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Investigation of microseismic 
signal denoising using an improved 
wavelet adaptive thresholding 
method
Zhen Zhang 1, Yicheng Ye 1,2, Binyu Luo 1*, Guan Chen 1 & Meng Wu 1

There are high- and low-frequency noise signals in a microseismic signal that can lead to the distortion 
and submersion of an effective waveform. At present, effectively removing high- and low-frequency 
noise without losing the effective signal of local waveform spikes remains a challenge. This work 
addresses this issue with an improved wavelet adaptive thresholding method. Because a denoised 
signal conceptually approximates the minimum error, a dynamic selection model is established for 
the optimal threshold. On this basis, an adaptive correction factor aj is proposed to reflect the noise 
intensity, which uses the 1/2 power of the ratio of the median absolute value to the amplitude of the 
monitoring data to reflect the noise intensity of the wavelet detail signal and corrects the size of the 
denoising scale. Finally, the performance of the improved method is quantitatively evaluated in terms 
of the denoising quality and efficiency using the signal-to-noise ratio, root-mean-square error, sample 
entropy and running time.

Rockbursts often occur in deep rock mass engineering projects such as  tunneling1 and underground ore body 
 mining2,3. Catastrophic rockburst can cause rock fragments to fly and rock masses to collapse over a large area, 
which seriously affects normal construction operations and threatens worker safety. Microseismic monitoring 
technology is an effective early warning method for rockburst  monitoring4, based on real-time captured rock 
catastrophe evolution signals, to obtain information on seismic parameters for the timely and accurate monitor-
ing of malignant rockburst patterns. In deep rock engineering operations, when accompanied by mechanical 
vibration, bottom noise and other signals, the signals captured by a microseismic monitoring system are mixed 
with noise signals, resulting in large errors in the initial arrival of microseismic events and source parameter data, 
which seriously affects mining and the accurate prediction and early warning of rockburst disaster precursor 
information. Therefore, the development of monitoring signal denoising processing is an important component 
of accurate rockburst precursor information acquisition.

In the microseismic signal acquisition process, the effective signal of the microseismic waveform can be inter-
fered with and drowned out by noise signals of different frequencies. To obtain pure microseismic signals, Iqbal 
et al.5, Mousavi et al.6, and Cecilia Dip et al.4 developed a denoising model using a conventional digital filter to 
achieve noise signal suppression. Iqbal et al.7 and Nasr et al.8 proposed a signal filtering method based on SVD 
that removes the noise signal in the monitoring signal. The methods based on conventional digital filtering and 
SVD are mainly used to eliminate high-frequency noise  signals9. Empirical mode decomposition is a new signal 
time–frequency processing method that realizes the extraction of pure signals through the processes of polluted 
signal decomposition, high-frequency signal filtering and signal  reconstruction10,11. However, the empirical mode 
decomposition algorithm produces modal aliasing, boundary effects and other phenomena when processing 
 signals12, which easily deform and distort the signal waveform. To compensate for the deficiency of the empirical 
mode decomposition denoising  algorithm13, multiple model combination methods such as  SVD14, EEMD-SVD 
and  ELM15 have been successively proposed for signal denoising research. The results show that the denoising 
effect of the combination method is better than that of a single method, but the combination method increases 
the complexity of the model and reduces the noise removal efficiency.
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The wavelet thresholding algorithm is a mainstream algorithm for signal denoising processing and has been 
used in laser waveform  processing16, signal  denoising17, image  processing18,19, fault  detection20 and other fields. 
The wavelet thresholding algorithm is suitable for nonsmooth or nonperiodic signal denoising, with good ampli-
tude preserving and denoising effects, and is therefore suitable for denoising microseismic  signals21,22. In the 
wavelet thresholding algorithm, the selection of the threshold function is critical, and the commonly used 
threshold functions are the hard threshold function and soft threshold function. Using the hard threshold func-
tion to denoise a waveform will cause jitter in the local area of the processed waveform and damage the effective 
waveform. Using the soft threshold function to denoise the waveform is smoother, but the peak signal-to-noise 
ratio (PSNR) of the processed waveform is smaller than that of the waveform processed by the hard threshold 
function because the wavelet coefficients change greatly. Currently, optimizing threshold functions is a popular 
direction in signal processing. Bayer Fábio et al.23, Lu et al.24 improved the mathematical model of the threshold 
function, which effectively improved the signal-to-noise ratio of the signal. Zhu et al.25 proposed a multiple-
threshold denoising method with multiple denoising rules for microseismic signals, which effectively removed the 
noise signal from the original monitoring signal. The above method is effective in eliminating noise and improves 
the signal-to-noise ratio of the signal. However, the microseismic signals collected in the field are mixed with 
noise signals of different frequencies, and it is difficult for the above method to suppress the complex noise at 
low frequencies in the microseismic signals by shrinking the high-frequency wavelet  coefficients9, which makes 
the waveform take-off position blurred.

To effectively remove the noise of different frequencies, retain the effective signal in the prominent area and 
clearly highlight the take-off position of the waveform, a wavelet adaptive threshold denoising method suitable 
for microseismic signal denoising is proposed in this paper. The method is optimized in three aspects—standard 
variance, threshold function and wavelet coefficient estimation function—to achieve the separation of mixed 
high- and low-frequency noise in microseismic signals and to provide support for the accurate acquisition of 
seismic source parameters and the prediction of rockburst.

The effect of noise on microseismic signals
Microseismic monitoring technology is an important means of rockburst disaster monitoring and early warning. 
Due to the bottom noise and other interference, the microseismic waveform collected by a geophone is often 
drowned out by other noise signals, as shown in Fig. 1, resulting in false alarms and omissions of valid events, 
affecting the accuracy and timeliness of rockburst disaster monitoring and early warning. When conventional 
threshold filtering methods are used to process such signals, the following two situations often occur: (1) the 
interfering signal is not completely removed, and there are many burrs in the waveform; (2) the effective wave-
form of the abrupt part is deformed and even eliminated together with the noise.

In microseismic monitoring technology, the accurate pickup of microseismic signals at the initial arrival time 
is one of the keys to ensure the source positioning  accuracy25. When affected by the noise signal, the waveform 
take-off is ambiguous, which makes the initial arrival time error of the microseismic waveform large, resulting 
in inaccurate location of the microseismic event, as shown in Fig. 2. Therefore, removing the noise doped in 
the microseismic signal is a prerequisite for the accurate prediction and early warning of rockburst disasters.

Figure 1.  Effective waveform drowned out by noise.

Figure 2.  Waveform take-off blur.
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Method
Traditional wavelet threshold denoising method. How to effectively remove the high- and low-
frequency noise while retaining the useful signal is the difficulty of signal denoising. The wavelet threshold 
denoising method mainly denoises by suppressing the useless signal and enhancing the useful signal and has 
the function of retaining the local peak of the waveform (useful signal) and suppressing the interference noise. 
Research has shown that after the signal has been processed by wavelet transform, there is a difference in the 
size of wavelet coefficients corresponding to the effective signal and the noisy signal; therefore, the purpose of 
denoising can be achieved by setting a threshold value. The specific process is as follows: first, the original signal 
is decomposed by wavelet transform to obtain wavelet coefficients. Figure 3 shows the steps of signal multilevel 
wavelet decomposition. Then, the noise signal is filtered according to the coefficients of each decomposition 
layer and the set threshold. Finally, the inverse wavelet transform is used to reconstruct the processed wavelet 
coefficients, and then the pure signal is obtained.

In the process of wavelet threshold denoising, the rational selection of the wavelet base, threshold and thresh-
old function is very important and determines the quality of signal denoising.

(1) Wavelet base selection: in practical applications, completely ideal wavelets do not exist. Generally, compactly 
supported wavelets are selected or appropriate wavelet bases are selected according to the characteristics 
of the signal.

(2) Threshold calculation: The waveform denoising results obtained by selecting different thresholds are also 
different. As shown in Eqs. (1) and (2), they are the mathematical expressions of the noise standard devia-
tion of the j-th layer and the unified threshold, respectively. Where N is the number of wavelet coefficients 
of each layered detail signal and Cd is the detail coefficient.

(3) Wavelet threshold function selection: the threshold function plays the role of modifying the wavelet coef-
ficients. The commonly used threshold functions include hard and soft threshold functions. Equation (3) is 
the mathematical expression of the threshold function. When parameter a is equal to 0, it is the mathemati-
cal expression of the hard threshold; when parameter a is equal to 1, it is the mathematical expression of 
the soft threshold.

where wj,k are wavelet estimation coefficients and wj,k represent wavelet coefficients.

Improved wavelet adaptive threshold denoising method. To overcome the shortcomings of the 
traditional wavelet threshold algorithm, a wavelet adaptive threshold method suitable for denoising microseis-
mic waveforms is proposed. The method is mainly improved from the following aspects:

Improvement of the standard variance calculation formula. The mean and median are typical statistics that 
reflect the overall situation of the sample, representing the mean and median levels of the sample, respectively. 
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Figure 3.  Signal multilevel wavelet decomposition steps.
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When the sample data have skewed distribution characteristics, the median can make up for the shortcoming 
that the mean is easily affected by extreme values and more accurately reflect the overall situation of the sample 
data. According to the overall situation of the original microseismic monitoring data, the median is introduced 
to improve the standard deviation. The improved standard variance expression is:

Optimal threshold dynamic selection model construction. The threshold is the critical value that distinguishes 
the noisy signal from the useful signal. If the threshold is set too small, the interference signal may not be 
removed completely, and if the threshold is set too large, the useful signal may be removed. The traditional 
wavelet threshold denoising method uses a uniform threshold strategy to process the signal in each layer; that is, 
each layer uses a fixed threshold as a judgment condition to remove noise. Since the noise in the wavelet detail 
coefficients decreases as the number of decomposition layers increases during the decomposition of the signal 
using the wavelet  transform26, denoising using a uniform threshold strategy can impair the useful signal. To 
solve this problem, the threshold determination method in bad data repair is improved and introduced into the 
field of mine  microseismics27, and the denoised signal is used to approximate the minimum error to establish a 
threshold model with adaptive characteristics. The steps for the model to dynamically prefer the optimal thresh-
old are as follows:

① Create a vector P. The elements of P are the absolute values of the wavelet coefficients of the j-th layer 
arranged according to the size relationship. The value of ri is calculated using Eq. (5), and the risk vector R 
is  created28.

where 1 ≤ i ≤ N, N is the number of wavelet coefficients in the j-th layer, and CDj,i is the i-th element in the 
vector P.

② Find the smallest element rmin in R as the approximation error and find the corresponding CDmin. Then, the 
mathematical expression of the adaptive threshold of the j-th layer wavelet coefficients is as  follows29:

The wavelet threshold selection function of the j-th layer is as follows:

where λ1,j is the unified threshold under this scale; Pa,j and ΡN,j represent the average value and minimum energy 
level of the wavelet coefficients of the j-th layer, respectively, and the mathematical expressions are shown in 
Eqs. (8) and (9).

Adaptive correction factor creation. The useful signal damage in the denoised signal obtained by the hard 
threshold method is relatively small, but due to its discontinuity in the real number domain, the obtained 
denoised signal is prone to the pseudo-Gibbs phenomenon. The soft threshold denoising method makes up for 
the deficiencies of the hard threshold denoising method, but in the actual filtering process, the soft threshold 
strategy faces the difficulty of removing the interference signals in the adjacent range of singular values; the effec-
tive waveform in the prominent area of the processed signal is easily deformed and  damaged28,30. The analysis 
shows that the waveform deformation and damage in the protruding area are caused by the excessive contraction 
of the effective signal; the setting of parameter a is too large. To combine the advantages of both soft and hard 
thresholding methods, Ge et al.31 and Qiao et al.32 set the parameter a in Eq. (3) to 0.5 and proposed a half-
threshold denoising method. Due to the large difference in wavelet coefficients in each decomposition layer, the 
soft and hard threshold compromise method with fixed parameters does not have adaptive characteristics and 
cannot effectively solve the problems of effective waveform deformation and damage.

Considering the above problems, according to the law that the wavelet detail coefficient changes with the 
number of decomposition layers, an adaptive correction coefficient aj is proposed, as shown in Eq. (10). The 
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coefficient uses the ratio of the overall situation of the microseismic monitoring data to the amplitude to reflect 
the noise intensity of the wavelet detail signal and correct the size of the denoising scale. Since the microseismic 
monitoring data have the characteristics of a skewed distribution, the median of the absolute value of the data 
is used to reflect the overall situation of a group of numbers.

Among them, Bj is the amplitude of |CDj,k|, that is, the amplitude of the absolute value of the wavelet coef-
ficient of the j-th layer of the detail signal.

According to the hard threshold and soft threshold functions, when aj = 0, the denoised signal is not smooth, 
and there are residual noise signals. When aj = 1, the denoised signal is smooth, but its useful signal is seriously 
compromised. Therefore, the range of x is (0, + ∞). As shown in Fig. 4, to obtain the optimal x fetch, the program 
random.gauss(mu, sigma) is used to add Gaussian noise to the original signal to design 6 groups of test signals.

An improved wavelet thresholding model is established using a cyclic approach calling 1/6, 1/5…, 2 as 
x-values to denoise the six sets of test signals in turn. As shown in Fig. 5, the SNR values of the six groups of 
curves in (a) first increase, then slightly decrease, and then remain unchanged with the increase of x value, and 
the x value corresponding to the peak value is 1/2; (b) The RMSE value of the six groups of curves decrease with 
the increase of x value, then slightly increase and then stabilize, and the corresponding x value of the peak value 
is 1/2. Therefore, the value of x is determined to be 1/2.

Using Eq. (10) to calculate the optimal parameter a according to the wavelet coefficients of each decomposi-
tion layer, the adaptability, robustness and accuracy of wavelet coefficient correction of different decomposition 

(10)aj =

(

median
∣

∣CDj,k

∣

∣

Bj

)x

a Original signal1         b Signal 1-1       c Signal 1-2        d Signal 1-3 

e Original signal2      f Signal 2-1       g Signal 2-2       h Signal 2-3 

Figure 4.  Test signal.
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Figure 5.  Variation trend of the SNR and RMSE of the denoised signal with different x values.
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layers can be improved. The improved wavelet coefficient estimation function for the j-th layer based on Eq. (10) 
is:

where k takes values in the range [1, N].

Denoising process. Using Python language to call the Pywt wavelet analysis library, combined with threshold 
selection and the wavelet coefficient estimation mathematical model, we edit a wavelet threshold denoising pro-
cedure model applicable to microseismic waveform denoising. The denoising process of this model is shown in 
Fig. 6, and the specific steps are as follows:

Step 1 Call the Pywt wavelet analysis library and perform multiscale decomposition on the original signal 
according to the set decomposition level J;
Step 2 Obtain the amplitudes and coefficients of the detail signals of each layer and store the absolute values 
of the coefficients in the established list P in order from small to large;
Step 3 Calculate the standard variance value for each stratum based on Eq. (4) and obtain a uniform threshold 
value based on Eq. (2).
Step 4 Call the data in list P in turn and obtain the ri value by using Eq. (5) and store it in the list R;
Step 5 Output the minimum value rmin in R and the index value corresponding to rmin (that is, the position 
serial number of rmin in R) and, according to the index value, find the corresponding element in P and record 
it as CDmin;
Step 6 Call the standard deviation and CDmin value, combine Eqs. (6), (8) and (9), calculate and output the 
adaptive threshold of each layer, the average value of the wavelet coefficient and the minimum energy level;
Step 7 Establish an ‘if ’ statement according to Eq. (7), call the data output in step 6 for judgment, and finally 
output the threshold of each layer;
Step 8 Obtain the coefficient aj for each layer by using Eq. (10) and the |CDj,k| of each layer and its amplitude.
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Step 9 Use Eq. (11) to modify the wavelet coefficients of each layer and then use the modified wavelet coef-
ficients to denoise the detailed signals of each layer;
Step 10 Use the inverse decomposition method to reconstruct the denoised wavelet to obtain the pure signal.

Signal denoising example verification and effect evaluation
To objectively and truly evaluate the denoising effect of the method proposed in this paper, different test signals 
were denoised by different wavelet threshold algorithms by selecting the best wavelet basis function and by 
using a spectrogram, evaluation index, run-time, and intuitive and quantitative evaluations of the ability of the 
proposed method to suppress noise and retain valid signals.

Selection of Wavelet Base and Evaluation Index. Selection of the optimal wavelet basis function. The 
wavelet bases selected by the wavelet threshold model are different, and the corresponding signal denoising ef-
fects are also different. There are many kinds of wavelet basis functions, and the common wavelet basis functions 
suitable for denoising microseismic signals are shown in Table 1. When other parameters, such as the number 
of decomposition layers, are set the same, different wavelet bases are selected one by one to establish a wavelet 
threshold model, and the microseismic simulation signal is denoised. The best wavelet base is selected by the 
denoising effect. As shown in Fig. 7, the curve after denoising using the Db4 wavelet basis function is smoother 
and has a high degree of agreement with the original signal curve. As shown in Table 2, among all models, the 
model with Db4 as the wavelet base has the largest SNR value and the smallest RMSE and sample entropy, indi-

Table 1.  Common wavelet base statistics.

Function name Haar Daubechies Biorthogonal Coiflets Symlets

Abbreviation haar Db Bior Coif Sym

Orthogonality Have Have none Have Have

Biorthogonality Have Have Have Have Have

Tight support Have Have Have Have Have

Continuous wavelet transform Can Can Can Can Can

Figure 7.  Denoising results for different wavelet basis functions.

Table 2.  Quantitative evaluation of the denoising effect of different wavelet basis functions.

Haar Db1 Db4 Db8 Bior2.4 Coif1 Coif4 Sym4 Sym8

SNR(dB) 8.784 8.784 12.675 11.954 10.357 11.315 12.525 11.717 12.418

RMSE 1.494 1.494 0.954 1.038 1.246 1.246 1.037 1.246 1.246

Operation hours(s) 0.661 0.668 0.655 0.989 0.659 0.627 0.926 0.885 0.542

Sample Entropy 0.0095 0.0095 0.0054 0.0059 0.0102 0.0075 0.0076 0.0068 0.0078
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cating that it has the least residual noise signal in the waveform after denoising. Therefore, Db4 is selected as the 
best wavelet basis function.

Quantitative evaluation index. 

①  SNR: SNR is a quantitative index reflecting the noise signal in the signal. The greater the SNR value is, the 
less noise contained in the signal. Equation (12) is the mathematical expression of the signal-to-noise ratio.

where Xi and xi represent the original signal and noise signal, respectively, and N is the number of signals.
②  RMSE: RMSE can reflect the precision between the real signal and the denoised signal. The closer the RMSE 

value is to 0, the smaller the error is. Its expression is as follows:

③  Running time: at the monitoring site, the microseismic system works in real time, and the amount of micro-
seismic data collected is large, which requires high model denoising efficiency. Therefore, the running time 
is taken as one of the indicators to describe model performance.

④  Sample Entropy: Sample Entropy is a new measure of time series complexity. In denoising, a larger sample 
entropy indicates more complex signal time series data and more mixed noise.

Analog signal denoising. The performance of the denoising model can be quantitatively evaluated by 
simulating the signal. In this study, a complex exponential function is used to generate the time domain wave-
form data of the sampled signal, and some of the waveform information is selected and integrated to form the 
original analog signal, as shown in Fig. 8a. The noise signal is simulated using randomly generated Gaussian 
data, and the contaminated signal can be generated by superimposing the original analog signal with the analog 
noise signal, as shown in Fig. 8b. An analysis of Fig. 8a,b shows that the polluted signal is affected by the noise 
signal; the curve is full of "burrs", severely distorted, and the initial arrival of the waveform is blurred and dif-
ficult to identify.

Validation of the method proposed in this paper. Based on the unstable and aperiodic characteristics of micro-
seismic signals, this paper introduces the median and improves the expressions of the standard variance and 
correction coefficient aj. To verify the validity of the designed expressions, using the formulas of median-based 
standard variance value with aj (Median-Median, which is the denoising model proposed in this paper), median-
based standard variance value with mean-based aj (Median-Mean), mean-based standard variance value with 
mean-based aj (Mean-Mean), and the formula based on the standard variance value of the mean with aj based 
on the median (Mean-Mean), four denoising models are established to denoise the contaminated signals, and 
the denoising results are shown in Table 3.

As seen in Table 3, the time taken by the four models to remove the noise signal from the contaminated signal 
is not very different, and all of them meet the requirements for the denoising efficiency of the microseismic signal. 
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Among the four models, the SNR value of the median–median model is 18.550, which is greater than that of 
the other three models; the RMSE value is 1.390, which is smaller than that of the other three models; and the 
sample entropy is 0.0056, which is smaller than that of the other three models. This shows that the determina-
tion method of the sigma value and correction coefficient aj proposed in this paper can effectively improve the 
noise removal effect.

To verify the effectiveness of the coefficient aj added in this paper, the models with and without coefficient aj 
are used to denoise the polluted signal. As shown in Fig. 10, when coefficient aj is not increased, the noise is not 
completely eliminated because λj is not effectively corrected, which is shown in regions ① and ③; the sudden 
change point of the curve obtained by the model without increasing coefficient aj has a large error with the origi-
nal curve. In region ②, as the curve obtained by the model without increasing coefficient aj is outside the contour 
of the local spike of the original signal curve, the useful signal is eliminated. In region ④, the curve obtained by 
the model without increasing coefficient aj is within the contour of the original signal curve. When coefficient aj 
is added, the model obtains the corresponding best correction coefficient according to the wavelet coefficient of 
each decomposition layer, as shown in Fig. 9. When λj ≥ wj,k ≥ -λj, wj,k are judged as wavelet coefficients generated 
by the noisy signal and set to 0. Otherwise, wj,k are judged as wavelet coefficients generated by the useful signal, 
and λj is corrected with coefficient aj of the j-th layer as the adjustment scale, thus obtaining the estimated value 
of wavelet coefficients. As shown in Fig. 10, in areas ① and ③, compared with the curve obtained by the model 
without adding coefficient aj, the mutation point of the curve obtained by the model with coefficient aj is closer 

Table 3.  Quantitative Evaluation of the Denoising Effect of Analog Signals.

Median-Median Median-Mean Mean-Mean Mean-Median

SNR(dB) 18.550 18.078 12.980 13.463

RMSE 1.390 1.468 2.640 2.497

Operation hours(s) 0.426 0.494 0.468 0.420

Sample Entropy 0.0056 0.0052 0.0079 0.0082

Figure 9.  Coefficients of different decomposition layers of pollution signal.

Figure 10.  Comparison of the effect of removing analog signal noise with the model with and without the 
addition of the coefficient aj. 
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to the original curve. In area ②, the model with the added coefficient increases the denoising scale under the 
correction of aj, effectively removing the residual noise signal, and the obtained denoising signal curve is shrunk 
compared with the model without adding coefficient aj. In region ④, the model with the added coefficient 
reduces the denoising scale under the correction of aj, avoiding the loss of useful signal, and the obtained denois-
ing signal curve is amplified compared with the model without adding coefficient aj. In regions ② and ④, the 
curve obtained by adding coefficient aj has the highest degree of agreement with the original signal curve. This 
shows that the addition of coefficient aj is of great significance to the denoising method proposed in this paper.

The superiority verification of the method proposed in this paper. The traditional wavelet threshold method, 
Jing-yi’s method, Huai-Lian’s method and the method of this paper are used to eliminate the random noise in 
the polluted signal. As shown in Fig. 8, the change trend of the polluted signal curve is consistent with the origi-
nal signal curve, but the polluted signal curve is full of "burrs", which affect the characteristics of the effective 
signal. An analysis of the noise removal results shows that the four wavelet threshold methods effectively remove 
the burrs from the polluted signal, as shown in Fig. 11. However, after denoising using the traditional wavelet 
thresholding method and Jing-yi’s method, the waveform in the local peak area of the curve is deformed at many 
places, the initial arrival of the waveform is blurred, there are many low-frequency noise signals left in other 
areas, and there are virtual images in the corresponding areas in the spectrogram.

The denoising effect of the method proposed in this paper is the best, as shown in Table 4. Compared with the 
traditional wavelet threshold denoising method, the SNR is increased by 0.218 times, and the RMSE is reduced 
by 0.251. Compared with Jing-yi’s  method24 and Huai-lian’s  method9, the SNR value is increased by 0.150 and 
0.005 times, respectively, and the RMSE value is decreased by 0.143 and 0.006, respectively. The sample entropy 
value is 0.0056. The time used for denoising one time is 0.408 s, which is lower than the other three denoising 
methods, and the denoising efficiency is high.

Microseismic simulation signal denoising. To quantitatively evaluate the effectiveness and applicability 
of the denoising model, the microseismic simulation signal and its polluted signal were generated. As shown in 
Fig. 12, the complex exponential signal is used as the abrupt change region signal of the microseismic simula-
tion waveform according to the morphological characteristics of the microseismic signal. The high- and low-

  (a) Traditional methods           (b) Jing-yi’s method (Lu et al. 2016) 

(c) Huai-liang’s method(Li et al. 2021)     (d) The method proposed in this paper 

Take off blurry 

Deformation 

Take off blurry 

Deformation 

Figure 11.  Results of denoising polluted signals using different wavelet threshold methods (Spyder(Python3.6)) 
(a) Traditional methods (b) Jing-yi’s  method24 (c) Huai-liang’s  method9 (d) The method proposed in this paper.
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frequency noise in the microseismic simulation signal is then simulated using Gaussian white noise information. 
Compared with the microseismic simulation signal, the amplitude of the polluted signal varies greatly, the local 
effective waveform is completely submerged, and the spectral features appear as cluttered virtual images.

Validation of the method proposed in this paper. To further verify the effectiveness of the method proposed in 
this paper, noise elimination processing of the polluted signal of the microseismic simulation signal is carried 
out by using the five models established in Section "Analog signal denoising": Median–Median, Median–Mean, 
Mean–Mean, Mean–Median and without adding coefficient aj. The results are shown in Table 5. Among the four 
denoising models, the median-median model has the largest SNR value, the smallest RMSE and sample entropy 
values, and the best denoising effect. The time consumed by the four models to eliminate noise is at most 0.973 s, 
which meets the denoising efficiency requirements of microseismic signals.

As shown in Fig. 14, in area ①, the error between the initial arrival time of the curve obtained by using 
the model without adding coefficient aj and the original signal is large; in region ②, the curve obtained by the 
model without adding coefficient aj is within the contour of the original signal curve, indicating that the model 
denoising scale is too large, so that some useful signals are eliminated. To effectively eliminate the noise signal, 
the Median-Median model (the model with the added coefficient aj) decomposes the polluted signal into 8 lay-
ers and obtains the best correction coefficient a for each layer, as shown in Fig. 13; the correction coefficients 
are invoked to adjust the denoising scale and finally obtain the denoised signal curve. As shown in Fig. 14, in 
region ①, the initial arrival time of the curve obtained by the median-median model is closer to the original 
curve than the model without adding coefficient aj. In area ②, compared with the curve obtained by the model 
without adding coefficient aj, the curve obtained by the median-median model is expanded as a whole under 
the action of coefficient aj, and the degree of coincidence with the change trend of the original curve is higher.

Table 4.  Quantitative evaluation of the denoising effects of analog signals based on different methods.

Noise signal Wavelet threshold denoising
Jing-yi wavelet threshold 
denoising

Huai-liang wavelet threshold 
denoising

Adaptive wavelet threshold 
denoising

SNR(dB) -30.369 16.151 17.575 18.232 18.550

RMSE 388.256 1.833 1.556 1.442 1.390

Operation hours(s) 0.596 0.560 0.423 0.408

Sample Entropy 1.376 0.0066 0.0061 0.0058 0.0056

(a) Original signal                   (b) Pollution signal 

Submerged

Figure 12.  Characteristic description of the microseismic simulation signal and polluted signal 
(Spyder(Python3.6)). (a) Original signal (b) Polluted signal.

Table 5.  Quantitative evaluation of the denoising effect of microseismic analog signals.

Median-Median Median-Mean Mean-Mean Mean-Median

SNR(dB) 12.759 12.518 7.158 7.781

RMSE 0.845 0.869 1.611 1.499

Operation hours(s) 0.937 0.956 0.973 0.925

Sample Entropy 0.0073 0.0079 0.0191 0.019
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The superiority verification of the method proposed in this paper. After filtering with four different methods, the 
noise signal reduction effect is remarkable. As shown in Fig. 15, the curves outside the effective signal (the sud-
den change part of the waveform) in Fig. 15a and (b) still have low-frequency noise signals, and the local area of 
the effective signal curve in Fig. 15 (a) is greatly deformed. The waveform curves in Fig. 15c,d are highly similar 
to the microseismic simulation signal curve, but the burrs of the curve in Fig. 15c are more prominent than those 
in Fig. 15d. The waveform curve in Fig. 15d is smooth and most approximate to the original signal waveform, 
and the virtual image of the spectrogram is effectively removed. The waveform take-off in Fig. 15a is fuzzy and 
unclear; the waveform take-off in Fig. 15c,d is clear.

As shown in Table 6, compared with the traditional methods, the SNRs (DBs) of Jing-yi’s method, Huai-
liang’s method and the method proposed in this paper are increased by 0.305, 0.38 and 0.43 times, respectively. 
The error (RMSE value) between the denoised signal processed by the method proposed in this paper and the 
original signal is the smallest, which is 0.870. Among the four methods, although the method proposed in this 
paper takes the longest time to remove noise, it meets the requirements of denoising efficiency for microseismic 
signals. The sample entropy value of the signal after denoising using the proposed method in this paper is only 
0.0078, indicating that it contains very little noise signal. Therefore, the proposed denoising method can effec-
tively remove mixed high- and low-frequency noise signals.

On site monitoring signal denoising. Rock rupture and blasting signals are common microseismic sig-
nals in deep underground engineering. Affected by the engineering environment, the signals collected by the 
microseismic monitoring system in the field are more complex than the synthesized simulation signals. In this 
section, on the premise of setting the same wavelet basis function and number of decomposition layers, the 
method proposed in this paper and Huai-liang’s method are used to denoise the typical rock fracture and blast-
ing microseismic signals collected in mines. It can be seen in the  literature9 that Huai-liang’s method has a good 
denoising effect, which further highlights the first break of noisy microseismic records. As shown in Figs. 16 and 
17, the two different denoising methods can effectively remove the noise signal in the original monitoring signal, 
retain the effective information to the greatest extent, and eliminate the artifacts in the spectrogram. From the 
perspective of the waveform shape after denoising, the local spike damage of the waveform after denoising by 
the two methods is small. Using the denoising method proposed in this paper, the microseismic waveform after 
denoising is smoother, with fewer burrs, and the waveform takes off clearly.

Discussion
The wavelet threshold denoising method provides an ideal tool for signal filtering. The research shows that in the 
process of wavelet decomposition, the amplitude of the wavelet coefficients of the useful signal remains stable 
and does not change with the change in the number of layers of wavelet decomposition; the amplitude of the 

Figure 13.  Coefficient values for different decomposition layers of the contaminated microseismic simulation 
signal.

Figure 14.  The comparison of the method proposed in this paper with and without adding coefficient aj to 
remove the noise of the microseismic simulation signal.
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    (a) Traditional methods          (b) Jing-yi’s method (Lu et al. 2016) 

(c) Huai-liang’s method(Li et al. 2021)  (d) The method proposed in this paper 

Deformatio

Glitch 

Figure 15.  Denoising effect of the polluted signal of the microseismic simulation signal (Spyder(Python3.6)). 
(a) Traditional method (b) Jing-yi’s  method24 (c) Huai-liang’s  method9 (d) The method proposed in this paper.

Table 6.  Quantitative evaluation of the denoising effect of microseismic analog signals based on different 
methods.

Noise signal Wavelet threshold denoising
Jing-yi wavelet threshold 
denoising

Huai-liang wavelet threshold 
denoising

Adaptive wavelet threshold 
denoising

SNR(dB) -22.879 8.750 11.418 12.081 12.513

RMSE 51.157 1.341 0.987 0.914 0.870

Operation hours(s) 0.680 0.648 0.914 0.937

Sample Entropy 1.2 0.0188 0.0095 0.0081 0.0078

(a) Raw monitoring data  (b) The method proposed in this paper  (c) Huai-liang’s method 

Figure 16.  Denoising processing of rockburst monitoring signal (Spyder(Python3.6)). (a) Raw monitoring data 
(b) The method proposed in this paper (c) Huai-liang’s method.
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wavelet coefficients of the noise signal exhibits attenuation changes with the increase in the number of wavelet 
decomposition  layers33,34. Therefore, using the traditional fixed threshold denoising strategy will cause problems 
such as incomplete removal of noise signals and loss of useful signals. To compensate for the deficiency of the 
fixed threshold denoising strategy and effectively eliminate the noise signal in a microseismic monitoring signal, 
the traditional wavelet threshold denoising method is improved as follows: (1) The optimal threshold dynamic 
selection model is established. To make the denoised signal approach the minimum error, the model calculates 
the unified threshold and adaptive threshold of wavelet coefficients in each decomposition layer and automati-
cally compares and selects the best threshold according to certain rules, which can eliminate the mixed noise 
signal to the greatest extent. (2) Due to the complexity and diversity of the noise signal, as shown in the curves 
obtained from the model without incremental coefficients aj in Figs. 10 and 14, there are problems of noise 
residue, local spike damage and large errors at the mutation point in the mutation region of the waveform after 
denoising using the improved threshold model. To solve this problem, an adaptive correction coefficient aj is 
proposed. The coefficient can accurately reflect the noise intensity according to the wavelet coefficients of each 
decomposition layer and effectively modify the denoising scale (Supplementary material).

Compared with the traditional methods of hard threshold, soft threshold and half threshold, the proposed 
method breaks through the limitation of fixed threshold and has adaptive characteristics. The quantitative evalu-
ation of synthetic signals shows that it can eliminate both high- and low-frequency noise at the same time 
and can make the waveform jump position clear. To address the problem of useful waveform damage in the 
mutation region, the noise intensity of each decomposition layer is proposed to further modify the denoising 
scale. As shown in Figs. 10 and 14, the denoising curve modified by coefficient aj preserves the morphological 
characteristics of the original signal to the greatest extent and effectively solves problems such as residual local 
peak noise signals and the loss of useful signals in the waveform mutation area. According to the comparison 
in Tables 4 and 5, the denoising effect of the proposed new method is superior to the traditional and improved 
wavelet threshold methods.

Conclusions
To compensate for the shortcomings of the traditional wavelet threshold method, this paper proposes a new 
wavelet threshold method suitable for the denoising of microseismic signals by optimizing and improving the 
traditional method to determine the threshold strategy and wavelet coefficient estimation function. Its main 
conclusions are as follows:

(1) An optimal threshold dynamic selection model is established. The model can automatically select the best 
threshold from the unified threshold and adaptive threshold of each decomposition layer according to 
certain conditions so that the denoised signal is infinitely close to the minimum error, realize the simulta-
neous elimination of mixed noise signals of different frequencies in microseismic monitoring signals, and 
make the waveform take off clearly.

(2) An adaptive correction coefficient reflecting the noise intensity is proposed. This coefficient uses the 1/2 
power value of the absolute value of the wavelet coefficient of each decomposition layer to the ratio of the 
amplitude to reflect the noise intensity of each decomposition layer, ensures that the wavelet coefficient 
of each decomposition layer modifies the denoising scale according to its own conditions, and retains the 
useful information of the local peak area of the waveform to the greatest extent.

(3) Based on the optimal threshold dynamic selection and adaptive correction coefficient method, a new 
denoising model is established. The synthetic signal and monitoring signal test show that, compared with 
the traditional wavelet threshold denoising method and the method proposed by Jing-yi, the proposed 
method can significantly improve the signal-to-noise ratio of microseismic signals and is suitable for the 
real-time processing of complex noise in microseismic signals.

(a) Raw monitoring data  (b) The method proposed in this paper  (c) Huai-liang’s method 

Figure 17.  Denoising processing of rockburst monitoring signal (Spyder(Python3.6)). (a) Raw monitoring data 
(b) The method proposed in this paper (c) Huai-liang’s method.
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