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Chronic low‑dose 
Δ9‑tetrahydrocannabinol (THC) 
treatment stabilizes dendritic 
spines in 18‑month‑old mice
Joanna Agnieszka Komorowska‑Müller 1,4, Anne‑Kathrin Gellner 2,3,4, 
Kishore Aravind Ravichandran 1,2, Andras Bilkei‑Gorzo 1, Andreas Zimmer 1* & 
Valentin Stein 2*

Cognitive functions decline during aging. This decline could be caused by changes in dendritic 
spine stability and altered spine dynamics. Previously, we have shown that a low dose chronic 
THC treatment improves learning abilities in old whereas impairs learning abilities in young mice. The 
mechanism underlying this age-dependent effect is not known. Dendritic spine stability is a key for 
memory formation, therefore we hypothesized that THC affects spine dynamics in an age-dependent 
manner. We applied longitudinal 2-photon in vivo imaging to 3- and 18-month-old mice treated with 
3 mg/kg/day of THC for 28 days via an osmotic pump. We imaged the same dendritic segments before, 
during and after the treatment and assessed changes in spine density and stability. We now show 
that in old mice THC improved spine stability resulting in a long-lasting increase in spine density. In 
contrast, in young mice THC transiently increased spine turnover and destabilized the spines.

The endocannabinoid tone changes during the course of aging: endocannabinoid signaling is high during ado-
lescence and declines in aged rodents1–3. This change in endocannabinoid tone includes a decrease of endocan-
nabinoid levels, brain area-dependent alterations of cannabinoid receptors 1 (CB1Rs) expression and alterations 
in their coupling to G-proteins. Moreover, mice lacking CB1R exhibited an accelerated aging phenotype with 
premature cognitive decline, gliosis and increased expression of inflammatory cytokines in the brain4–6. Whereas, 
rising the endocannabinoid tone using exogenous ligands of cannabinoid receptors gave promising results in 
counteracting age-related changes7,8.

We demonstrated earlier that increasing the endocannabinoid tone in old mice through continuous admin-
istration of a low dose (3 mg/kg/day) Δ9-tetrahydrocannabinol (THC) over 28 days counteracted the age-related 
decline in cognitive performance and age-induced synaptic loss. However, the same treatment had opposite 
effects on the cognitive performance of young mice9. This effect was dependent on the CB1R of the forebrain 
glutamatergic-cells9. As cognitive performance depends on the plasticity of synapses and spine dynamics of 
glutamatergic neurons, which is altered during the aging process10–12, we hypothesize now that supplementing 
aged animals with a low dose of THC could reestablish the spine dynamics of young mice in old mice.

THC treatment long‑lastingly increased spine density in 18‑month‑old, but not in 3‑month‑old 
mice.  To test this idea, we repeatedly imaged dendritic segments of layer V pyramidal neurons of the soma-
tosensory cortex in 3- and 18-month-old GFP-M male mice through a chronic cranial window. The imaging 
started 1 week before THC treatment, lasted throughout the 28-day THC treatment and ended 28 days after 
THC treatment had terminated (Fig. 1a, Extended Fig. 1). Consistent with previous studies10,11, old mice showed 
increased spine density, higher spine turnover and decreased spine stability compared to young mice during 
baseline conditions (Extended Fig. 2). Notably, THC treatment for 28 days had no effect on spine density in 
young mice (Fig. 1b), but spine density increased in old mice in comparison to the vehicle-treated mice (Fig. 1c). 
This effect became significant at day 25 of the treatment and manifested throughout the entire post-treatment 
observation period (Fig. 1c). Correspondingly, THC significantly increased spine density at days 35, 42, 49 and 
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56 of the treatment in comparison to baseline day -1. Whereas, spine density decreased in the vehicle treated 
group at day 56 (post-hoc results not shown in the graph).

THC treatment altered spine dynamics differently in 3‑ and 18‑month‑old mice.  Although 
spine density was not altered in young mice during and after THC treatment, spine dynamics showed a transient 
alteration. Between day 7 and 13 of the treatment, the spine turnover ratio was increased (Fig. 2a), with a rise in 
spine formation at day 7 and and a subsequent rapid loss of most of the recently gained spines (Fig. 2 b and c). 
This consequently led to an increased rate of transient, unstable spines (Fig. 2d), also reflected by a significant 
reduction of the probability of spine survival (Fig. 2e). In contrast, in old mice, no change in spine gain (Fig. 2g), 
but a reduction in spine loss (Fig. 2h) led to a lowered turnover ratio (Fig. 2f) and decreased the number of tran-
sient spines (Fig. 2i). Together, this resulted in an elevated probability of spine survival underlying the increasing 
spine density (Fig. 2j). Moreover, opposite to the young mice, in old mice changes were smaller in magnitude, 
but long-lasting, starting from around day 13–16 into the treatment. Thus, cumulatively resulting in observed 
elevated spine density.

THC treatment in 18‑month‑old mice counteracted age‑related changes on the level of spine 
dynamics.  Next, we sought to further dissect the underlying effects of the increase in spine density in THC-
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Figure 1.   Long-term low-dose THC treatment increases spine density in old, but not in young mice. (a) Time 
line of the 2-photon imaging experiment. Representative images of the same dendritic segment at day -1 and 
day 56 acquired during in vivo imaging from 3- (b) and 18- (c) month-old mice treated with vehicle or THC. 
Scale bar is 2 µm. Spine density changes in 3- (b) and 18-month-old mice (c). Spine density was normalized 
to the mean spine density during baseline imaging. Grey box indicates the treatment duration. 3-month-old 
mice (THC n = 12 ROIs, N = 4 mice; vehicle n = 10 ROIs, N = 4 mice); interaction effect F14,192 = 3.247, p = 0.0001; 
18-month-old mice (THC n = 22 ROIs, N = 10 mice; vehicle group n = 17 ROIs, N = 8 mice) treatment effect 
F1,37 = 13.04, p = 0.0009; interaction effect F14,396 = 5.069, p < 0.0001 (day 25 p = 0.0141; day 35 p = 0.0036; day 42 
p = 0.0035; day 48 and 56 p < 0.0001). THC effect in comparison to day -1 (day 35 p = 0.0093, day 42 p = 0.0008, 
day 49 p = 0.0064, day 56 p = 0.0007); vehicle effect in comparison to day -1 (day 56 p = 0.0322) (not shown 
on the graph). Error bars indicate mean ± SEM; 2-way ANOVA (Mixed-effects analysis) followed by Sidak’s 
multiple comparison test; * P < 0.05, ** P < 0.01; *** P < 0.001; **** P < 0.0001. ns. - not significant.
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treated old animals. As our previous observations showed that THC-caused improvement of spatial memory 
in old mice as early as treatment day 149, we compared the spine dynamics specifically on day 16 of THC treat-
ment. At day 16, THC-treated old mice compared to vehicle-treated old mice showed a decreased spine loss 
(Fig. 3a), but unaltered spine gain (Fig. 3b), resulting in a reduced spine turnover (Fig. 3c). Together, this led to 
an increased spine stability in THC-treated 18-month-old mice (Fig. 3d). These findings are consistent with the 
timing of the THC-induced cognitive improvement in 18-month-old mice in our previous work9.

The counteracting effect of THC on the age-related change in spine dynamics was further revealed when we 
compared spine dynamics of 3- and 18-month-old vehicle treated to 18-month-old THC-treated mice (Fig. 3a–d). 
The comparison of 3- to 18-month-old vehicle treated mice revealed a decreased spine stability (Fig. 3d) resulting 
from increased loss of spines (Fig. 3a). Spine loss and spine stability did not differ significantly between 3-month-
old vehicle and 18-month-old THC groups.

Thus, the general age effect on spines was absent in the THC-treated 18-month-old mice. These findings 
further support that THC counter-acted aging on the level of spine dynamics.

Finally, we looked at the spine stability over time and compared the probability of spine survival between old 
and young mice either of all spines present at day 10 or those spines that formed between day 7 and day 10 during 
the THC treatment. THC treatment elevated probability of spine survival of all spines in old mice to the level 
of young vehicle-treated mice, while probability of spine survival in vehicle treated old mice was significantly 
reduced. A similar effect was observed for gained spines, which survived relevantly longer after THC in the old 
group. In summary, THC treatment restored spine survival to the level of young mice or even exceeded it in case 
of spines that were formed during the THC treatment itself (Fig. 3e).

Discussion
Several studies have shown that spine stabilization is a key step for long-term consolidation and storage of new 
information and skills13–15, although the underlying mechanisms have not been entirely elucidated. Importantly, 
it has been noted that spine stability changes during the aging process10,11,16,17 possibly contributing to age-related 
learning deficits. Our results are consistent with these findings and suggest a critical role for endocannabinoid 
signaling in the modulation of age-related changes in synaptic stability. We have demonstrated that a low dose 
of THC leads in old mice to a significant change in spine dynamics that resembles the situation in young mice. 
Furthermore, the THC-induced increase in spine density lasted at least for 4 weeks following THC treatment. 
This correlates with our previously reported improved spatial memory performance in old mice9. In contrast, in 
young mice THC only caused a transient increase in spine turnover and spine destabilization, which correlates 
with decreased memory performance in young mice after THC treatment9. It has been shown that increased 
spine density positively correlates with cognitive performance in mice18. Reversely, dendritic spine loss, espe-
cially of thin spines, correlated with memory impairment in Alzheimer’s Disease patients and preceded neuronal 
loss19–21. These studies had investigated a broad range of neocortical and hippocampal areas. We have targeted 
the somatosensory cortex as the CB1R is present in most brain areas, but its density is particularly high in the 
cortex, hippocampus, and cerebellum22–24. The hippocampus is important for learning and memory, however, 
in vivo 2-photon imaging of the hippocampus requires removal or at least severe manipulation of the overlay-
ing cortex. While the removal of the cortex has been done to study the hippocampus in vivo25, this method is 
controversially discussed since the removal of the cortex might impact brain function and behavior. Therefore, 
we chose to image the somatosensory cortex, also because it had been investigated previously for physiological 
spine dynamics in aging mice10. As the CB1R density is high in both hippocampus and somatosensory cortex, we 
speculate that the effect of the THC treatment on spine dynamics should be similar in both brain areas.

We administered a relatively low amount of THC (3 mg/kg body weight/day) continuously released by an 
osmotic pump which did not induce psychotropic effects characterized by catalepsy, analgesia, hypothermia, 
hypomotility, or tolerance development26–28. Hence, it might be possible that the effects of high doses of THC 
on spine dynamics might be different or even opposite to what we observed. For instance, a dose-dependent, 
biphasic effect of THC was shown for its anxiolytic/anxiogenic properties, but also in relation to cognition29,30. 
On the other hand, not only 3 mg/kg that we used in our study, but also lower doses seem to cause a similar effect 
in old mice. Recent investigations found improved spatial memory of old mice after 1 mg/kg/day chronic THC 
treatment31 and after an injection of 0.001 mg/kg of THC32.

We have observed that the THC treatment effect was age-dependent as THC caused a transient effect on spine 
dynamics in young mice and a long-lasting effect in old mice. This can be caused by tolerance development to 
THC as it was shown that in contrast to young mice, tolerance development to THC is impaired in aged mice28. 
However, tolerance development only explains the temporal nature of the effect we observed, but not the direction 
of it such as increase/decrease of spine stability and its consequences on cognitive performance. The direction 
of the THC effect, most likely, depends on the varying brain chemistry at different age-groups which includes 
age-related decline in baseline endocannabinoid system activity1–3.

The differential cellular and behavioral effects of THC in different age groups were also manifested in cor-
responding transcriptional changes, with THC-treated old mice showing similar transcriptional patterns as 
young control animals9. In old mice, THC decreased the methylation of H3K9 and upregulated brain-derived 
neurotrophic factor (BDNF) levels9, which has been associated with increased spine density and memory 
performance33. Moreover, activation of Tropomyosin receptor kinase B (TrkB), that BDNF binds to, was shown 
to stabilize dendritic spines and increase spine size34,35, which could potentially explain the spine density increase 
observed in our study. Alternatively, THC by activating CB1R could modulate the WAVE1 Complex and thus 
plays a role in structural plasticity via the regulation of actin polymerization36.

Taken together, 3 mg/kg/day chronic THC treatment has opposing effects on spine dynamics of young and 
old animals. In particular, THC treatment long-lastingly increased spine stability in the somatosensory cortex 



4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:1390  | https://doi.org/10.1038/s41598-022-27146-2

www.nature.com/scientificreports/

a f

vehicle 3 mg / kg THC

b

c

3-month-old 18-month-old

g

h

d i

e j

-5 0 5 10 15 20 25 30 35 40 45 50 55 60
0.0

0.1

0.2

0.3

0.4

days

Tu
rn

ov
er

ra
tio

2-way ANOVA: Treatment **, Time ****, Interaction ns.

**
** **

-5 0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

days

G
ai

ne
d

sp
in

es
[%

]

2-way ANOVA: Treatment **, Time **, Interaction ***

****
**

-5 0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

days

Lo
st

sp
in

es
[%

]

2-way ANOVA: Treatment **, Time ***, Interaction **

** **

-5 0 5 10 15 20 25 30
0

10

20

30

40

50

days

Tr
an

si
en

ts
pi

ne
s

[%
]

2-way ANOVA: Treatment **, Time ***, Interaction **

***
*

-5 0 5 10 15 20 25 30 35 40 45 50 55 60
0.0

0.1

0.2

0.3

0.4

days

Tu
rn

ov
er

ra
tio * *

2-way ANOVA: Treatment *, Time ****, Interaction ns.

-5 0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

days

G
ai

ne
d

sp
in

es
[%

]

2-way ANOVA: Treatment ns., Time ***, Interaction ns.

-5 0 5 10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

40

50

days

Lo
st

sp
in

es
[%

]

2-way ANOVA: Treatment **, Time ***, Interaction ns.

-5 0 5 10 15 20 25 30
0

10

20

30

40

50

days

Tr
an

si
en

ts
pi

ne
s

[%
]

2-way ANOVA: Treatment **, Time *, Interaction ns.

*

10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

80

100

days

Pr
ob

ab
ilit

y
of

Su
rv

iv
al

[%
]

all spines

gained spines

all spines

gained spines

10 15 20 25 30 35 40 45 50 55 60
0

20

40

60

80

100

days

Pr
ob

ab
ilit

y
of

Su
rv

iv
al

[%
]



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:1390  | https://doi.org/10.1038/s41598-022-27146-2

www.nature.com/scientificreports/

of old mice. This finding may have important medical implications providing a therapeutic option in age-related 
disorders with synaptic destabilization and loss.

Experimental procedures
Mice.  Three-month-old and 18-month-old (16.5–19-month-old) Tg(Thy1-EGFP)MJrs/J (GFP-M) male 
mice37, IMSR Cat# JAX:007,788, RRID:IMSR_JAX:007,788) that express enhanced green fluorescent protein 
(eGFP) under the control of the Thy1 promoter resulting in a sparse neuronal labeling were used in this study. 
Mice were bred in the animal facility of the Medical Faculty of the University of Bonn. After weaning mice were 
group-housed (2–5 mice/cage) in standard laboratory cages with automatic ventilation system and ad libitum 
water and food access under a 12-h light–dark cycle. Care of the animals and conduction of the experiments 
followed the guidelines of the European Communities Directive 86/609/EEC and the German Animal Protec-
tion Law regulating animal research and were approved by the ethics committee of the Landesamt für Natur, 
Umwelt und Verbraucherschutz Nordrhein-Westfalen the LANUV NRW, Germany (81-02.04.2018.A027). All 
experiments were performed in accordance with relevant guidelines and regulations as well as were carried out 
in accordance with ARRIVE guidelines. In the 3-month-old group 8 mice were analyzed (4 vehicle, 4 treatment); 
in 18-month-old group 18 mice were analyzed (8 vehicle, 10 treatment). Four independent groups were tested. 
One group with 3-month-old and three groups with 16.5–19-month-old mice. Old groups were pooled together 
and treated as a single group for analysis.

Cranial window implantation.  Mice were anaesthetized with an intraperitoneal (i.p.) injection of medeto-
midin 0.5  mg/kg, midazolam 5  mg/kg, fentanyl 0.05  mg/kg body weight (BW). 5  mg/kg BW carprofen was 
injected s.c. for perioperative analgesia. Mouse breathing was checked throughout the surgery, body temperature 
was kept constant using a heating pad. Eye ointment was used to protect from eye dryness (Bepanthen). The 
mouse head was epilated and fixed in a stereotaxic frame. A circular trepanation 3–4 mm in diameter was care-
fully done over the left somatosensory cortex exposing the dura. The brain was covered with a 5 mm glass plate 
(Menzel) and sealed with cyanoacrylate (UHU) and dental cement (Paladur). A small Delrin bar with threaded 
holes was glued on the right hemisphere to fix the animal under the microscope. After surgery the anesthesia 
was reversed with atipamezol 2.5 mg/kg, flumazenil 0.5 mg/kg, naloxone 1.2 mg/kg BW. The mouse was placed 
under a warming lamp and monitored until fully awake. Every 12 h for 3 days, 0.1 mg/kg BW buprenorphine 
was applied s.c. for post-surgery analgesia. After the cranial window surgery, mice were single-housed. Animals 
had 3–4 weeks to recover before the chronic imaging was started.

Drug treatment.  Twenty eight-day releasing osmotic pumps (alzet; model 1004) were prepared according to 
the manufacturer’s protocol to attain a 3 mg/kg/day dose with either THC or vehicle (ethanol:cremophor:saline, 
1:1:18) solutions. Osmotic pumps were implanted subcutaneously on the back of the mice under anesthesia. 
Mice were distributed between the treatment group and the control group to ensure equal numbers and quality 
of dendritic segments to analyze. The experimenter was blinded for the treatment during all imaging sessions 
and spine analysis.

2‑photon imaging.  For imaging mice were sedated with an i.p. injection of medetomidin 0.5  mg/kg, 
midazolam 5 mg/kg BW and the head was fixed under the microscope. The body temperature was kept con-
stant and the eyes were protected from dehydration with eye ointment (Bepanthen). We used a custom built 
2-photon microscope driven with a Ti:sapphire Laser (Chameleon Vision-S, Coherent) running at 910 nm for 
GFP excitation. The setup was controlled by ScanImage (Vidrio Technologies) software38, running on MATLAB 

Figure 2.   Long-term low-dose THC treatment differently alters spine dynamics in old and young mice. (a, f) 
Turnover ratio—number of lost and gained spines between two consecutive time points divided by the total 
number of spines in both time points. Percentage of spines that were gained (b, g) and lost (c, h) between two 
consecutive time points. Percentage of spines that were transient (d, i)—gained in one time point and lost in the 
consecutive one. (e, j) Survival probability of spines that were gained between day 7 and day 10 (dashed line) 
of the treatment and all spines present at day 10 (full line). Grey box indicates the treatment duration. (a—e) 
3-month-old mice (THC n = 12 ROIs, N = 4 mice; vehicle n = 10 ROIs, N = 4 mice); (a) turnover ratio: time 
effect F13,179 = 3.718, p < 0.0001; treatment effect F1,20 = 10.93, p = 0.0035 (day 7 p = 0.0017; day 10 p = 0.0033; day 
13 p = 0.0014); (b) gained spines: time effect F13,179 = 2.291, p = 0.0080; treatment effect F1,20 = 9.589, p = 0.0057; 
interaction effect F13,179 = 3.050, p = 0.0004 (day 7 p < 0.0001; day 35 p = 0.0031); (c) lost spines: time effect 
F13,179 = 3.245, p = 0.0002; treatment effect F1,20 = 10.15, p = 0.0046; interaction effect F13,179 = 2.382, p = 0.0057 
(day 10 p = 0.0054; day 13 p = 0.0011); (d) transient spines: time effect F9,117 = 3.715, p = 0.0004; treatment 
effect F1,20 = 9.299, p = 0.0063; interaction effect F9,117 = 2.812, p = 0.0050 (day 7 p = 0.0002; day 10 p = 0.0237); 
(e) survival all spines: p = 0.0002; (f–j) 18-month-old mice (THC n = 22 ROIs, N = 10 mice; vehicle group 
n = 17 ROIs, N = 8 mice); (f) turnover ratio: time effect F13,339 = 4.759, p < 0.0001 ; treatment effect F1,36 = 5.403, 
p = 0.0259 (day 16 p = 0.0424; day 25 p = 0.0448); (g) gained spines: time effect F13,339 = 3.208, p = 0.0001; (h) lost 
spines: time effect F13,339 = 2.356, p = 0.0050; treatment effect F1,36 = 7.416, p = 0.0099; (i) transient spines: time 
effect F9,239 = 1.948, p = 0.0462; treatment effect F1,36 = 8.564, p = 0.0059 (day 10 p = 0.0343); (j) survival gained 
spines: p < 0.0001; survival all spines: p = 0.0123. Each data point represents one ROI. Error bars indicate mean 
± SEM; 2-way ANOVA (Mixed-effects analysis) followed by Sidak’s multiple comparison test; for survival 
probability analysis (e and j) Kaplan–Meier plot and log rank test (Mantel-Cox test) were used; * P < 0.05, ** 
P < 0.01; *** P < 0.001; **** P < 0.0001. ns. - not significant.

◂
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(Mathworks). 3–5 regions of interest (ROIs) were obtained from each mouse using a 40 × objective (NA 0.8, 
LumPlanFl, Olympus). Each ROI included multiple apical dendritic segments from layer V pyramidal neurons. 
To confirm that the dendritic segments belonged to layer II/III or V neurons, we followed dendritic segment 
towards the soma. Only ROIs in which spines were clearly visible were included into the analysis. To repeatedly 
find the same dendritic segments, blood vessels and the shape of neighboring dendrites were used as landmarks. 
In each time point from each imaging region one z-stack image was acquired of 1024 × 1024 pixels (0.065 μm/
pixel) resolution and 16-bit depth using a 0.43 Hz frame rate resulting in a pixel dwell time of 2,000 ns. In the 
young group a step size of 0.51 µm was used, but in old animals it was changed to 0.8 µm to decrease the imaging 
time. Each frame was acquired 4 times and averaged to increase signal to noise ratio. Overview pictures were 
done during every imaging session to observe the stability of the window. After imaging, mice were woken up 
by an i.p. injection of atipamezol 2.5 mg/kg, flumazenil 0.5 mg/kg BW. Mice were placed under a warming lamp 
and monitored until fully awake.

Dendritic spine analysis.  Spine analysis was performed using a MATLAB script “Spine Analysis”14 pro-
vided with r3.8 ScanImage38. In general, 2–3 ROIs were analyzed per animal, in some cases we could only ana-
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Figure 3.   THC counteracts the effects of aging on the level of spine dynamics. Percentage of spines that were 
lost (a) or gained (b). (c) Turnover ratio—number of lost and gained spines between two consecutive time 
points divided by the total number of spines in both time points. (d) Percentage of spines that were stable 
between two consecutive time points. Spine dynamics from day 13 to day 16 of the treatment. For 3-month-old 
mice (n = 7 ROIs), for 18-month-old mice (n = 12–20 ROIs / treatment). Each data point represents one ROI. 
Data was analyzed using one-way ANOVA and Dunnett’s multiple comparison test for comparison of 3-months 
old vehicle group with the 18-month-old vehicle and THC-treated groups. Differences between the 18-month-
old vehicle and THC groups were detected using unpaired t-test. (a) Group effect F2,36 = 4.755, p = 0.0147 
(3- vs. 18-month-old vehicle p = 0.0129); 18-month-old vehicle vs. THC t30 = 2.321, p = 0.0273; (b) group 
effect F2,36 = 2.244, p = 0.1207; (c) group effect F2,36 = 3.462, p = 0.0422 (3- vs. 18-month-old vehicle p = 0.0644); 
18-month-old vehicle vs. THC t30 = 2.241, p = 0.0326 (d) group effect F2,36 = 4.755, p = 0.0147 (3- vs. 18-month-
old vehicle p = 0.0129); 18-month-old vehicle versus THC t30 = 2.321, p = 0.0273. (e) Survival probability of spines 
that were gained between day 7 and day 10 (dashed line) of the treatment and all spines that were present at day 
10 (full line). THC treatment elevated spine survival of all spines in old mice to the level of young vehicle-treated 
mice; while spine survival in vehicle treated old mice was significantly reduced (all spines 3- vs. 18-months-old 
vehicle groups: p = 0.0023). THC-treatment also increased the survival of gained spines notably in comparison 
to the 3-months-old vehicle group (3-month-old vehicle group vs. 18-month old THC group: p = 0.0076). 
For survival probability analysis Kaplan–Meier plot and log rank test (Mantel-Cox test) were used. Grey box 
indicates the treatment duration. Error bars indicate mean ± SEM; * P < 0.05, ** P < 0.01, *** P < 0.001. ns. - not 
significant.
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lyze 1 ROI (5 out of 26 mice) or even 4 ROIs (2 out of 26 mice). Only images that allowed for a visual identifica-
tion of spines were used in the spine analysis. The number of ROIs and mice analyzed in each time point can be 
found in Supplementary Table 1. Image analysis consisted of two phases: annotation and correlation. First, each 
spine was manually annotated as a single line from the dendritic shaft to the tip of the protrusion. Only protru-
sions longer than 0.4 µm were considered as spines14. Next, annotated protrusions were correlated between time 
points. Protrusions could fall into one of the following categories: stable, gained, lost, and transient depending 
on their consecutive presence or absence (Fig. 1b). Spines were defined as stable: when the element was present 
on both consecutive time points; gained: when the element was not there on one time point but appeared on 
the consecutive one; lost: when the element was gone on the consecutive time point; transient: when gained on 
one time point and lost in the next one. Turnover ratio was calculated as the number of lost and gained spines 
between two time points divided by total number of spines in both time points. Within each ROI, we have meas-
ured the total length of each dendritic segment and quantified the number of present spines within the measured 
dendritic segment. To obtain the spine density we divided the sum of all annotated spines by the total length 
of all measured dendrites within a ROI. The reported spine dynamics were calculated using a custom written 
Python script (https://​github.​com/​danie​lmk/​spine_​annot​ations_​proce​ssing).

Statistical analysis and data presentations.  Microsoft Excel was used for data analysis followed by 
statistical analysis and data visualization in GraphPad Prism 8, GraphPad Software, San Diego, California USA, 
www.​graph​pad.​com. For presentation, representative images were post-processed in Fiji. Figures were created in 
Adobe Illustrator CS5.1. For time-series experiments 2-way ANOVA (Mixed-effects model (REML)) was used 
followed by Sidak’s multiple comparison test. For survival probability analysis log-rank test (Mantel-Cox test) 
was used. Data sets with two independent groups were analyzed using unpaired t-test or U-test. Prior to this 
distribution was checked against normal distribution using the Anderson–Darling test. For analysis with three 
independent groups one-way ANOVA was applied after validation of normal distribution followed by Dunnet’s 
multiple comparison test. Statistical significance was stated when p-value < 0.05 at a 95% confidence interval 
with two-sided testing. p-values were reported in all figures as * p < 0.05, ** p < 0.01; *** p < 0.001; **** p < 0.0001. 
A detailed statistics table can be found as Supplementary Table 2.

Data availability
Datasets are available upon request from the corresponding authors—Valentin Stein and Andreas Zimmer. The 
raw data supporting the conclusions of this article will be made available by the authors, without undue reserva-
tion, to any qualified researcher.
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