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Predicting graft failure in pediatric 
liver transplantation based on early 
biomarkers using machine learning 
models
Seungho Jung 1,6, Kyemyung Park 2,6, Kyong Ihn 3, Seon Ju Kim 4, Myoung Soo Kim 3, 
Dongwoo Chae  5,7* & Bon‑Nyeo Koo  1,7*

The early detection of graft failure in pediatric liver transplantation is crucial for appropriate 
intervention. Graft failure is associated with numerous perioperative risk factors. This study aimed to 
develop an individualized predictive model for 90-days graft failure in pediatric liver transplantation 
using machine learning methods. We conducted a single-center retrospective cohort study. A total 
of 87 liver transplantation cases performed in patients aged < 12 years at the Severance Hospital 
between January 2010 and September 2020 were included as data samples. Preoperative conditions 
of recipients and donors, intraoperative care, postoperative serial laboratory parameters, and events 
observed within seven days of surgery were collected as features. A least absolute shrinkage and 
selection operator (LASSO) -based method was used for feature selection to overcome the high 
dimensionality and collinearity of variables. Among 146 features, four variables were selected as the 
resultant features, namely, preoperative hepatic encephalopathy, sodium level at the end of surgery, 
hepatic artery thrombosis, and total bilirubin level on postoperative day 7. These features were 
selected from different times and represent distinct clinical aspects. The model with logistic regression 
demonstrated the best prediction performance among various machine learning methods tested (area 
under the receiver operating characteristic curve (AUROC) = 0.898 and area under the precision–recall 
curve (AUPR) = 0.882). The risk scoring system developed based on the logistic regression model 
showed an AUROC of 0.910 and an AUPR of 0.830. Together, the prediction of graft failure in pediatric 
liver transplantation using the proposed machine learning model exhibited superior discrimination 
power and, therefore, can provide valuable information to clinicians for their decision making during 
the postoperative management of the patients.

The number of pediatric patients who receive liver transplant has increased over the years1. Liver transplantation 
is the standard treatment for children with end-stage liver disease, malignancy, and metabolic disorders related 
to liver2. However, the number of suitable donor livers is limited and numerous children remain on the waiting 
list for long periods or even die before receiving a transplant3. Owing to better management during the pre-
transplant and post-transplant phases, the graft survival rate has improved4. However, the individualized 
prediction of graft failure in pediatric liver transplantation remains challenging because there are numerous 
different perioperative factors including the preoperative status of patients, intraoperative anesthetic management 
and postoperative complications such as vascular thrombosis or biliary leakage that can together influence the 
outcome of transplantation2,5,6. Moreover, the number of pediatric liver transplant patients in single centers is 
usually small. The use of traditional statistical methods can be limited under these conditions.
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Several studies have employed statistical methods to evaluate the predictive factors of graft failure and 
developed predictive models for pediatric liver transplantation7–10. However, the complex interactions between 
numerous parameters derived from patient medical records make it difficult to select specific predictors of graft 
failure. Recently, several attempts have been made to analyze medical data using machine learning for application 
in clinical practice11,12. Several machine learning models have been used to predict graft survival/failure in 
liver transplantation (Supplementary Table S1)13–15. However, pediatric patients are excluded, and serial early 
biomarkers are not used as features in those models.

Machine learning techniques enable the analysis of considerable amounts of complex data and the 
development of models for estimating risks or predicting events. Specifically, the least absolute shrinkage and 
selection operator (LASSO) -based method can be used in the case of relatively many collected features in 
comparison to the subjects, and high correlation among these features16,17. By using this method, we tried 
to overcome the high correlation of features such as serial laboratory data which were collected from a small 
number of patients.

The objective of this study involved the development of a high-performance machine learning model for 
individualized prediction of 90-day graft failure in pediatric liver transplantation using perioperative parameters 
collected within 7 days after surgery. For this, we collected patient data from the electronic medical records at 
a single center retrospectively. The dataset included 146 features that exceed the number of patients, thereby 
intractable when using traditional statistical methods. We utilized a LASSO-based method to identify the 
potential predictors of 90-day graft failure. These predictors served as input variables for the development of 
machine learning models. Graft failure was defined as failure of the liver allograft that required re-transplantation 
or resulted in death. Deaths caused by other than liver failure were not defined as graft failure. Finally, we 
developed a risk scoring system of graft failure in patients for easy utilization in the routine clinical setting.

Methods
Patients and data collection.  This study was approved by Institutional Review Board (IRB) of our 
hospital (IRB No. 4–2018-0205). The requirement for informed consent was waived by the IRB of Severance 
Hospital, Yonsei University Health System, Seoul, Korea, owing to the retrospective nature of this study. All 
methods were performed in accordance with the relevant guidelines and regulations. We conducted a single-
center retrospective cohort study. The data were obtained from electronic medical records. Patients aged below 
12 years who underwent pediatric liver transplantation surgeries at the Severance Hospital between January 
2010 and September 2020 were selected as the subjects.

Moreover, the characteristics of recipients and donors, anesthetic and surgical events, complications during 
hospitalization, and serial laboratory results until the seventh postoperative day (Supplementary Table S2) were 
collected as the features. The primary endpoint was graft failure at 90 days after transplantation.

Statistical and machine learning methods.  Nested cross‑validation.  Because the total number of 
transplantations and graft failure cases was small, splitting the dataset into training and testing could cause 
additional uncertainties in the analysis. Therefore, we employed a nested cross-validation scheme for feature 
selection and predictive machine-learning model development. The training–test split was repeated as outer 
cross-validation (Fig. 1). For each outer training fold, additional inner cross-validation was applied for feature 
selection, hyperparameter tuning, and performance assessment during model development.

Feature selection.  To select the features, we employed stability selection, a LASSO-based method implemented 
in the R package (stabs)18. This method assesses how often (or stably) each feature is selected by LASSO across 
bootstrapped subsamples for the given input data by quantifying the stability score (the number of inclusions/
bootstrapped subsamples) of each feature. Bootstrapping ensures robustness and the effective reduction of 
selecting false positives. The features listed in Table 1 and Supplementary Table S2 were considered candidate 
predictors. Given the missing values (119 out of 12,702 items) across subjects (17 out of 87 subjects) and features 
(56 out of 146 features) and high collinearity between features, we sought to maximize the utilization of data 
in feature selection by filling the missing values with the mean values of the corresponding features. Stability 
selection was applied with five-fold outer and inner nested cross-validation, repeated 10 times (Fig. 1). For each 
outer training fold, the features were ranked in the order of their decreasing stability scores. Logistic regression 
models with incrementally added top-ranking features were then evaluated based on the predictive performance 
of five-fold inner cross-validation. After all iterations across the outer folds, the consensus stability scores for 
all features were obtained by averaging the stability scores across the outer folds. Subsequently, the optimal 
number of features was determined as the minimum number of features associated with the maximum averaged 
cross-validated predictive performance. Features were then selected up to the rank of the optimal number 
in the consensus stability scores, preoperative hepatic encephalopathy (HE), Na level at the end of operation 
(Endop_Na), hepatic artery thrombosis (HA_thrombosis), and total bilirubin level on postoperative day (POD) 
7 (POD7_Tbilirubin).

Machine learning methods.  Based on the selected features, we constructed machine learning models using 
logistic regression, elastic net, random forests, extreme gradient boosting, support vector machines (SVM), and 
neural networks. We used the dataset without two patients with missing values under POD7_Tbilirubin, which 
obtained the second highest rank in the consensus stability scores. We employed five-fold outer and three-fold 
inner nested cross-validation, repeated 10 times, to assess and compare the model performance across machine 
learning methods and the hyperparameters of each machine learning method using the R caret package. For the 
prediction performance, we computed the area under the receiver operating characteristic (AUROC) and area 
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under the precision–recall (AUPR) curves. A nomogram was constructed based on the final logistic regression 
model using the R rms package.

Risk scoring system.  The risk scoring system was developed by first transforming the continuous features into 
categorical ones by binning. The regression coefficients of the categories were then used to assign appropriate risk 
scores. To determine the optimal binning boundaries, we first obtained the deciles of each continuous feature, 
generating nine binary categorization schemes, and retrained two-fold cross-validated logistic regression models 
for each categorization scheme. Subsequently, we selected the scheme with the highest cross-validated AUROC. 
The same procedure was applied recursively until the cross-validated AUROC did not improve to determine 
the optimal bins for all continuous features, which were then filtered based on the statistical significance of the 
regression coefficients of categorical features and their effects on the Akaike information criteria. Finally, the 
scores of categorical features were derived from regression coefficients by finding the corresponding integer 
values that best preserved the relative ratios between the coefficients.

Software.  All analyses were performed using R (version 3.6.2).

Figure 1.   Schematic of the overall workflow. CV cross-validation, LR Logistic regression, ML machine learning, 
AUROC area under receiver operation characteristic curve.
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All No graft failure Graft failure

p valueN = 87 N = 70 (80.5%) N = 17 (19.5%)

Recipient

Age (month) 36.8 (± 40.5) 36.0 (± 40.3) 39.9 (± 42.3) 0.716

Female 52 (59.8%) 41 (58.6%) 11 (64.7%) 0.785

Intrauterine period (week) 38.4 (± 2.0) 38.3 (± 2.2) 39.1 (± 1.1) 0.224

Normal spontaneous vaginal delivery 49 (56.3%) 40 (57.1%) 9 (52.9%) 0.790

Body weight (kg) 13.7 (± 8.5) 13.7 (± 8.5) 13.5 (± 8.8) 0.604

Body weight < 10 kg 47 (54.0%) 38 (54.3%) 9 (52.9%)  > 0.999

Reason of liver transplant surgery 0.0549

    Biliary atresia 65 (74.7%) 56 (80.0%) 9 (52.9%)

    Acute liver failure 10 (11.5%) 6 (8.6%) 4 (23.5%)

    Metabolic liver disease 2 (2.3%) 1 (1.4%) 1 (5.9%)

    Hepatocellular carcinoma 3 (3.5%) 3 (4.3%) 0 (0%)

    Graft failure 1 (1.2%) 1 (1.4%) 0 (0%)

    Budd–Chiari syndrome 3 (3.5%) 2 (2.9%) 1 (5.9%)

    Cirrhosis, cryptogenic 3 (3.5%) 1 (1.4%) 2 (11.8%)

    Others 65 (74.7%) 56 (80.0%) 9 (52.9%)

Preop. conditions

Re-transplantation 47 (54.0%) 38 (54.3%) 9 (52.9%)  > 0.999

Pediatric end-stage liver disease score 11.1 (± 12.0) 10.8 (± 12.1) 12.5 (± 11.8) 0.668

Child–Pugh score 8.7 (± 2.0) 8.6 (± 2.0) 9.2 (± 2.4) 0.180

Previous operation histroy 66 (75.9%) 57 (81.4%) 9 (52.9%) 0.024

Ascites 49 (56.3%) 43 (61.4%) 6 (35.3%) 0.061

Hepatic encephalopathy 11 (12.6%) 4 (5.7%) 7 (41.2%)  < 0.001

Esophageal varix 45 (51.7%) 40 (57.1%) 5 (29.4%) 0.058

Splenomegaly 75 (86.2%) 64 (91.4%) 11 (64.7%) 0.011

Abnormal echocardiography 22 (25.3%) 18 (25.7%) 4 (23.5%)  > 0.999

Intensive care unit admission 25 (28.7%) 20 (28.6%) 5 (29.4%)  > 0.999

Mechanical ventilation 18 (20.7%) 14 (20.0%) 4 (23.5%) 0.745

ASA 0.782

    2 1 (1.15%) 1 (1.43%) 0 (0%)

    3 14 (16.1%) 11 (15.7%) 3 (17.6%)

    4 69 (79.3%) 56 (80%) 13 (76.5%)

    5 3 (3.45%) 2 (2.86%) 1 (5.88%)

Surgery

Blood loss per estimated blood volume 1.3 (± 2.3) 1.1 (± 1.0) 2.1 (± 4.9) 0.864

Urinary output (mL/kg/h) 2.8 (± 2.0) 2.6 (± 1.3) 3.8 (± 3.5) 0.046

Operation time (h) 11.5 (± 2.3) 11.3 (± 2.3) 12.3 (± 2.4) 0.103

Anesthetic time (h) 12.9 (± 2.2) 12.7 (± 2.2) 13.7 (± 2.3) 0.127

Type 0.057

    Elective 40 (46.0%) 36 (51.4%) 4 (23.5%)

    Emergency 47 (54.0%) 34 (48.6%) 13 (76.5%)

Intraoperative vasopressor use 62 (71.3%) 49 (70.0%) 13 (76.5%) 0.768

Cold ischemic time (h) 3.6 (± 3.2) 3.3 (± 2.8) 4.9 (± 4.5) 0.413

Warm ischemic time (min) 58.6 (± 32.9) 59.0 (± 35.0) 56.94 (± 23.0) 0.851

Reperfusion time (h) 6.1 (± 1.5) 6.1 (± 1.5) 6.3 (± 1.8) 0.940

Anhepatic phase (h) 1.7 (± 0.8) 1.8 (± 0.8) 1.6 (± 0.6) 0.879

Perioperative CRRT​ 23 (26.4%) 14 (20.0%) 9 (52.9%) 0.012

Preoperative CRRT​ 10 (11.5%) 6 (8.6%) 4 (23.5%) 0.100

Intraoperative CRRT​ 13 (14.9%) 9 (12.9%) 4 (23.5%) 0.272

Postoperative CRRT​ 25 (28.7%) 15 (21.4%) 10 (58.8%) 0.005

Surgery cx

Hepatic artery thrombosis 4 (4.6%) 0 (0%) 4 (23.5%) 0.001

Portal vein thrombosis 6 (6.9%) 2 (2.9%) 4 (23.5%) 0.012

Hepatic vein thrombosis 1 (1.2%) 1 (1.4%) 0 (0%)  > 0.999

Biliary duct complication  > 0.999

Continued
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Results
Among the 87 cases of pediatric liver transplantations selected in this study, 17 eventually developed liver graft 
failure 90 days after the surgery (Table 1). The baseline demographic data, perioperative conditions, laboratory 
data, and complication-related features differed significantly (p < 0.05) across the graft outcomes (Table 1 and 
Supplementary Table S2). On POD 1, the transplanted liver with potential graft failure already showed signs 
of tissue destruction (reflected by higher ALT), followed by decreased function of producing the coagulation 
factor on POD 2 (reflected by higher aPTT) and decreased excretion function (reflected by higher total and 
direct bilirubin) on POD 7 (see Supplementary Table S3 and Supplementary Fig. S1). These significant individual 
associations between input features and graft outcomes suggested that early patient-derived features are likely to 
have predictive power for the graft status at later time points. However, the overall high dimensionality of data, 
with 146 input features greater than the number of patients, and high collinearity between redundant features, 
such as the repeatedly measured ones across multiple time points, presented challenges for distinguishing most 
predictive features to develop predictive models of liver graft failure (Supplementary Fig. S2).

To address this, we conducted feature selection using stability selection, a LASSO-based method in the nested 
cross-validation scheme (Fig. 1). The consensus stability scores obtained by stability selection were ranked in 
decreasing order, as shown in Fig. 2A. The top four features were determined as the rank cutoff because this 
was the optimal number of features that resulted in the best averaged cross-validation AUROC curve across the 
outer training fold (Fig. 2B). The selected features included preoperative HE, Na level at the end of operation 
(Endop_Na), hepatic artery thrombosis (HA_thrombosis), and total bilirubin level on POD7 (POD7_Tbilirubin). 
Interestingly, these are from various time points and reflect various pathophysiological aspects of liver transplant 
surgery. This suggests that our feature selection approach delineated non-redundant predictive features, thereby 
overcoming the high dimensionality and collinearity of the dataset.

Next, we sought to build predictive machine learning models based on these selected features. Logistic regres-
sion is one of the best models, along with elastic net, based on the cross-validation performance (AUROC = 0.898 
and AUPR = 0.882; Supplementary Table S4 and Supplementary Fig. S3). The final logistic regression models 
were generated using the entire dataset, as summarized in Supplementary Table 5.

Finally, we constructed a nomogram based on the final logistic regression model (Supplementary Fig. S4). 
In addition, we developed a risk scoring system after categorizing the continuous features (Table 2 and Fig. 3). 
The cross-validation prediction performance of the optimal categorized logistic regression model exhibited an 
AUROC and AUPR of 0.910 and 0.830, respectively. The scoring system robustly reflected the categorized logistic 
regression model with a Pearson correlation coefficient of 1.00 between the scores and linear predictors. The 
scoring system could delineate a 50-fold difference in the risk of graft failure across score intervals. These findings 
may guide early therapeutic interventions to prevent graft failure after liver transplant surgeries.

Discussion
We developed a predictive machine learning model for 90-days graft failure in pediatric liver transplantation 
patients using the features derived until POD 7. The number of extracted features was greater than the number of 
observed features. Therefore, we used a LASSO-based method to overcome the high dimensionality and collinear-
ity of features. To further ensure robust feature selection by minimizing the detection of false positive features, we 
employed the stability selection method developed by Meinshausen and Buhlmann in nested cross-validation18. 
The model with logistic regression based on the selected features exhibited the best prediction performance 
(AUROC = 0.898 and AUPR = 0.882). Furthermore, we developed a risk scoring system to predict graft failure.

Pediatric liver transplantation differs from adult transplantation in terms of etiology and outcome19. Some 
models use traditional statistical approaches for predicting the prognosis of pediatric transplantation8–10. 

Table 1.   Demographics and perioperative state. Abbreviations: ASA American Society of Anesthesiology, 
CRRT​ Continuous renal replacement therapy. The numbers denote the mean (SD) or number of patients 
(percentage). The p values were obtained using Fisher’s exact test for categorical features and t-test (or Mann–
Whitney test) for normally (or non-normally) distributed continuous features.

All No graft failure Graft failure

p valueN = 87 N = 70 (80.5%) N = 17 (19.5%)

    Bile leakage 7 (8.1%) 6 (8.6%) 1 (5.9%)

    Biliary stricture/obstruction 2 (2.3%) 2 (2.9%) 0 (0%)

Infection 19 (21.8%) 16 (22.9%) 3 (17.6%) 0.754

Acute cellular rejection 9 (10.3%) 8 (11.4%) 1 (5.9%) 0.682

Donor

Donor status 0.261

    Living 57 (65.5%) 48 (68.6%) 9 (52.9%)

    Deceased 30 (34.5%) 22 (31.4%) 8 (47.1%)

ABO mismatch 32 (36.8%) 27 (38.6%) 5 (29.4%) 0.582

Female 62 (71.3%) 52 (74.3%) 10 (58.8%) 0.238

Age (year) 29.3 (± 9.8) 30.0 (± 8.2) 26.7 (± 14.6) 0.987
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Recently, machine learning methods have exhibited outstanding performance in analyzing large volumes of 
medical data and predicting the outcomes of patients to help clinicians in decision making20. The early detection 
of graft failure is important for registration on the waiting list when patients need to undergo re-transplantation. 
In pediatric liver transplantation, specifically, the proportion of living donor transplantation is higher than that of 
deceased donor transplantation when compared to the same proportion in adult liver transplantation3,21. There-
fore, the early prediction of graft failure is essential for the prompt evaluation of other living candidate donors.

Recently, Wadhwani et al. reported a machine learning model for predicting the ideal outcomes three years 
after pediatric liver transplantation22. They used features including the postoperative characteristics until 
one year after surgery. We aimed to predict earlier phase graft outcomes for surgeons to prepare for proper 

Figure 2.   Feature selection results. (A) Features ordered by consensus stability scores averaged across outer 
cross-validation folds (Methods). (Outset) Top 20 features. Selected features based on the optimal number 
of features are in bold. (Inset) Overall distribution of stability scores among all features. (B) Averaged cross-
validated AUROC with incremental numbers of features. The grey vertical line indicates the optimal number of 
features.
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management or re-transplantation. According to a recent outcome analysis using the National Registry of Korea, 
the Kaplan–Meier analysis of survival rates of patients and grafts showed a rapidly decreasing curve until three 
months after transplantation, followed by flattening of the curve after three months. The graft survival rates 
reached a plateau area after three months21. This is why we predicted 90-days graft failure using only perioperative 
data collected until POD 7. We also used serial perioperative laboratory data for each patient to obtain more 
precise predictions and personalized algorithms.

HE is a brain dysfunction caused by liver insufficiency and/or portosystemic blood shunting23. The patho-
physiology of HE has not been completely understood24. However, it has been reported as an independent risk 
factor of poor outcome in liver transplantation25. Recently, Sahinturk et al. reported that preoperative HE is the 
predictor of postoperative prolonged mechanical ventilation26. Prolonged postoperative mechanical ventila-
tion could affect the blood flow and oxygenation of the graft27,28. Therefore, HE is an important feature of the 
proposed model.

The values of sodium and total bilirubin were serially collected from the preoperative phase to POD 7. Among 
these values, the sodium level at the end of surgery and total bilirubin level measured on POD 7 were selected 
as the resultant features. Elevated sodium levels may reflect the administration of large volumes of packed red 
blood cell, fresh frozen plasma, or albumin. Liver transplantation often requires massive transfusion of blood 
components. The sodium concentration in packed red blood cell is 150 mEq/L29 and that in fresh frozen plasma 
is 172 mEq/L30. Higher sodium concentration in these components can explain the higher sodium concentration 
at the end of surgery. Hypernatremia could also be associated with sodium bicarbonate infusion for correcting 
severe metabolic acidosis during surgery. Hyperbilirubinemia can be caused by impaired liver function, massive 
transfusions, or cholestasis31,32. Preoperative total bilirubin levels may be influenced by the preoperative status 
of recipients. Bilirubin levels before POD 7 could be affected by increased heme breakdown resulting from mas-
sive transfusion. Bilirubin levels measured on POD 7 may be associated with the postoperative graft function 
or cholestasis. Therefore, the total bilirubin level on POD 7 could be selected as an important predictive feature.

Table 2.   Risk scoring system. Abbreviations: HA_thrombosis hepatic artery thrombosis, HE preoperative 
hepatic encephalopathy, POD7_Tbilirubin total bilirubin level on POD7, Endop_Na Na level at the end of 
operation, POD Post operative day.

Factor Score

HA_thrombosis

Yes  + 27

HE

Yes  + 4

POD7_Tbilirubin

≥ 2 and < 8  + 2

≥ 8  + 5

Endop_Na

≥ 146  + 3

Figure 3.   Probability of graft failure in score intervals based on the scoring system.
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Thrombosis in the hepatic artery or portal vein is known to be a significant risk factor for graft survival in 
pediatric liver transplantation7. The incidence of early hepatic artery thrombosis is reported to be higher in chil-
dren than in adults33. Hepatic artery and other vascular thromboses were reported as the most common cause 
of re-transplantation1. Early detection and revascularization can improve graft survival. Re-transplantation can 
be lifesaving if other interventions fail34,35. We used the thrombotic events observed until POD 7 as a feature, 
which was a relatively earlier period than that used in other studies34–36. A recent study reported a median time 
interval of 5.5 days between transplantation and hepatic artery complication21. Despite the different criteria, 
thrombosis in the hepatic artery still served as an important risk factor in graft survival.

Limitation.  First, we conducted a single-center retrospective study with a small sample size. Moreover, high 
correlations were observed between the collected features. To overcome the high dimensionality and collinearity 
in the dataset, we used a LASSO-based method to select predictive features. The top four predictive features were 
selected based on different clinical aspects and at different time points. We applied nested cross-validation during 
model development to avoid additional noise when splitting small-sized data into training and test datasets.

Second, we did not apply external validation to our prediction model because this was a single-center study. 
It is difficult to use serial laboratory data from other organizations for external validation. Further randomized 
controlled studies could help overcome this limitation and evaluate the impact of our machine learning model.

Third, we selected both living and deceased donor transplantations. Although not selected as a predictive 
feature, this might have biased the results of our study. In addition, the proportion of living donor transplanta-
tions was higher in our country, including our institution, than that in other countries. However, the inclusion 
of both types of donors could help in the generalizability of our study.

Conclusion
We developed a machine learning model that predicts 90-days graft failure with high accuracy by overcoming 
the high dimensionality and collinearity of the dataset. The most predictive features were preoperative HE, 
Endop_Na, HA_thrombosis, and POD7_Tbilirubin. Based on this prediction model, we further developed a 
nomogram and risk scoring system for easy utilization in the routine clinical setting. These methods can serve 
as decision support systems for surgeons in identifying high-risk patients and preparing for proper intervention 
including re-transplantation during the early stage after surgery.

Data availability
The data is not publicly available due to privacy or ethical restrictions, but will be made available on reasonable 
request from the corresponding author, with the permission of the Institutional Review Board (IRB) of Severance 
Hospital. Restrictions apply to the availability of these data, which were used under license for this study. The 
code developed for this study is available on reasonable request from the corresponding author.
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