
,

(4)Recall =

n
∑

i

wi
TPC

TPC+ FNC
,

(5)Relative Error =
Standard Deviation

Mean
,

Figure 2.   Developed classifier training and test performance confusion matrices.
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they provided, as shown in Fig. 4. The five subfigures are labelled with the path threshold applied to the origi-
nal behaviour shown in Fig. 1. We observed that P1 thresholds did not provide significant distinctions for the 
studied accidents. However, it provided a negative insight that in the range of time and RPV’s external surface 
temperature specified by P1, we observed that the LOCA in the presence of an SBO accident without the activa-
tion of IVR could not occur under these thresholds. Hence, we can use this information to confirm if the IVR 
system has been activated or not in this accident scenario. In the P2 subfigure, we can observe that the common 
feature in the two accidents that satisfy the associated thresholds with P2 is the presence of IVR. However, these 
insights are late in time when damage has already been done to the reactor core. Although, the trained model 
showed poor performance in classifying accident scenarios labelled 0, and 1 as mentioned earlier. Nevertheless, 
our proposed method of analysis showed that it can point out key thresholds in exploring the accident scenario 
data to provide insights about distinctive differences between the progression of the two classes as illustrated 

Figure 3.   Four layers of the selected model DT.

Table 3.   DT paths training and test accuracies.

Label Threshold Training accuracy Test accuracy

P1
Temp ≤ 436

0.95 0.96
Time ≤ 21750

P2
Temp ≤ 436

0.98 0.94
Time > 21750

P3
436 < Temp ≤ 555

0.8 0.68
Time ≤ 8000

P4
436 < Temp ≤ 555

0.99 1
Time > 8000

P5
555 < Temp ≤ 843

0.67 0.5
Time ≤ 12050

P6
555 < Temp ≤ 843

1 1
Time > 12050

P7
Temp > 843

1 1
Time ≤ 16442

P8
Temp > 843

0.82 0.7
Time > 16442

Table 4.   Weighted paths accuracies.

Label P1 P2 P3 P4 P5 P6 P7 P8

Weighted path accuracy 0.95 0.97 0.78 0.99 0.64 1 1 0.8



6

Vol:.(1234567890)

Scientific Reports |          (2023) 13:930  | https://doi.org/10.1038/s41598-023-28205-y

www.nature.com/scientificreports/

in P1 and P2. However, this can provide helpful information in the post-accident scenario analysis to study the 
reasons behind a specific accident progression. Such as, the ‘Time’ threshold is 21,750 s, corresponding to the 
RPV ablation phenomenon that happens around 6.17 h from the accident’s (without IVR activation) initiation 
time1. The thresholds in the P4 path leading to subplot P4 denote that the temperature is still low relatively after 
8000 s, corresponding mainly to the LOCA in the presence of SBO with IVR system activation. This is yet another 
indication of successful activation of the IVR system as the core support plate in accident scenarios without IVR 
(i.e., accidents 0 and 1) will fail at time 7913 s and 6183 s, respectively4, indicating the start of corium relocation 
to RPV lower head. Consequently, the temperature of the RPV wall will increase due to the heating from this hot 
corium. With the IVR strategy’s successful activation (i.e., accidents 3 and 4), the temperatures of RPV walls are 
lower, in particular for LOCA in the presence of SBO with IVR system, in which the pipe breach and the early 
activation of ADS accelerate coolant vaporization leading to the decrease of heat inside the RPV. However, we 
observed the presence of another accident that satisfied the exact thresholds of P4. This indicates that an expert 
opinion must validate the insights and improve the thresholds extracted from the DT algorithm. Similarly, 
subplots P6 and P7 show that the dominant accident scenarios are SBO and LOCA in the presence of SBO, both 
without IVR system activation, respectively. Although Fig. 3 points out that only class 0 and class 1 can occur 
while applying the P6 and P7 thresholds, respectively. However, subplots P6 and P7 in Fig. 4 show the presence 
of class 1 and 0, respectively. This observation is because sample points taken in the training and test during the 
model development and threshold extraction are discretized points. However, interpolated points appear when 
applying the extracted thresholds on a spline curve of the accident progression. The insights we gathered from 
the developed DT model can be the cornerstone for causality analysis. This can help in having a more profound 
understanding of the physical causes of accident scenario propagation. Such understanding can help develop 
better operation and safety systems, materials, and accident scenario mitigation protocols.

Figure 4.   Applying thresholds of each path to the time-wise accident progression behaviour.
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Conclusions
In this work, we presented the need for the inclusion of ML in accident scenario classification as it is urgent to 
know the accident deviation from the initiating event to be able to follow the proper protocols in accident sce-
nario mitigation to avoid severe consequences such as what happened during the Fukushima-Daiichi accident 
in 2011. This work also showed the potential of using ML algorithms not only in the development of predictive 
models capable of predicting the accident type, but also as an exploratory analysis tool that can provide distinc-
tive insights about how we can differentiate between the different accident scenarios based on the time-wise 
propagation of their physical phenomena (in our case, the maximum external temperature of the reactor pressure 
vessel). However, the insights provided by the ML algorithm must be cross-validated by researchers and design 
engineers for a sensitive and complex subject such as NRS. Hence, these insights can help the subject matter 
expert in having a more profound understanding of the differences between accident scenarios propagation. 
Although the case study we presented in this work includes four accident scenarios, it is a proof of concept to 
show the ML capabilities in exploratory analysis. Future work will include the application of the same approach 
we are proposing in this work to a more significant number of accident scenarios when it is impractical to visually 
inspect the different behaviours of hundreds of accident scenarios and sub-scenarios. Furthermore, inclusion of 
the structural analysis of the lower head of the pressure vessel will provide additional insights to the structural 
integrity of the pressure vessel at any particular time.

Methods
Decision tree classification theoretical background.  Decision tree classification (DTC) is a stochas-
tic-initiated ML algorithm31. It consists of a root node, branches, nodes, and leaves, sequentially, as illustrated in 
Fig. 5. The example illustrated in Fig. 5 shows a DTC that takes two inputs ( F1 , and F2 ) and tries to differentiate 
between three output classes (red, green, and yellow). The algorithm depends on defining a series of intercon-
nected thresholds for the input features. The purpose of defining the thresholds is to reduce the impurity of suc-
cessive nodes until reaching almost pure leaves. The impurity of each node is quantified using the ‘Gini Impurity 
Index’ or ‘Entropy’ which can be calculated using Eqs. (6), and (7), respectively. GI , and E are the ‘Gini Impurity 
Index’, and ‘Entropy’, respectively, while pi , and k are the probability of each class presence in the data set, and 
the number of the classes, respectively. Quantifying the node impurity reduction is performed by calculating 
the ‘Information Gain’ between parent and daughter nodes or leaves using Eq. (8). IG is the ‘Information Gain’, 
IP , Ileft , Iright are the Impurity Indices of the parent, left daughter, and right daughter nodes, respectively, while 
N , Nleft , Nright are the number of samples in the complete dataset, left daughter node, and right daughter node, 
respectively.

Model development.  To select the optimal model for our classification problem. We tried several clas-
sification algorithms with their defaults parameters and reported their respective training and test classification 

(6)GI = 1−
∑k

i=1
p2i ,

(7)Entropy(E) = −

∑k

i=1
pilog2

(

pi
)

,

(8)IG = IP −

[(

Nleft

N
∗ Ileft

)

+

(

Nright

N
∗ Iright

)]

,

Figure 5.   DTC example schematic.
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metrics, as listed in supplementary Table  1. From the models’ performances summarized in supplementary 
Table 1, we chose decision tree, and random forest classification (RFC) techniques to go through the process of 
hyperparameters tuning. The reason behind choosing these two techniques is that they showed the least differ-
ence between training and test performance metrics as listed in Table 5. We used the difference between training 
and test performance metrics as an indication of a lower likelihood of overfitting. To select the optimal model, 
we started the hyperparameters selection process. We found the most influential hyperparameters in the DTC 
and RFC techniques to be the minimum number of samples per leaf, and minimum samples per leaf and the 
number of estimators, respectively. Hence, we tried to vary the number of minimum samples per leaf from one 
to 30 for both algorithms. We also varied the number of estimators in the RFC algorithm from 1 to 96 with an 
increment of five. These variations yielded 30 DTC models and 600 RFC models. We reported training and test 
metrics for each model. We performed the optimal model selection by following the steps illustrated in Fig. 6. 
The selection process consisted of a series of sequential steps. First, eliminating the models that have a higher 
likelihood of overfitting by calculating the difference between the model’s training and test precisions. If it is 
higher than 5%, then the model is eliminated. This process successfully dropped the number of models from 630 
to 21. Second, to ensure the selected models are not underfitting, we dropped the modes with test performance 
precision metrics of less than 80%. Finally, to ensure the selected model is highly robust, we cross-validated the 
remaining 14 models over 30 folds by randomly splitting the training and test data. In each fold, the training, 
and test datasets represented 80% and 20% of the whole dataset, respectively. We then selected the model that 
provided the highest mean test performance metrics with the least associated standard deviation.

Table 5.   Different ML models training and test performance metrics.

Model

Training metrics Test metrics

Precision Accuracy F1-Score Recall Precision Accuracy F1-Score Recall

Decision Tree 1 1 1 1 0.91 0.91 0.91 0.91

Random Forest 0.79 0.8 0.79 0.8 0.74 0.75 0.74 0.75

Figure 6.   Hyperparameters selection method.
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Data availability
The data that support the findings of this study are available from [KTH Royal Institute of Technology] but 
restrictions apply to the availability of these data, which were used under license for the current study, and so are 
not publicly available. Data are however available from the authors upon reasonable request and with permission 
of [KTH Royal Institute of Technology]. Please contact the corresponding author for the raw data.
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