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Allele‑specific expression analysis 
for complex genetic phenotypes 
applied to a unique dilated 
cardiomyopathy cohort
Daan van Beek 1, Job Verdonschot 2, Kasper Derks 2, Han Brunner 2, Theo M. de Kok 1,3, 
Ilja C. W. Arts 1, Stephane Heymans 4, Martina Kutmon 1,5,6 & Michiel Adriaens 1,6*

Allele-specific expression (ASE) analysis detects the relative abundance of alleles at heterozygous 
loci as a proxy for cis-regulatory variation, which affects the personal transcriptome and proteome. 
This study describes the development and application of an ASE analysis pipeline on a unique cohort 
of 87 well phenotyped and RNA sequenced patients from the Maastricht Cardiomyopathy Registry 
with dilated cardiomyopathy (DCM), a complex genetic disorder with a remaining gap in explained 
heritability. Regulatory processes for which ASE is a proxy might explain this gap. We found an 
overrepresentation of known DCM-associated genes among the significant results across the cohort. 
In addition, we were able to find genes of interest that have not been associated with DCM through 
conventional methods such as genome-wide association or differential gene expression studies. The 
pipeline offers RNA sequencing data processing, individual and population level ASE analyses as well 
as group comparisons and several intuitive visualizations such as Manhattan plots and protein–protein 
interaction networks. With this pipeline, we found evidence supporting the case that cis-regulatory 
variation contributes to the phenotypic heterogeneity of DCM. Additionally, our results highlight 
that ASE analysis offers an additional layer to conventional genomic and transcriptomic analyses for 
candidate gene identification and biological insight.

Genome-wide association studies (GWAS) of complex phenotypes often identify non-coding variants and fail 
to distinguish causal variants from commonly co-inherited variants associated through linkage disequilibrium1. 
Differential gene expression (DGE) studies in turn, while offering more mechanistic insight, fail to distinguish 
between cis- and trans-regulatory variation1. In addition, allelic dosage compensation can hide mono-allelic 
downregulation from DGE analysis. Using RNA-sequencing data, allele-specific expression (ASE) determines the 
relative expression of individual alleles to find allelic imbalance caused by cis-acting regulatory mechanisms1–3. 
These include cis-acting expression and splicing quantitative trait loci (eQTLs and sQTLs), nonsense-mediated 
decay (NMD), X-inactivation, imprinting, and RNA interference through non-coding RNAs (ncRNA)1–5. The 
detection of allelic imbalance can be performed on a per-sample basis, which allows for the discovery of variants 
with low minor allele frequencies (MAF)3. Thus, ASE analysis enables researchers to find regulatory genomic 
differences regardless of total gene expression or direct variant-phenotype correlations. In complex phenotypes 
with low explained heritability and inter-individual differences in pathophysiology, this could contribute to the 
identification of causal mechanisms and therapeutic targets.

Dilated cardiomyopathy (DCM) is a complex genetic disorder characterized by dilation of the left ventricle 
and impaired systolic function6,7. Around 15–30% of DCM cases are familial, but the currently known relevant 
genes and variants still fail to explain 70–80% of all cases8. Family members of affected patients often show no 
evidence for familial DCM and are diagnosed with sporadic DCM7,9,10. Previous studies have shown eQTL 
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enrichment for GWAS hits in two separate DCM cohorts, indicating regulatory mechanisms play a role in this 
phenotype11. The unexplained heritability and assumed regulatory mechanisms make DCM a fitting case for 
ASE analysis.

In this study, we have developed and applied an open-source ASE analysis pipeline in R that performs ASE 
analysis on the individual and population level as well as group comparisons. The aim of this pipeline is to enable 
the analyses of, often readily available, RNA-sequencing data in novel ways that help elucidate cis-regulatory 
processes involved in the development of complex genetic disorders. We find evidence supporting the case that 
cis-regulatory variation contributes to the phenotypic heterogeneity of DCM, discover new candidate genes, 
and show the benefit of performing ASE analysis in addition to GWA and differential gene expression studies.

Results
Allele‑specific expression analysis pipeline.  The pipeline consists of three steps, starting with RNA 
sequencing data preprocessing using the Genome Analysis Toolkit (GATK), followed by the general ASE score 
statistics and the analyses for biological interpretation (Fig. 1) (https://​github.​com/​macsb​io/​Allel​eSpec​ificE​xpres​
sion). We chose to represent ASE as the absolute deviation from a heterozygous biallelic frequency of 0.5, as per 
the standard guidelines3.

Setting the ASE score threshold to distinguish true heterozygous loci from homozygous 
loci.  The integration of genotype data allowed the determination of an ASE score threshold to distinguish 
between true heterozygous loci and homozygous loci with RNA sequencing artifacts. Performing Youden’s J 
statistic on a receiver-operating characteristic (ROC) determined an ASE score of 0.966 as the optimal threshold 
to distinguish between true heterozygous loci and RNA sequencing errors. The total number of heterozygous 
and homozygous loci was 167,329 and 719,769 respectively (Fig. 2).

Analyzing ASE on a population level.  Among all the SNPs, the total number of statistically significantly 
imbalanced SNPs per individual, as determined by a cutoff of q < 0.05 ranged from 210 to 8327, mean = 2093, 
with the percentage amongst all measured SNPs for an individual ranging between 8.9 and 81.1%, mean = 28.3% 
(Supplementary Materials for the full SNP-q-value list). Shared imbalance, the number of times a gene showed 
significant imbalance for at least one locus in each of the subjects, showed an exponentially decreasing pattern 
(Supplementary Fig. 1). Most genes only showed significant imbalance in one or a few of the subjects, whereas 
only a few genes showed imbalance in more than half of the subjects. The three genes with the highest shared 
imbalance showed imbalance in 79 of the samples; ABLIM1, TNNT2, and AKAP13, all of which have known 
isoforms resulting from alternative splicing12–14. In concordance with previous studies, the genes with at least 
one significantly imbalanced SNP showed significant enrichment for eQTLs, p = 6.9E−3, and sQTLs, p = 5.7E−610.

Figure 1.   Overview of the pipeline. This analysis plan allows the inclusion of genotyping data to increase data 
retrieval and statistical power. The data can be evaluated on three distinct levels, with suiting visualizations for 
all of them in order to create interpretable results. The integration of WGS or WES data, the group comparisons, 
and the visualizations are novel additions to established ASE analysis pipelines.

https://github.com/macsbio/AlleleSpecificExpression
https://github.com/macsbio/AlleleSpecificExpression
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Known DCM‑associated genes are more often imbalanced.  Since regulatory variation is known 
to contribute at least in part to DCM we expected to find more allelic imbalance in genes that are known to 
harbor variants that are associated with DCM. Thus, we compared the ASE p-value distribution for 12 genes in 
which confirmed DCM-associated variants most commonly occur to the p-value distribution for the rest of the 
dataset (Fig. 3)15,16. Furthermore, variants in genes classified as having a moderate, limited, or disputed link to 
DCM according to Hershberger et al. showed high shared imbalance across the samples and similar, albeit less 
pronounced, q-value inflation17 (Supplementary Fig. 2). When only taking the most significant SNP per gene 
per sample, the percentage of significant (q < 0.05) gene hits of the total dataset was 38%, while for the 12 genes 
with established DCM-associated variants it was 74%. The established DCM-associated genes, as described 
before, were more frequently observed to be significantly imbalanced in multiple samples, mean = 52 imbal-
anced patients (Supplementary Table 1). These findings confirm the mechanistic role of these genes in DCM.

Differential ASE in the phenogroups comparisons.  The DCM cohort we analyzed in this study is part 
of a larger set that has previously been clustered with a machine learning algorithm applied to clinical markers 
in order to find subsets of DCM patients with distinct phenotypical features10. These subsets of patients were 
called phenogroups and will be referred to as such from herewith (see methods for a more detailed description). 
In this paragraph the results and visualizations for the group comparisons are described following the Mann–
Whitney U test between each phenogroup and the others as well as the Kruskal–Wallis test results between all 

Figure 2.   ASE density by zygosity status. This figure shows the density plots of ASE values for genotyped loci 
based on the zygosity status of the loci. The ASE threshold for homozygosity in non-genotyped loci is indicated 
with the dotted line.

Figure 3.   QQ-plot of p-value inflation. This figure shows the test statistic inflation for SNPs located in 12 genes 
with established DCM-associated variants compared to the remaining SNPs.
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combinations of phenogroups (see Supplementary Material for SNP-p-value lists). The Gene Ontology analy-
ses highlighted slightly different processes when looking at genes with significant differential imbalance in one 
phenogroup versus the others. Metabolic processes, specifically protein metabolism and modifications, and 
intracellular transport processes were pronounced in phenogroup 1 (mild) and 3 (arrhythmogenic), whereas 
phenogroup 2 (immune) and 4 (severe) showed more pronounced effects in actin filament-based movement. 
Phenogroup 3 and 4 shared an enrichment for cardiac muscle contraction. Only phenogroup 1 had some enrich-
ment for immune-related processes, specifically neutrophil activation. The topGO results are provided in the 
Supplementary Material. Significant differential imbalance between all four phenogroups was found for several 
SNPs located in genes with known cardiomyopathy links other than DCM such as posterior myocardial infarc-
tion, the top 5 hits were EZH1, NIBAN1, C7, CDIN1, and ADPRHL1 (Fig. 4A). The differential imbalance for 
these SNPs could be clearly visualized in boxplots (Fig. 4B, example for rs9766 in EZH1, Supplementary Mate-
rial for the next four most significant hits). Genes with a SNP showing statistically differential imbalance in this 
analysis were visualized as a network connecting functionally related genes including their representative SNPs 

Figure 4.   Overview of results visualizations for differential imbalance between all four phenogroups. (A) 
Manhattan plot indicating loci significantly differentially imbalanced between all four phenogroups. Note that 
each dot represents a SNP, annotated with the gene it is located in. (B) Boxplot showing the distribution of 
ASE scores and number of measurements by phenogroup for rs9766, located in EZH1, the most significant 
differentially imbalance SNP between the four phenogroups. (C) Subgraph of the network displaying a group of 
functionally related genes with median ASE scores for the corresponding SNP per phenogroup.
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with median ASE scores indicated per cluster (Fig. 4C). The full network consisted of several subgraphs of vary-
ing sizes (Supplementary Material).

Discussion
In this paper, we describe the development and application of a pipeline for ASE analysis based on standard 
best practices combined with novel aspects such as the incorporation of genotype data and the ability to analyze 
allelic imbalance on an individual, population, and group comparison level with intuitive results visualizations.

The pipeline uncovered many potential candidate genes, both known and novel in their relation to cardio-
myopathy. The three genes with an imbalance in 79 of the samples, ABLIM1, TNNT2, and AKAP13, all have 
known isoforms due to alternative splicing12–14. Thus, these genes, as well as other commonly imbalanced genes 
in the dataset, might be differentially spliced and therefore showing allelic imbalance in people with DCM. This 
confirms prior research that showed a relation between splicing variation and DCM development10. Biologically, 
they are important for cell structure maintenance, with TNNT2 being a troponin complex subunit and ABLIM1 
a mediator for actin-cytoplasmic interactions. AKAP13 serves as a guanine nucleotide exchange factor for RhoA 
small GTPase, which is an actin regulator. Additionally, it has been shown to be essential for cardiac development 
in mice and has been linked to human cardiomyopathies14,18. Interestingly, ABLIM1, has been linked to DCM 
through RBM24 mediated alternative splicing in knockout mice models19.

When looking at genes that showed differential imbalance between the autoimmunity related phenogroup 
2 and the rest of the cohort, four out of the top five most significant hits were related to inflammatory processes 
like programmed cell death and autophagy (Supplementary Table 2)20–23. One of these genes, APIP, has been 
shown to carry out a cardioprotective role in the inflammatory process following myocardial infarction20. TFEB 
is a protein degradation promotor previously linked to autophagy and lysosomal related cardiac disorders22. 
Increased levels of PPP1R3B, a glycogen synthesis regulator also involved in inflammatory processes, decreases 
risk for myocardial infarction24. To our knowledge, the autophagy and intracellular protein trafficking gene 
COPZ1 has not been linked to DCM previously.

For a more general overview, the Gene Ontology enrichment results on biological processes were used. 
While we observed little overlap with the processes attributed to the phenogroups based on a combination of 
gene expression and clinical data as described by Verdonschot et al. we observed additional processes that could 
be further investigated11. General cell structure and muscle fiber processes where enriched in all phenogroups, 
indicating that more research into the genetic regulation of these molecular processes and how these effect 
cardiomyocyte structure and function in DCM could be useful. Similarly, even though the 12 known DCM-
associated genes showed significant imbalance in many of the samples, only MYH7 was significantly differentially 
imbalanced between the four phenogroups. One explanation could be that most DCM patients have imbalances 
in the same core genes which would mean no differential imbalance in those genes9. For example, as described 
by Heinig et al., many DCM patients show imbalance in a wide variety of TTN loci10. The differences between 
phenotypic groups within DCM are more likely caused by regulatory changes in other, less disease-specific 
mechanisms such as inflammation and metabolism10. In addition, there is no reason to assume that the differ-
ent phenogroups found by clustering on clinical markers are necessarily related to differential allelic imbalance. 
However, allelic imbalance might be a partial explanation for the heterogeneous disease progression found in 
DCM patients with otherwise similar or identical genetic markers. In the across phenogroups analysis, one gene 
that showed differential imbalance between the four groups, ADPRHL1 as seen in Fig. 4A, codes for a protein that 
is key to myofibril assembly and chamber development. The gene has previously been associated with posterior 
myocardial infarction25,26. In this same analysis, the most significant differentially imbalanced hit was located 
in EZH1, a H3K27 methylation mediator involved in cardiac reprogramming27,28. Our results suggest that dif-
ferential regulation of these genes may play a role in the etiology of different DCM subtypes.

There were several methodological considerations we encountered while designing the pipeline. The primary 
reason for using an ASE score from 0.5 to 1 was that this removed the distinction between reference and alterna-
tive alleles, or major and minor alleles. Since ASE is determined at the individual level, determining reference 
versus alternative was inapplicable. In addition, our analysis serves as a proxy for underlying regulatory varia-
tion, regardless of the direction of the imbalance. Preserving the individual alleles would therefore have added 
unnecessary complexity to the pipeline.

As opposed to previous ASE analysis pipelines, we decided not to aggregate the ASE scores of multiple SNPs 
within the same gene3. The rationale behind this is that some cis-regulatory events that cause ASE are location 
specific. For example, if splicing variation occurs for one of multiple exons in one allele, but not in the other 
allele nor for the remaining exons, ASE can only be detected for that single exon. The measured imbalance in 
the spliced exon would be reduced, or potentially lost, when aggregating multiple ASE measurements on the 
same gene. Thus, we decided to treat alleles on the same gene individually to retain a larger number of positive 
findings for further exploration.

Due to the threshold to classify homozygosity, all truly imbalanced heterozygous measurements with ASE 
above that threshold have been disregarded. This is also true for all fully imbalanced loci, where only one of the 
two alleles is expressed. Which could arise due to, for example, parental imprinting, and nonsense mutations. We 
are unaware of methodologies to circumvent this problem other than integrating genotype data for all samples.

Ultimately, this pipeline offers regulatory genetic analysis on RNA sequencing data, a commonly available 
genome-wide omics data. Our pipeline provides added insight into the bio-molecular etymology underlying 
complex regulatory genetic disorders. The visualizations, which align with the most commonly used visuali-
zations in GWA and DGE studies, offer an intuitive understanding of the results for applications in a clinical 
(genetics) setting.
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Conclusion
We have shown that allele-specific expression analysis is able to pinpoint disease-relevant genes under cis-
regulatory variation. Our analysis on a unique DCM cohort shows that allelic imbalances are detected in known 
DCM genes; furthermore, imbalances detected in novel DCM genes, while not yet experimentally or clinically 
linked to development of DCM, may ultimately be shown to reflect novel disease-relevant processes. Our ASE 
analysis pipeline can be applied at the individual and the population level and thereby play a role in research on 
both rare and common complex phenotypes.

Methods
Data description.  The data set consists of a group of 87 RNA sequenced DCM patients from the Maastricht 
Cardiomyopathy Registry29. All patients were diagnosed according to World Health Organization criteria and 
the current European Society of Cardiology guidelines. Patients with a left ventricular ejection fraction of < 50% 
in the absence of obstruction of > 50% of a major coronary artery branch, pericardial diseases, congenital heart 
diseases, cor pulmonale, and active myocarditis were included. Unless contraindicated, patients received guide-
line-directed medical therapy titrated to the maximally tolerated dose and defibrillator device therapy. Endo-
myocardial biopsies were obtained in routine diagnostic care for each patient. All RNA was isolated from spare 
biopsies and sequenced using the TruSeq mRNA sample preparation kit (Illumina, San Diego, CA, USA) and 
the NextSeq 500 sequencing chip (Illumina, San Diego, CA, USA). All patients received genetic counseling and 
testing using a cardiomyopathy-associated gene panel with either single molecule molecular inversion probes or 
whole-exome sequencing. Whole-exome sequencing data was available for 35 patients, obtained with the Affy-
metrix GW6 platform (Affymetrix, Santa Carla, FL, USA). In addition, they were assigned classification labels 
based on a machine learning algorithm that performs clustering on DCM patients based on 28 distinct clinical 
features11. This resulted in four phenotypically distinct patient clusters (phenogroups) with increasing disease 
severity. Phenogroup 1 was mainly characterized by a moderate ejection fraction with low creatine levels and 
overall mild disease symptoms, phenogroup 2 by high creatine levels and an overrepresentation of auto-immune 
disease diagnoses, phenogroup 3 by the presence of atrial fibrillation, and phenogroup 4 by a low ejection frac-
tion and other end-stage symptoms. All patients gave written informed consent before inclusion and the relevant 
guidelines and regulations were strictly adhered to29.

Data preparation.  RNA sequencing data processing.  RNA sequencing data was processed using the Ge-
nome Analysis Toolkit (GATK, version 3.8.1) for variant calling and read counting. All following steps were 
performed in R version 4.0.230. The fraction of reference and alternative allele reads was calculated for all loci. As 
a means of standardization, the ASE scores were set as the absolute deviation of the allelic read fraction from 0.5 
to 1.0 as commonly done by others (Eq. 1) (ASE score calculation)2,3.

Distinguishing high imbalance from artifacts.  The subset of samples with available whole-exome 
sequencing data was used to determine a homozygosity threshold based on the ASE score since the true zygosity 
for these samples was known. A receiver operating characteristic (ROC) analysis was performed using a model 
of zygosity (1 for homozygosity, 0 for heterozygosity) as a function of the ASE score31. Next, Youden’s J statistic 
was applied to find the threshold that maximizes the distance to the ROC diagonal31. Due to unequal sample 
sizes between homozygous and heterozygous loci, resampling was applied. The mean ASE score threshold was 
then used to filter out likely homozygous loci within the non-genotyped subset.

Testing for statistical significance.  Statistical tests were performed on the ASE scores on a per sample 
basis as well as between phenogroups. Within-sample ASE significance was determined using a binomial test, 
where the expected probability of finding a certain allele in the total read count at a particular locus was set to be 
the median of all median ASE values per sample (0.647). Multiple testing correction was performed for the bino-
mial test results using the Benjamini–Hochberg method32. For the group comparisons, a Wilcoxon rank-sum 
test was applied to calculate the statistical significance of differential imbalance between pairs of phenogroups. 
To investigate ASE variation between all four phenogroups, we performed the Kruskal–Wallis Rank-Sum Test. 
Non-parametric tests were chosen due to the non-normality of the ASE scores as well as the sparse measure-
ments per SNP across the samples.

Biological interpretation.  All SNP identifiers in the output results were mapped to Ensembl gene identi-
fiers (ENSG IDs) and HUGO Gene Name Committee (HGNC) symbols33. For genes with multiple ASE meas-
urements, the SNP with the lowest p-value was taken to represent the gene for that individual, since several of 
the potential underlying mechanisms of ASE, such as splicing and transcript truncation (followed by NMD), are 
position-specific and cannot be accurately aggregated with imbalances in other exons4,10. Ensembl Gene Ontol-
ogy data and SNP-to-gene mapping were subsequently used to perform biological interpretation. The R-package 
topGO was used to perform Gene Ontology enrichment analysis using the parent–child for all significant gene 
hits from each analysis34,35. A gene was considered statistically significant if the lowest q-value for an ASE event 
within that gene was < 0.05. Genes with a SNP showing statistically significant differential imbalance between the 
four phenogroups were visualized as a network connecting functionally related genes including their representa-
tive SNPs with median ASE scores indicated per cluster. This network was created by taking the related genes of 

(1)ASE score =

∣

∣

∣

∣

(

Read countreference

Read counttotal

)

− 0.5

∣

∣

∣

∣

+ 0.5



7

Vol.:(0123456789)

Scientific Reports |          (2023) 13:564  | https://doi.org/10.1038/s41598-023-27591-7

www.nature.com/scientificreports/

differentially imbalanced SNPs and, after translating gene identifiers to protein identifiers, using the STRING 
database to find protein–protein interactions with a cut-off of 0.936.

Ethics approval and consent to participate.  All patients gave written informed consent before 
inclusion29. An independent Medical Ethics Committee of the Maastricht University Medical Center (MUMC+) 
has approved this registry.

Data availability
RNA-sequencing data are available through gene expression omnibus (GEO) under accession number 
GSE146621. The clinical data that support the findings of this study are available from the corresponding author 
on reasonable request (https://​www.​maast​richt​heart​andva​scula​rcent​er.​com/​resea​rch/​colla​borate). All scripts 
created and used in Bash and R are available on GitHub (https://​github.​com/​macsb​io/​Allel​eSpec​ificE​xpres​sion).
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