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Modified unified critical state 
model for soils considering 
over‑consolidation and cyclic 
loading behaviours
Xiaowen Wang 1, Ran Yuan 2 & Kai Cui 3*

This paper presents a modified unified critical state model to predict the mechanical responses of 
both clays and sands under over-consolidation and cyclic loading conditions on the basis of clay and 
sand model (CASM), which is named as CASM-kII. Through the application of subloading surface 
concept, CASM-kII is able to describe the plastic deformation inside the yield surface and the reverse 
plastic flow, and is thus expected to capture the over-consolidation and cyclic loading behaviours of 
soils. CASM-kII is numerical implemented by the using of the forward Euler scheme with automatic 
substepping and error control. Then, a sensitivity study is carried out to check the influences of the 
three new parameters of CASM-kII on the mechanical response of soils in over-consolidation and cyclic 
loading conditions. Through the comparisons of experimental data and simulated results, it is found 
that CASM-kII is able to satisfactorily describe the mechanical responses of both clays and sands in 
over-consolidation and cyclic loading conditions.

An accurate and concise description of the mechanical properties of soils is required for the design of civil 
engineering. As one of the most significant achievements in the field of geomechanics, Cam-clay plasticity1 has 
been well accepted for the constitutive modeling of soils2–6. In order to unify the constitutive modelling of both 
clays and sands, Yu7 developed a unified critical state model for clay and sand (i.e., CASM) on the basis of Cam-
clay plasticity and state parameter concept. Owing to its concise mathematical expression and clear physical 
meaning of material constants, the CASM has been further developed to capture the more complex mechanical 
behaviours of soils8–12.

However, as stated by Hashiguchi13–15, classic elastoplastic constitutive models with a single yield surface 
enclosing the elastic domain possess many limitations in describing the mechanical response of soils. First, the 
original CASM predicts pure elastic behaviour inside the yield surface while the experimental data show that 
recoverable deformation only occurs within a very small range16–19. CASM describes discontinuous variation 
of the tangent stiffness modulus from elastic to plastic of over-consolidated soils and predicts an unsmooth 
stress–strain relation, and thus is unable to describe softening behaviour accurately9,17,20. Second, the ability 
to characterize the effect of stress history during cyclic loading process is significant to the constitutive mod-
eling of soils21–25, since it has been discovered in cyclic loading tests that elastic and plastic deformations both 
develop during unloading before the stress path is completely reversed26,27. When the effect of reverse plastic 
flow is critical, the traditional isotropic hardening CASM model with a single yield surface is unable to provide 
appropriate solutions for boundary value problems because the reversed plastic flow fails to be considered just 
by expanding the single yield locus. Therefore, the above significant issues must be considered before further 
developing CASM to describe a variety of more complex properties of soils. Khong9 has attempted to introduce 
the concept of kinematic hardening into CASM within the context of bounding surface theory(i.e. CASM-k) 
but failed because of the difficulty of numerical implementation, thus Khong9 highly recommended that further 
development of CASM should be conducted in future research.

To extend the prediction ability of conventional elastoplastic constitutive model under complex loading 
conditions (such as over-consolidation, cyclic loading, anisotropic loading and non-proportional loading), 
Hashiguchi13–15 proposed the subloading surface concept with rigorous physical backgrounds. During last 
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decades, subloading surface concept has been widely adopted in the constitutive modeling of soils. Hashiguchi 
et al.17 and Yao et al.18 adopted the subloading surface to describe the over-consolidated behaviour of soils. Asaoka 
et al.28 and Zhang et al.29 described the mechanical properties of structured soils through the combination of 
superloading and subloading surfaces. Since the concept of rotational hardening mechanism has been widely 
adopted in the constitutive modeling to capture the induced anisotropic properties of soils30–32, Hashiguchi 
and Chen33, Yamakawa et al.34 and Hashiguchi et al.35 combined the subloading surface concept with rotational 
hardening theory to characterize the cyclic mobility mechanism of anisotropic soils.

In this study, a new modified unified critical state model called CASM-kII is developed by introducing the 
subloading surface theory into the original CASM. This new model is established to extend the prediction ability 
of CASM for both clays and sands under over-consolidation and cyclic loading conditions. The plastic modulus 
of this new model is derived through the consistency condition of subloading function and varies smoothly from 
elastic to plastic response during loading procedure, which makes it possible for CASM-kII to characterize the 
plastic deformation inside the yield surface and the reverse plastic flow and thus to describe the over-consoli-
dated behaviour and cyclic loading response of soils in a flexible fashion. Then, the forward Euler scheme with 
automatic substepping and error control is adopted in this study to numerical implement this newly proposed 
model. Compared with original CASM, CASM-kII adds three material parameters to control the evolution law 
of subloading surface, and the influences of these new parameters on the mechanical properties of soils under 
drained and undrained conditions is checked through a sensitivity study. At last, CASM-kII is validated through 
the comparisons of experimental data and simulation results in monotonic and cyclic loading tests under both 
drained and undrained conditions.

Constitutive relation of CASM‑kII
First, soil behaviour is assumed to be isotropic in this paper for the sake of simplicity. If the inherent and induced 
anisotropy behaviours of soils need to be considered, CASM-kII may be extended to account for anisotropy by 
incorporating anisotropic mechanism such as rotational hardening behaviour30–35 or soil fabric and its evolu-
tion rule36–39 in the model. The extension work for the issue of anisotropy can be referred to the work of Gao 
et al.40 Second, the bold-faced characters are used to represent vectors and tensors and the italics are used to 
represent scalars.

In this section, the subloading surface theory is introduced in CASM. The effective mean stress p and devia-
toric stress q can be expressed as:

where σ is effective stress tensor; δ is Kronecker delta.
As illustrated in Fig. 1, it is assumed that a subloading surface exists inside the domain bounded by the typical 

yield surface (or called normal-yield surface), which indicates the loading history and represents the material’s 
mechanical responses during the loading and unloading procedure13–15. The subloading surface passes always 
through the current stress state σ , and approaches the normal-yield surface asymptotically in a plastic loading 
procedure. During the whole loading process, the shapes of subloading surface and normal-yield surface keep 
similar, and the normal-yield ratio is recorded as R . According to the geometric relationships shown in Fig. 1, 
the following relationships can be given as:
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Figure 1.   The relationship of subloading surface and normal-yield surface in p − q plane.
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where α denotes the position of subloading surface, pα  and qα  denote the projections of α on the p and q axes, 
respectively; σ  denotes the stress observed from subloading surface, p and q are the mean stress and deviatoric 
stress of σ  , respectively; σ̂ denotes the conjugate stress of σ on the normal-yield surface, p̂ and q̂ are the mean 
stress and deviatoric stress of σ̂ , respectively. For Cam-clay models, in particular, the size of normal-yield surface 
can be represented by pc (i.e., preconsolidation pressure), and the size of subloading surface can be represented 
by Rpc.

Functions of normal‑yield surface and subloading surface.  According to the work of Yu7,20, the 
stress-state relation for soils can be given as:

where η = q/p is stress ratio, ξ and ξR are the state parameter and positive reference state parameter, respectively; 
� , Ŵ are the well-known Cam-clay parameters; n and r are the material parameters jointly controlling the shape 
of yield surface. M denotes the slope of critical state line.

By substituting Eqs. (2)–(6) into Eq. (7), the normal-yield function ˆf  and subloading function f  in general 
stress space can be defined as:

It should be noted that subloading surface coincides with the normal-yield surface when R = 1. In this case, the 
subloading function becomes identical to the normal-yield function, and the subloading surface model exhibits 
a response similar to the conventional plasticity model.

Elastic behaviour.  In general stress space, the elastic stress–strain relation can be given as:

where �σ is stress increment; �ε , �ε
e , �ε

p are the total, elastic and plastic strain increments, respectively; E 
denotes the elastic stiffness matrix; I is a fourth-order symmetric identity tensor; K and G denote the bulk and 
shear modulus, respectively. It should be noted that the elastic behaviour of granular materials is non-linear and 
depend on the stress level. There are two types of formulations are widely adopted to describe the non-linear 
elastic behaviour of granular materials, i.e., hypoelasticity18,20,38,41,42 and hyperelasticity43–48 formulations. Under 
the framework of hypoelasticity, K and G related to the mean stress p can be defined as:
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where κ denotes the slope of swelling line in v − ln p space; µ denotes the Poisson’s ratio, v0 denotes initial value 
of specific volume.

Dilatancy rule.  It is well known that the associated flow rule adopted by Cam-clay would lead to an over-
prediction of shear strain for soils subjected to normal compression49. Therefore, the dilatancy rule of CASM-kII 
follows the relation suggested by Rowe50:

where D is dilatancy rate; �ε
p
v and �ε

p
q are the volume component and shear component of plastic strain rate, 

respectively; η = p/q is the stress ratio on subloading surface.

Plastic flow rule.  The plastic potential function of subloading surface can be obtained by integrating the 
Rowe’s relationship:

where β is the size parameter.
Therefore, the plastic strain increment can be given as:

where �� and L denote the magnitude and direction of plastic strain increment, respectively. According to 
Eqs. (11) and (18), it should be noted that the yield properties and plastic flow of CASM-kII are applied to the 
subloading surface instead of the normal-yield surface, which is different from the traditional elastoplastic model.

Hardening rule.  The hardening rule of the subloading surface are controlled by α , R and pc , and the iso-
tropic hardening rule of the normal-yield surface is described by isotropic hardening parameter pc , as illustrated 
in Fig. 2. The size of subloading surface is controlled by both pc and R, similar to the Cam-clay plasticity, the 
variable pc is controlled by the increment of plastic volumetric strain:

Integrating Eqs. (18) and (19) over a finite time increment yields the following alternative incremental hard-
ening laws:
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Figure 2.   Schematic representation of the evolution law of subloading surface.
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Considering that the stress approaches the normal-yield surface progressively, i.e., the subloading surface 
approaches the yield surface gradually during the plastic loading procedure, the rate of R can be defined as:

where O is a two-order zero tensor; U is a monotonically decreasing function of the normal-yield ratio R, and 
it must satisfy the following rules:

There are many mathematical expressions of U that can satisfy Eq. (23), and here we adopt a simple one:

where hm is a new material constant controlling the rate of subloading surface that approaches to the normal-
yield surface.

It should be noted that during the elastic unloading process (the loading criterion will be given in the next 
section), R must be calculated according to the nonlinear Eq. (11) formed by current known values of σ , α and 
pc , because Eq. (22) only holds for the plastic loading process. However, the subloading equation is of high-order 
(n-order), which makes it impractical to obtain the analytical solution of R. Hence, the Newton–Raphson method 
might be appropriate for calculation of R. The complete calculation procedure of R during elastic unloading 
process is listed in Table 1.

Besides, it should be noted that the similarity center should be located inside the normal-yield surface dur-
ing the whole loading process. Following the concept of subloading surface, the similarity center surface can be 
defined as follows:

where the similarity center surface passes through the similarity center point and is similar to the normal-yield 
surface in terms of stress space origin. Rcen is the ratio of the size of the similarity center surface to the normal-
yield surface. To make certain that the similarity center lies inside the limit surface, i.e., f (c) = rcpc , the following 
inequality must hold:

where rc ( 0 < rc < 1 ) is a new material constant designating the maximum value of Rcen . Besides, the similarity 
center surface is unable to be bigger than the normal-yield surface, by using the properties of homogeneous 
function, the closure condition of similarity center can be obtained:

Then, it can be assumed that the rate of similarity center can be written as:

where hc is a new material constant controlling the evolution rate of similarity center.
By Substituting Eq. (28) into Eq. (4), the rate of α is given by:

(22)�R = U
∥

∥�ε
p
∥

∥

= ��U
∥

∥L
∥

∥ , when�ε
p
�= O

(23)











U = +∞ for R = 0
U > 0 for R ∈ (0, 1)
U = 0 for R = 1
U < 0 for R > 1

(24)U = −hm ln(R)

(25)f (c) = Rcenpc

(26)0 ≤ f (c) ≤ rcpc, 0 ≤ Rcen ≤ rc

(27)
∂f (c)

∂c
:

[

�c−
�pc

pc
c

]

≤ 0, when 0 ≤ Rcen ≤ rc

(28)�c =
�pc

pc
c + hc

∥

∥�ε
p
∥

∥

(

σ

R
−

c

rc

)

Table 1.   The numerical calculation procedure of R by the Newton–Raphson method.

Step Brief description

1 Input the variables σk , ck and pck at the end of step k

2 Set the initial value Ri
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Consistency condition and plastic modulus.  Different from the traditional elastoplastic model, the 
consistency condition of subloading surface model is applied to the subloading function instead of normal-yield 
function13. According to Eq. (11), the consistency condition of subloading function can be given as:

Substituting Eqs. (12), (18), (19), (22) and (29) into Eq. (30), the plastic multiplier can be given as:

where Kp is plastic modulus. According to the consistency condition of subloading function, the mathematical 
expression of Kp is written as:

By substituting Eq. (32) into Eq. (12), the elastoplastic stiffness matrix Eep can be defined as:

where ς is the loading index, and the loading criterion15 is given as:

Numerical implementation scheme.  Existing numerical implementation schemes of the constitutive 
models are generally classified as backward Euler51–54 and forward Euler55–57 schemes. The backward Euler 
scheme with the return-mapping technique is accurate because the resulting stress automatically satisfy the 
yield function to a specified tolerance. However, this backward Euler method requires the second derivatives of 
the yield and the plastic potential functions, which makes it difficult to the implement for complex constitutive 
relations58. Compared with back Euler scheme, forward Euler scheme have the advantage of being more straight-
forward to implement. Therefore, the forward Euler scheme with automatic substepping and error control is 
adopted in this study because its simplicity and efficiency. The forward Euler scheme with automatic substepping 
and error control can divide the loading step into several substeps according to the local computational accuracy 
required. It is assumed that the strain increment input by the analysis system is �εk+1 at step k to step k + 1 , this 
original increment may be too large and leads to excessive error sometimes. To avoid the drift of yield surface 
and improve computational precision, it is necessary to divide this increment into a series of parts (substeps) to 
satisfy the local tolerance error. The complete load integration algorithm may be implemented as Table 2:

Model constants
The newly proposed model CASM-kII requires ten material parameters ( Ŵ , � , κ , µ , M , r , n , hm , hc and rc ) and 
initial values of the of the internal hardening variables ( pc0 , R0 and α0 ). The roles of each constant are listed in 
Table 3. Ŵ , � , κ , µ and M are the well-known constants in Cam-clay plasticity, which are called the “basic con-
stants”. r and n are called yield constants because they control the shape of normal yield surface. The detailed 
calibration procedure of the basic and yield constants can be referred to the work of Yu7,20, Rios et al.12 and 
Navarro et al.59. hm , hc and rc are the newly introduced material parameters used to control the evolution rule 
of subloading surface, which called “Hardening constants” in this study. The variable pc0 can be determined by 
the preconsolidation pressure. As shown in Fig. 2, the initial value of the position tensor can be set as α0 = O 
for initial isotropy15. Once pc0 and α0 are known, R0 can be easily obtained from the subloading function of 
Eq. (11) as follows:

where p0 and q0 are the initial mean stress and initial deviatoric stress on subloading surface, respectively.
As suggested by Hashiguchi15, hm can be determined from the stress–strain curve in the subyield state while 

hc and rc can be determined from the stress–strain curve in cyclic loading. Before using CASM-kII to predict the 
mechanical response of a practical engineering problem, it is instructive to investigate the influence of hardening 
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constants on the predicted mechanical properties of soils under drained (or undrained) monotonic loading (or 
cyclic loading) conditions. In this study, a sensitivity study is carried out to check the influences of these three 
new parameters ( hm , hc and rc ) on the mechanical response of soils in over-consolidation and cyclic loading 
conditions. The basic and yield material constants are set as Ŵ = 2.59, � = 0.15, κ = 0.05, µ = 0.3, M = 1, r = 2.718, 
n = 1.6 while the hardening parameters hm , hc and rc are variables. It is assumed that the samples used in the test 
are isotropically consolidated with pc0 = 100 kPa, v0 = 2 and α0 = O. In the monotonic loading test under drained 
and undrained conditions, the OCRs of the samples are set to 4 and 8 ( R0 = 0.25 when OCR = 4, R0 = 0.125 when 
OCR = 8). In the cyclic loading test under drained and undrained conditions, the samples are slightly over-
consolidated (OCR = 1.5, R0 = 0.667) and a two-way cyclic loading ( q =  ± 30 kPa) is applied.

As illustrated in Fig. 3, the value of hm significantly affects the mechanical properties (such as stress–strain 
relation, stress path, shear dilatancy and the normal-yield ratio evolution) of over-consolidated samples under 
monotonic loading. The sample reaches the critical state earlier (drained condition) and demonstrates a lager 
peak strength (undrained condition) with a bigger value of hm under plastic loading process.

Figure 4 shows the performances of different hc and rc under undrained cyclic loading tests. It can be found 
the hysteresis loop increases quicker (softening behaviour) with smaller values of hc and rc . As illustrated in 
Fig. 4b,d, the normal-yield ratio R varies like a butterfly with the loading and unloading process. As shown in 

Table 2.   Flowchart of the integration scheme.

Step Brief description

1 Input initial variables σk , εk , ck , pck , Rk and the strain increment �εk+1

2 Set the pseudo time T = 0 , �T = 1 and the tolerance error STOL = 1e− 6

3 Calculate the first trial elasto-plastic stiffness matrix Eep
1

{

σk , ck , pck , Rk
}

 by substituting the initial variables into Eq. (34)

4 Compute the subincrement according to �ε
sub
k+1 = �T ×�εk+1

5 Calculate the first trial stress increment �σ1 = E
ep
1 : �ε

sub
k+1 and update the first trial state variables c1 , pc1 and R1 related to plastic 

deformation

6 Compute the second trial elastoplastic stiffness matrix Eep
2

{

σ1, c1, pc1, R1
}

 by substituting the first trial variables into Eq. (34)

7 Calculate the second trial stress increment �σ2 = E
ep
2 : �ε
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8 Calculate the average stress increment �σk+1 =
1
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If LE > STOL , the size of this substep is too large and a smaller pseudo time needs to be found:
ρ = max

{

0.9
√

STOL/LE, 0.1
}

 , �T = max {ρ�T , 0.001} , then return to step 4
Else, go to next step

11
Compute the size of next substep ρ = min

{

0.9
√

STOL/LE, 1.1
}

If the above equation is rejected, then ρ = min {ρ, 0.9}
Update the pseudo time T = T +�T , �T = ρ�T

12
Recalculate the pseudo time to ensure the size of next substep is bigger than that of minimum step and is not bigger than 1, the fol-
lowing conditions must be applied
�T = max {�T , 0.001} , �T = min {�T , 1− T}

13
While T = 1 end this iterative calculation and output the Jacobi stiffness matrix Ck+1 to the finite element routine for the global 
equilibrium iterations. The Jacobi stiffness matrix can be derived from the same procedure in solving the elastoplastic matrix58:
Ck+1 = E

ep
k+1

{

σk+1, ck+1, pck+1,Rk+1

}

Table 3.   Model constants in CASM-kII.

Category Symbol Description

Basic constants

Ŵ Intersection of critical state line with p = 1 kPa line in e – lnp space

� Slope of compression line in e − lnp space

κ Slope of swelling line in e − lnp space

µ The Poisson’s ratio

M Slope of critical state line in p − q space

Yield constants
r Controls the shape of normal-yield surface

n Controls the shape of normal-yield surface

Hardening constants

hm Controls the evolution rate of the size of subloading surface

hc Controls the evolution rate of the position of subloading surface

rc Controls the maximum size of similarity center surface

Initial internal hardening variables

pc0 Initial value of preconsolidation pressure

R0 Initial value of normal-yield ratio

α0 Initial position of subloading surface
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Fig. 5, the performances of different hc and rc under drained cyclic loading tests is checked. The accumulated 
plastic deformation and shear dilatancy under drained conditions demonstrate larger with smaller values of hc 
and rc because the rate of reverse plastic flow is slower at this time.

Numerical simulations
In order to assess the performance of this newly proposed CASM-kII in monotonic and cyclic loading condi-
tions, the experiment data of Jiangxi clay, Boston blue clay, Toyoura sand and Commercially available clay are 
used in this study. The values of the basic constants, yield constants and initial values of internal hardening vari-
ables used in the simulations are determined through the reported results and recommended values in previous 
study11,21,60–62, while the hardening parameters are determined through the methods in previous section. The 
material constants of these four samples are listed in Table 4.

Drained triaxial tests.  The drained triaxial tests of Jiangxi clay was proposed by Hu et  al.62 with these 
samples are applied consolidation confining pressure to 98 kPa, 196 kPa and 784 kPa in triaxial apparatus. These 
samples had a height of 80 mm and a diameter of 39.1 mm. In order to prepare samples with over consolidation 
ratios of 1, 2 and 8, the confining pressure was unloaded to 98kpa step by step. As illustrated in Fig. 6, CASM-kII 
can accurately simulate the stress–strain and deformation characteristics in normally and over-consolidation 
conditions. In particular, the newly proposed model is found to be relatively capable of capturing the dilatancy 
behaviour of the overconsolidated clay observed in the laboratory tests.

Undrained triaxial tests.  The measured data of Boston blue clay of Pestana et al.60 is used here to validate 
the prediction ability of CASM-kII for the mechanical properties of overconsolidated clays under undrained 
loading process, with the pre-consolidation pressure set to 196  kPa and the over-consolidation ratios set to 
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OCR = 1, 2, 8. Figure 7 shows that the agreement between measured data and simulation data of both stress–
strain relation and stress paths is satisfactory. Besides, CASM-kII is able to predict the smooth stress–strain 
curves in over-consolidation conditions, whilst the original CASM fails to predict9.

Then, the experimental data of Toyoura sand observed by Verdugo and Ishihara63 is used here to evaluate 
the prediction ability of CASM-kII to capture the behaviour of sands. The undrained tests of Toyoura sand were 
conducted under very high confining pressures (p = 1, 2, 3 MPa) with same void ratio e0 = 0.71. The initial values 
of internal variables can be referred to the work of Zhang et al.61. As shown in Fig. 8, the results simulated by 
CASM-kII coincide well with the experimental results quantitatively and qualitatively. Under the same void 
ratio, the sands behave the properties of loose sands when the confining stress is large, while the sands behave 
the properties of dense sands when the confining stress is small. Such a phenomenon is called as “confining-stress 
dependency of sand”64.

Cyclic loading tests.  To verify the applicability of the new model under cyclic loading conditions, the 
experiment data observed by Li and Meissner21 is used here. The material constants and initial conditions of 
these samples can be found in Table 4. These cyclic tests are stress-controlled with the half amplitude of the devi-
atoric stress q = 116 kPa. Figure 9 shows the observed data and the simulation data, the deviatoric stress is plotted 
against the axial strain while the excess pore water pressure ( �u ) is plotted against the number of cycles, where 
CASM-kII can describe the behaviour of undrained commercially available clay under cyclic loading conditions.

Conclusions
In this paper, a modified unified critical state model (called CASM-kII) to predict the mechanical properties of 
both clays and soils under over-consolidation and cyclic loading conditions is developed on the basis of origi-
nal CASM model and subloading surface concept. Through the introduction of subloading surface, this newly 
proposed model is able to describe the plastic deformation inside the yield surface and the reverse plastic flow, 
and is thus expected to accurately capture the over-consolidated and cyclic behaviours. CASM-kII is numerical 
implemented by the using of the forward Euler scheme with automatic substepping and error control. Then, 
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Table 4.   The material constants of different samples.

Jiangxi clay Boston blue clay Toyoura sand
Commercially available 
clay

Basic constants

Ŵ = 2.255 Ŵ = 2.501 Ŵ = 2.067 Ŵ = 2.134

� = 0.095 � = 0.184 � = 0.05 � = 0.173

κ = 0.018 κ = 0.036 κ = 0.0064 κ = 0.05

µ = 0.3 µ = 0.3 µ = 0.3 µ = 0.3

M = 1.36 M = 1.35 M = 1.3 M = 0.772

Yield constants
r  = 2.2 r  = 2.718 r  = 12 r  = 2.718

n = 3.5 n = 1.8 n = 2 n = 2

Hardening constants

hm = 95 hm = 40 hm = 80 hm = 750

hc = 10 hc = 25 hc = 55 hc = 35

rc = 0.95 rc = 0.9 rc = 0.7 rc = 0.95

Initial internal variables

v0 = 1.88 v0 = 2.01 v0 = 1.71 v0 = 2.15

α0 = O α0 = O α0 = O α0 = O

OCR = 1: OCR = 1: p = 1 MPa: pc0 = 450 kPa

pc0 = 98 kPa, 
R0 = 1

pc0 = 196 kPa, 
R0 = 1 pc0 = 8 MPa, R0 = 1

OCR = 2: OCR = 2: R0 = 0.125

pc0 = 196 kPa, 
R0 = 0.5

pc0 = 392 kPa, 
R0 = 0.5 p = 2 MPa:

OCR = 8: OCR = 8: pc0 = 10 MPa, 
R0 = 0.2

pc0 = 784 kPa, 
R0 = 0.125

pc0 = 1568 kPa, 
R0 = 0.125

p = 3 MPa: 
pc0 = 10.5 MPa, 
R0 = 0.286
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a sensitivity study is carried out to check the influences of these three new parameters ( hm , hc and rc ) on the 
mechanical response of soils in over-consolidation and cyclic loading conditions. Through the comparisons of 
experimental data and simulated results, it is found that CASM-kII performs well in the simulations of both 
clays and sands in over-consolidation and cyclic loading conditions.

Data availability
Some or all data, models, or code that support the findings of this study are available from the corresponding 
author upon reasonable request.
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