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A tensor decomposition‑based 
integrated analysis applicable 
to multiple gene expression profiles 
without sample matching
Y‑h. Taguchi 1* & Turki Turki 2

The integrated analysis of multiple gene expression profiles previously measured in distinct studies is 
problematic since missing both sample matches and common labels prevent their integration in fully 
data-driven, unsupervised training. In this study, we propose a strategy to enable the integration 
of multiple gene expression profiles among multiple independent studies with neither labeling nor 
sample matching using tensor decomposition unsupervised feature extraction. We apply this strategy 
to Alzheimer’s disease (AD)-related gene expression profiles that lack precise correspondence among 
samples, including AD single-cell RNA sequence (scRNA-seq) data. We were able to select biologically 
reasonable genes using the integrated analysis. Overall, integrated gene expression profiles 
can function analogously to prior- and/or transfer-learning strategies in other machine-learning 
applications. For scRNA-seq, the proposed approach significantly reduces the required computational 
memory.

The integrated analysis of gene expression profiles is difficult to accomplish1–4. Its primary purpose is to compen-
sate for small sample sizes by integrating gene expression profiles measured from multiple studies because the 
process is generally not straightforward, while matching samples is rare. In this study, sample matching refers 
to correspondence between independent studies. For instant, the straightest sample matching is control and 
treatment taken from the same individuals, e.g., younger age and older age. Or more weakly, two individuals 
with the same properties other than treatment, e.g., have the same weight, age, or sex. Sharing labeling is not 
sample matching, yet similar. For example, when healthy controls and disease patients are collected from two 
different hospitals, it is simple label sharing rather than matching. In this study, we considered the cases where 
even label sharing is missing; in this sense, removing batch effect is out of scope in this study. Batch effect refers 
to removing bias between two set of samples with the same labeling. For example, in two hospitals, A and B, 
healthy controls and disease patients should be collected. The difference between the two hospitals can be larger 
than that between healthy controls and patients in individual hospitals. This is referred to as “batch effect”, which 
must be removed before investigating the difference between patients and healthy controls common in two 
hospitals. Since we do not consider the cases that share labels, the batch effect is therefore not considered in this 
study. If sample-matching information is missing, and samples are not associated with common labeling (e.g., 
healthy controls or patients), the requirements of this process are not always fulfilled, even if we simply group 
gene expression profiles using their labels within individual sets. Hence, the establishment of general frameworks 
for integrating multiple gene expression profiles without sample matching and common sample labeling would 
be of considerable benefit5. Owing to these basic requirements, such methods must be unsupervised, since the 
integration of multiple gene expression profiles that share nothing other than the genes is impossible. In this 
study, we employ tensor decomposition (TD) for this purpose6. Integrating two independent studies without 
either sample matching or label sharing remains to be accomplished. Nevertheless, this kind of expectation 
often exist behind biological studies. For example, genes with different expression between healthy controls and 
patients can be compared with those whose expression vary with aging if the considered disease are related to 
aging. Directly integrating two gene expression profiles of comparison between healthy controls and patients 
and that of difference with aging would be promising, which is the primary aim of this study.
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Results
Figure S1 shows the workflow of analyses performed in this study.

Integrated analysis of datasets 1, 2, and 3.  First, to determine whether this simple idea can integrate 
multiple gene expression profiles lacking sample matching, we attempted to integrate datasets 1, 2, and 3. Data-
sets 1 and 3 comprised cell lines modeled as either healthy controls or ADs, whereas dataset 2 comprised cell 
lines aiming to mutate AD-associated genes indirectly related to AD-only. After obtaining a singular value vec-
tor, uℓ1i , as described in Eq. (8), we first investigated whether they were associated with classifications. Singular 
value vectors attributed to the jk th sample, vℓ1jkk , 1 ≤ k ≤ 3 , were computed from uℓ1i using Eq. (10), and the 
coincidence of vℓ1jkk with the classifications of datasets 1, 2, or 3 was investigated (Table S1 and Fig. S2).

vℓ1jkk , 1 ≤ ℓ1 ≤ 5 were significantly correlated with classifications in any of datasets 1, 2, or 3. Next, we tried to 
determine uℓ1i , which is used for gene selection, and we selected uℓ1i , 1 ≤ ℓ1 ≤ 5 (see Table S5). Pi are attributed 
to i using Eq. (9) while taking �ℓ1 = {ℓ1|1 ≤ ℓ1 ≤ 5} . The obtained Pi were corrected using the BH criterion6, and 
565 i (genes) associated with adjusted Pi less than 0.01 were selected. To validate the selected 565 genes biologi-
cally, gene symbols were uploaded to Enrichr7. We observed various enrichments (Data S1). For example, the 
“KEGG 2021 Human” category listed six neurodegenerative disease-related pathways within the top-10 pathways 
(Table S2A). Similarly, the “Jensen Diseases” category listed four neurodegenerative diseases within the top-10(see 
Table S2A). Additionally, “Disease Perturbations from GEO down” and “Disease Perturbations from GEO up” 
listed similar neurodegenerative diseases within the top-ranked diseases (Data S1). We noted the “Allen Brain 
Atlas up” and “Allen Brain Atlas down” categories in which many AD-related brain regions were highly ranked 
(Data S1). Enrichment analyses using databases other than Enrichr also reported convincing results. The top- and 
the third-ranked terms in the “GAD_DISEASE_CLASS” category of DAVID8,9 were PSYCH and NEUROLOGI-
CAL, respectively (Table S2A). The top-10 ranked terms in the “GAD_DISEASE” category of DAVID included 
five neurodegenerative diseases (Table S2A). g:Profiler10 listed 16 KEGG pathways as significantly enriched with 
gene symbols associated with 565 selected genes; 16 pathways included six neurodegenerative disease-related 
pathways (Table S2A). Thus, TD-based unsupervised feature extraction (FE) was used to integrate three gene 
expression profiles lacking sample matching, genes of expressions associated with classifications in three inde-
pendent studies were identified, and genes selected were enriched by various neurodegenerative disease-related 
terms from three biological databases. This suggests that TD-based unsupervised FE is a promising method for 
integrating gene expression profiles without sample matching.

Drug repositioning using the tensor obtained with datasets 1, 2, and 3.  We have previously 
demonstrated11 that integrated analyses of gene expression profiles between model animals treated by various 
drugs and patients were useful to determining which drug compounds are effective against diseases. There, we 
integrated only one disease gene expression profile with that of the drug treatment. In the present study, we 
integrated more gene expression profiles of diseases with those of drug treatment because of the novel frame-
work introduced herein. We employed the gene expression profile (i.e., the integration of datasets 1, 2, and 3, 
xiℓk , 1 ≤ k ≤ 3 ), and dataset 4 as a gene expression profile of drug treatment. We obtained xiℓ4 , as described in 
Materials and Methods, to be integrated with xiℓk , 1 ≤ k ≤ 3 , as obtained previously.  Higher-order singular 
value decomposition (HOSVD6) was applied to the obtained xiℓk , 1 ≤ k ≤ 4.

First, we sought to validate the singular value vectors, vℓ1jkk , associated with classifications (Table S1 and 
Fig. S3). It is obvious that they are coincident with the classifications of individual datasets. Then, we selected 
uℓ1i , 1 ≤ ℓ1 ≤ 5 as those associated with uℓ2ℓ, 1 ≤ ℓ2 ≤ 4 by investigating G(ℓ1, ℓ2, ℓ3) in Eq. (8) while fixing 
1 ≤ ℓ2 ≤ 4 (see Table S6). Pi are attributed to i using Eq. (9) while taking �ℓ1 = {ℓ1|1 ≤ ℓ1 ≤ 5} . The obtained 
Pi were corrected using the BH criterion and 544 i genes associated with adjusted Pi less than 0.01, as selected. 
To validate the selected 544 genes biologically, their associated gene symbols were uploaded to Enrichr. We then 
observed various enrichments (Data S2). For example, the “KEGG 2021 Human” category listed six neurode-
generative disease pathways within the top-10 pathways (Table S2B). Similarly, the “Jensen Diseases” category 
listed four neurodegenerative diseases within the top-10 diseases as well (Table S2B). In addition, “Disease 
Perturbations from GEO down” and “Disease Perturbations from GEO up” listed similar neurodegenerative 
diseases within the top-ranked diseases (Data S2). Upon examining the “Allen Brain Atlas up” and “Allen Brain 
Atlas down” categories, we observed that many AD-related brain regions were highly ranked (Data S2). Enrich-
ment analyses using databases other than Enrichr also reported convincing results. The first- and fourth-ranked 
terms in the “GAD_DISEASE_CLASS” category of DAVID were PSYCH and NEUROLOGICAL, respectively 
(Table S2B). The top-10 ranked terms in the “GAD_DISEASE” category of DAVID included four neurodegen-
erative diseases (Table S2B). The g:Profiler listed 13 KEGG pathways as significantly enriched with gene sym-
bols associated with 544 selected genes; 13 pathways included six neurodegenerative disease-related pathways 
(Table S2B). Hence, the TD-based unsupervised FE integrated four gene expression profiles lacking sample 
matching; it identified genes whose expressions were associated with classifications in three independent studies 
simultaneously; it selected genes that were enriched by various neurodegenerative disease-related terms from 
three biological databases.

Next, we attempted to identify how this strategy ranked drugs based upon gene expression profiles in dataset 
4. After computing v
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2 , and Table S3 shows the top-five drugs for 1 ≤ ℓ1 ≤ 4 . Because 

most were regarded as effective in the original study12, drug repositioning seems to have been successful.

Transfer Learning  using the tensor obtained with datasets 1, 2, and 3.  One possible applica-
tion of the integrated analysis of multiple gene expressions lacking sample matching is analogous to transfer 
learning (TL)13, where pre-trained machine-learning models are used to achieve better performance, even with 
smaller sample sizes. Although deep learning (DL) is often used for TL, DL architectures are not suitable for gene 
expression profile processing. For example, Yifei et al.14 found that DL achieved better performance than linear 
regression (LR) only by less than 7 %. This can be attributed to the lack of structure for gene expression profiles. 
In contrast to images and sentences (or documents) to which DL was applied successfully, gene expressions are 
orderless vectors of real numbers. In contrast, TD was successfully applied to gene expression profiles6 because 
tensor similarly does not consider the order of real numbers at all. Thus, TD is a suitable architecture for process-
ing gene expression profiles.

To determine whether the integrated analysis of multiple gene expression profiles obtained using datasets 1, 
2, and 3 can be used as a pre-trained system in TL, we combined dataset 5 with xiℓk , 1 ≤ k ≤ 3 as a pre-trained 
system. Dataset 5 comprises gene expression profiles created by the overexpression of the ABCC1 gene, which 
was recently recognized as an Alzheimer’s disease (AD) therapy target15. Usually, only gene expression profiles 
caused by overexpression of ABCC1 gene are analyzed, and genes whose expression are altered by ABCC1 
over-expression are selected. Then, selected genes are compared to those whose expressions are known to have 
been altered by AD. Nevertheless, this procedure is somewhat indirect because no sample matching between 
gene expression profiles of AD and ABCC1 overexpression experiments exist. Our strategy is more suitable for 
comparison between gene expression profiles of AD and ABCC1 over-expressions since these expression profiles 
can be directly compared.

After obtaining the TD as in Eq. (8) for dataset 5, v
ℓ1j

[1]
5 j

[2]
5 j

[3]
5 5

 was computed by Eq. (11); the correlation 
between six categories in dataset 5 and v

ℓ1j
[1]
5 j

[2]
5 j

[3]
5 5

 was then computed (Table S1), and the results are shown in 
Fig. S4. Although we have considered scenarios up to ℓ1 = 5 , v
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 were coincident with classification. 
Thus, as expected, the data show correlations between gene expression profiles of AD and ABCC1 overexpression 
through TD.

We selected uℓ1i , 1 ≤ ℓ1 ≤ 5 by investigating G(ℓ1, ℓ2, ℓ3) in Eq. (8) and fixing ℓ2 ∈ {1, 3, 4, 5} (see Table S7). 
Pi were attributed to i using Eq. (9) while taking �ℓ1 = {ℓ1|1 ≤ ℓ1 ≤ 5} . The obtained Pi were corrected with 
the BH criterion and 660 i (genes) associated with adjusted Pi less than 0.01 that were selected. To validate the 
selected 660 genes biologically, we uploaded gene symbols associated with genes to Enrichr and observed various 
enrichments thereof (Data S3). For example, the “KEGG 2021 Human” category listed six neurodegenerative 
disease-related (Table S2C) pathways within the top-10. Similarly, the “Jensen Diseases” category listed four 
neurodegenerative diseases (Table S2C) within the top-10. “Disease Perturbations from GEO down” and “Dis-
ease Perturbations from GEO down” listed similar neurodegenerative diseases within the top-ranked diseases 
(Data S3). In “Allen Brain Atlas up” and “Allen Brain Atlas down” categories, many AD-related brain regions 
were highly ranked (Data S3). Enrichment analyses using databases other than Enrichr also reported convincing 
results. The top-three terms in the “GAD_DISEASE_CLASS” category of DAVID were PSYCH, NEUROLOGI-
CAL, and AGING (Table S2C). The top-10 terms in the “GAD_DISEASE” category of DAVID included four 
neurodegenerative diseases (Table S2C). The g:Profiler listed 16 KEGG pathways as significantly enriched with 
gene symbols associated with 633 selected genes; 16 pathways included six neurodegenerative disease-related 
pathways (Table S2C). Thus, we successfully selected genes whose expressions were simultaneously altered by 
both AD and ABCC1 over-expressions and biological properties evaluated by enrichment analysis.

Integrated analysis of single‑cell RNA‑sequence (scRNA‑seq) data.  In this subsection, we applied 
our strategy to the integrated analysis of the scRNA-seq dataset. Because individual experiments with scRNA-
seq included ∼ 104 cells, it was unclear how to integrate multiple scRNA-seq profiles. After obtaining the TD, 
as shown in Eq. (8), where k was replaced with an integer, 1 ≤ c ≤ 25 , representing the cth RNA-seq measure-
ment described in “Integrated analysis of scRNA-seq data” section, we focused on uℓ3c ∈ R

25×25 . Variable c 
was divided into four groups, including either AD or healthy controls in either hippocampus or cortex brain 
regions. Next, we determined which uℓ3c was associated with these four classes (Fig. S5). We found that only 
u6c was associated with these four classes; categorical regression was applied to uℓ3c for each ℓ3 separately, and 
P values were computed and corrected by BH criterion. Only ℓ3 = 6 was associated with adjusted P values less 
than 0.05. The results showed that 
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taken over ℓ2 since there is no reason to select one specific ℓ2 (Table S8). Pi were attributed to i using Eq. (9) with 
�ℓ1 = {ℓ1| 6} . Pi were corrected, and 177 i (genes) were associated with an adjusted Pi of less than 0.01. Gene 
symbols associated with these 177 i were uploaded to Enrichr (Data S4). The results were very distinct from 
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those in Table S2. No neurodegenerative disease terms were detected within the top-10 ranked terms in either 
“KEGG 2021 HUMAN” or “JENSEN DISEASES” categories. Instead, the top-10 ranked terms in the “Human 
Gene Atlas” category contained several brain tissues (Table S4). In contrast, the “Disease Perturbations from 
GEO down” and “Disease Perturbations from GEO down” categories included many diseases related to the brain 
(Table S4).

Although these are only few examples, notwithstanding the simplicity of our strategy, it successfully listed 
genes associated with tissue specificity as well as AD. Therefore, our proposed strategy can deal with scRNA-seq 
very easily, even without directly considering the massive number of cells in individual scRNA-seq measure-
ments because we consider only the top-10 singular value vectors within individual scRNA-seq gene expression 
profiles, including up to 104 cells.

Discussion
Advantages of the proposed implementation.  It is evident that our implementation has at least two 
unique advantages: First, it enables the integration of multiple gene expression profiles without sample matching. 
Datasets 1, 2, and 3 had sample sizes of 9, 23, and 8, respectively. Replacing these numbers of samples with those 
of singular value vectors (i.e., sample size of eight), we obtained a single tensor, xiℓk , to which the HOSVD was 
easily applied. It is also possible to evaluate the consistency of singular value vectors, vℓ1jkk , attributed to samples 
in individual datasets by computing it from uℓ1i with Eq. (10) after applying HOSVD to xiℓk with classifications 
of individual datasets. Because this strategy is applicable to the general number of samples in individual gene 
expression profiles, it is very useful. Its second advantage is a reduction in the computational memory required 
for analysis. When we applied this implementation to scRNA-seq data, we employed only the highest-ranked 
10 singular value vectors computed by applying singular value decomposition (SVD) to individual scRNA-seq 
data, rather than considering as many as ∼ 104 cells. This drastically reduced the required memory by a factor of 
100. Nevertheless, we successfully selected genes associated with various significantly enriched biological terms 
related to tissue specificity as well as diseases, as expected. Because more cells are expected to be sequenced in 
individual experiments via scRNA-seq in the future, our strategy is recommended for a wide range of scRNA-seq 
analysis applications.

Visualization of relation between samples without sample matching.  Figures  S2, S3, and S4 
show that the proposed strategy can relate gene expression profiles lacking sample matching with one another. 
For example, v1jkk are always coincident with classifications regardless of k or datasets considered. Furthermore, 
they look very similar among distinct integration (i.e., among Figs. S2, S3, and S4). Hence, profiles seen in v1j11 
that represent distinctions between AD and control in dataset 1 correspond to those seen in v1j22 that represent 
the distinction between WT and the other three treated cell lines in dataset 2. This is a reasonable coincidence 
because the distinction between WT and treated cell lines is supposed to correspond to that between control 
and AD. Thus, our strategy can successfully relate gene expression profiles without apparent sample matching. 
Meanwhile, if we consider v1j33 , the situation differs a bit. Although we expect that v1j33 represent distinctions 
between control and two AD cell lines, they represent the distinction between AD1 and the other two cell lines: 
AD2 and control. This suggests the possibility that AD2 fails to represent some property of AD. Usually, this kind 
of investigation is impossible, because we cannot compare two gene expression profiles without sample match-
ing. Nevertheless, our strategy enables us to figure out the discrepancy in dataset 3 if it is compared with datasets 
1 and 2. Although this is just an example, detailed comparisons of vℓ1jkk between distinct k (i.e. datasets) allows 
for comparison of gene expression profiles even without sample matching.

Comparisons with previous works.  To demonstrate the superior performance of our proposed strategy, 
we compared the performance to some conventional methods that integrate multiple matrices. Most meth-
ods have been designed for genomic science require sample matching. For example, all nine methods listed in 
reference16 require sample matching. intNMF17 is also limited to datasets attributed to the same individuals. 
In contrast to these studies, although a review18 comprehensively reported on integrated multi-view analyses, 
samples were implicitly assumed to be shared, and no integrated methods aimed to integrate multiple matrices 
or tensors that did not share samples; only features were included. Although MINT19 was proposed to integrate 
gene expression profiles sharing genes rather than samples, the method assumed common labeling among mul-
tiple studies in a supervised learning framework. Conversely, its unsupervised framework required the common 
quantitative variables associated with all samples included in the studies; thus, this method cannot be applied to 
the present task of investigating the correlations between latent variables and classifications not shared between 
individual studies, as shown in Table S2. We could not find any implementations designed to integrate multiple 
gene expression profiles formatted as matrices or tensors sharing only genes and not samples. Thus, we sought 
suitable methods outside the genomic field. First, we applied CMF20, implemented as a CMF package in R21, to 
the integration of datasets 1, 2, and 3. We computed four latent variables assuming a Poisson distribution for 
gene expression. None of the obtained latent variables were significantly correlated with classification in datasets 
1, 2, and 3 (Table S9). Then, we tried GFA22, which was also implemented as a GFA package in R. Although we 
computed five latent variables, none were correlated with the classification in dataset 1, although some were 
correlated with the classifications in datasets 2 and 3 (Table S9). Hence, these two advanced methods, CMF 
and GFA, failed to identify latent variables correlated with classifications of all three datasets using integrated 
analysis. Finally, we tried simple concatenation. Ironically, SVD applied to a 60617× 40 contracted matrix com-
prising xij1 ∈ R

60617×9 , xij2 ∈ R
60617×23 and xij3 ∈ R

60617×8 provided the first singular value vector, which was 
correlated with all classifications of the three datasets. However, the P values for the correlation with classifica-
tion of dataset 1 were only very slightly significant ( P = 0.05 , Table S9). We then selected 147 genes using Eq. (9) 
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by replacing uℓ1i with the first singular-value vectors correlated with all classifications of datasets 1, 2, and 3. To 
confirm the inferiority of simple concatenations toward TD-based unsupervised FE, although we evaluated their 
enrichment by uploading 147 genes to Enrichr, DAVID, and g:Profiler, their enrichments were clearly poorer 
than those of genes selected by TD-based unsupervised FE (Table S2D and Data S5). Thus, we could not identify 
other methods comparable with or superior to TD-based unsupervised FE. Considering that the two advanced 
methods, CMF and GFA, were inferior to the SVD applied to simple concatenated matrices, the methods devel-
oped for this purpose (i.e., integrated analysis of multiple matrices) seem to be inapplicable to the present pur-
pose. Hence, more advanced methods must be developed to be suitable for the purpose of the present work (i.e., 
integrated analysis of gene expression profiles that lack common matching samples).

Treatment of missing values.  An additional advantage of the proposed strategy may be noted as a by-
product. scRNA-seq data is known to include many missing values, and matrix representation was previously 
employed to resolve this problem23. In the proposed strategy, although the employment of SVD and HOSVD 
did not aim to fill missing values, it should naturally function as a mechanism to do so. This may be the reason 
the present strategy also works for scRNA-seq data as well with neither any specific additional modifications nor 
implementations toward the treatment of scRNA-seq data set. Notably our proposed strategy successfully pro-
vided a platform to integrate typical gene expression profile measurements with small samples using scRNA-seq, 
which includes massive numbers of single cells, since both can be represented as a tensor form, xijk ∈ R

N×L×K , 
no matter how large the number of cells included in the scRNA-seq. Because we can process scRNA-seq with 
L = 10 in this study, this suggests the possibility that scRNA-seq does not provide the expected large amount of 
information according to the number of single cells.

Comparisons with the original individual studies.  Although we assessed original studies to evaluate 
how coincident individual studies are with the present integrated one, it was not easy since how the original 
study treated samples differed from the present study. For dataset 1, since original study24 did not selected genes 
whose expression differs between NDC and others, we could not compare their results with ours. For dataset 2, 
since original study25 did not simultaneously compare four groups of genes, but compared them only pairwisely, 
we could not compare their results with ours. For dataset 3, since original study26 did not distinguish between 
AD1 and AD2, we could not compare their results with ours. For datasets 4 and 5, since original studies12,27 
compared treated cell lines with controls, which we did not try, we could not compare their results with ours. For 
dataset 6, since original studies28 did not compare AD samples and controls directly, but in only tissue specific 
manner, we could not compare their results with ours. In general, since the individual studies have their own 
purposes and compared samples along these specific lines while our methods are fully data driven, how samples 
are compared with hardly matches between individual studies and the present integrated study.

Classification.  In general, classification performance is less likely to be good, since by considering all data-
sets together, specificity to individual datasets is expected to decrease. Table S10 shows the classification perfor-
mance achieved by vℓ1jkk for integrated analysis of datasets 1, 2 and 3 in Table S1. As expected, the performance 
was not good. Thus, integrated analysis proposed in this study less likely achieves good classification perfor-
mance.

Comparison with principal component analysis applied to individual data sets.  In order 
to determine how better integrated analysis can select common genes than separated analysis, we separately 
applied principal component analysis (PCA) to datasets 1, 2 and 3 so that PC scores are attributed to individual 
genes. Then, 100 top ranked genes with larger absolute PC scores are selected; Fig. S6 shows the Venn diagram. 
Although the number of genes selected by TD and shared with PCA for the first, second, and third PCs is 
not small, there are very few genes shared with PCA for the fourth and the fifth PCs. Since the fourth and the 
fifth components are often coincident with classification for more than one dataset with high significance (see 
Table S1), they are very important: the integrated analysis clearly allows for the identification of more common 
genes for datasets 1, 2, and 3 than separated analysis. In addition to this, PC scores attributed to genes by PCA 
are neither well correlated with one another nor correlated with uℓ1i computed by TD (Table S11). This suggests 
that not only top ranked genes but also over all gene expression profiles are hardly similar with one another if 
PCA is applied to individual datasets. Thus integrated analysis using TD that allows us to have unique uℓ1i valid 
for all three datasets is useful.

Conclusion.  In this study, we proposed a new strategy that integrates multiple gene expression profiles that 
lack both sample matching and common labeling. This strategy successfully integrated AD gene expression pro-
files that lacked sample matching and AD scRNA-seq datasets. The former can be used for drug repositioning 
and TL. Massive amounts of computational memory can be saved with the latter. The proposed strategy appears 
to be useful for integrating gene expression profiles, even those lacking both sample matching and common 
labeling among them.

Methods
Mathematical formulations.  Integration of multiple gene expression profiles with TD.  Here, we consider 
cases in which the number of genes, N, is much larger than the number of samples in the kth gene expression 
profile, Mk , as N ≫ Mk . Given K , (1 ≤ k ≤ K) gene expression profiles represented as a matrix,



6

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21242  | https://doi.org/10.1038/s41598-022-25524-4

www.nature.com/scientificreports/

or a (S + 1)-mode tensor,

where 1 ≤ s ≤ S stands for the sth experimental condition in the kth gene expression profile. Then, SVD or 
HOSVD6 is applied to obtain

where u[k]ℓi ∈ R
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jk with k dependence. Alternatively,

where G(ℓ1ℓ2 · · · ℓSℓS+1) ∈ R
M

[1]
k ×M

[2]
k ×···×M

[S]
k ×N is a core tensor representing a weight of products, u[k]

ℓ1j
[1]
k

 u[k]
ℓ2j

[2]
k

 

· · · u[k]
ℓSj

[S]
k

u
[k]
ℓS+1i

 , u[k]
ℓs j

[s]
k

∈ R
M

[s]
k ×M

[s]
k  , and u[k]ℓS+1i

∈ R
N×N are singular value orthogonal matrices. Thus, we derive 

the reduced matrices as either

or

This implementation involves a problem of note. For example, in Eq. (4), simultaneous changes, u[k]ℓi → −u
[k]
ℓi  

and v[k]ℓjk
→ −v

[k]
ℓjk

 , also satisfy Eq. (4). Hence, we cannot fix the signs of u[k]ℓi  and v[k]ℓjk
 . This does not present a 

problem if only individual gene expression profiles are investigated. However, if we need to compare multiple 
profiles, challenges might arise. For example, we compare multiple profiles in scRNA-seq data analysis in this 
study. Thus, we fix signs of v[k]ℓjk

 such that the correlation coefficients between u[1]ℓi  and u[k]ℓi , k > 1 have positive 
values prior to the computations in Eq. (6).

HOSVD is applied to xiℓk ∈ R
N×L×K to obtain

where G(ℓ1ℓ2ℓ3) ∈ R
N×L×K is a core tensor, and uℓ1i ∈ R

N×N . uℓ2ℓ ∈ R
L×L and uℓ3k ∈ R

K×K are singular value 
matrices that are orthogonal.

Gene selection.  We can also select genes, i, by attributing P values to the ith genes while assuming uℓ1i obeys a 
Gaussian distribution,

where Pχ2 [> x] is the cumulative χ2 distribution where the argument is larger than x, σℓ1 is the standard devi-
ation, and the summation of ℓ1 is taken over a set of ℓ1 , �ℓ1 , which is a set of ℓ1 selected as having larger 
∑

ℓ,ℓ3
G(ℓ1ℓℓ3)

2 . Pi are corrected via the Benjamini-Hochberg (BH) criterion6, and i is associated with adjusted 
P values less than 0.01.

Projection of individual gene expression profiles onto the space spanned by uℓ1i.  To determine how samples jk 
within each K gene expression profile are located in the space spanned by the obtained singular value vectors 
attributed to genes, uℓ1i , we project individual gene expression profiles onto the space spanned by uℓ1i as

(2)xijk ∈ R
N×Mk ,

(3)x
ij
[1]
k j
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[S]
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or

where vℓ1jkk ∈ R
N×Mk×K and v

ℓ1j
[1]
k j

[2]
k ···j

[S]
k k

∈ R
N×M1×···×MS×K are regarded as coordinates of individual samples, 

jk or j[s]k  , in the space spanned by uℓ1i.

Gene expression profiles.  Herein, we specifically focused on AD. All gene expression profiles included in 
the six studies listed below are selected from the gene expression omnibus (GEO). Individual profiles are nor-
malized to have zero mean and a standard deviation of one within individual profiles. Thus, when gene expres-
sion profiles are formatted as a matrix, xijk ,∈ R

N×Mk representing expression of the ith gene at the jk th sample,

and when gene expression profiles are formatted as a tensor, x
ij
[1]
k ···j

[S]
k

∈ R
N×M

[1]
k ×···×M

[S]
k  , representing the expres-

sion of the ith gene at the sample annotated by indices j1, . . . , jS , and

Dataset 1: GSE160224.  The dataset24 denoted as 1 (i.e., k = 1 ) in this study comprises as few as nine sam-
ples, including nondemented controls (NDC), three APP duplications, and three isogenically corrected induced 
pluripotent stem-cell lines. In this study, three control samples are treated as controls, and the other six are 
treated samples when the coincidence to singular value vectors or latent variables are investigated, and genes 
whose expression are altered between these two classes are intended to be selected. Gene expression profiles are 
measured using RNA-seq technology, while genes are annotated using the Ensembl gene ID. The genes whose 
expressions are measured numbers as many as 58,302 in contrast to the small number of samples. As a result, 
gene expression profiles are formatted as a matrix, xij1 ∈ R

58302×9 , representing expressions of the ith gene of 
the j1 th sample.

Dataset 2: GSE155567.  The dataset25 denoted as 2 (i.e., k = 2 ) in this study comprises four classes, including 
THP1 macrophages after the knockout of CD33 and/or the knockdown (silencing) of PTPN6 (six samples per 
class). Thus, in all, it includes as few as 24 samples. In this study, we do not specifically assume which classes are 
considered controls, but they are regarded as four categorical classes when the coincidence with singular value 
vectors or latent variables are investigated. For unknown reasons, although gene expression profiles of one sam-
ple are missing, it is unlikely to affect the outcome because it includes almost all (23 out of 24) samples. Gene 
expression profiles are measured using RNA-seq technology, and genes are annotated using the Ensembl gene 
ID. The number of genes whose expressions are measured amount to as many as 60,617 in contrast to the small 
number of samples. As a result, gene expression profiles are formatted as a matrix, xij2 ∈ R

60617×23 , representing 
the expression of the ith gene of the j2 th sample.

Dataset 3: GSE162873.  The dataset26 denoted as 3 (i.e., k = 3 ) in this study comprises eight samples, four of 
which are AD cell lines, and the other four are normal. Because four AD cell lines comprise two sets of two 
samples using two distinct cell lines, this dataset includes three categorical classes when the coincidence with 
singular value vectors or latent variables is investigated. Two samples are taken from the first AD cell line, two 
samples are taken from the second AD cell line, and four samples are taken from normal cell lines. Gene expres-
sion profiles are measured by RNA-seq technology, and genes are annotated using the Ensembl gene ID. The 
number of genes whose expressions are measured amounts to as many as 47,749 in contrast to the small number 
of samples. As a result, gene expression profiles are formatted as a matrix, xij3 ∈ R

47749×8 , representing the 
expression of the ith gene of the j3 th sample.
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Dataset 4: GSE164788.  The dataset12 denoted as 4 (i.e., k = 4 ) in this study is an in-vitro differentiated mixture 
of neuron and glial cells derived from the ReNcell VM neural progenitor cell line treated with 80 different com-
pounds; mRNA levels are measured using RNA-seq. Among the 80 compounds, we select 94 drugs and combi-
nations from which at least two doses are tested. For each dose, three biological replicates are provided. When 
more than three are used, we randomly select three of them. Gene expression profiles are measured by RNA-seq 
technology, and genes are annotated using the Ensembl gene ID. The genes whose expressions numbers as many 
as 28,044. As a result, gene expression profiles are formatted as a tensor, x

ij
[1]
4 j

[2]
4 j

[3]
4

∈ R
28044×94×4×3 , representing 

the expression of the ith gene at the j1 th drug combination, the j2 th dose, and the j3 th biological replicates.

Dataset 5: GSE164642.  The dataset27 denoted as 5 (i.e., k = 5 ) in this study comprises three sets of six samples; 
each includes two classes corresponding to ABCC1 activated cells by distinct RNA or control cells. They include 
three biological replicates (18 total samples). Gene expression profiles are measured using RNA-seq technology, 
and genes are annotated using the Ensembl gene ID. Thus, they are treated as six categorical classes when the 
coincidence with singular value vectors or latent variables is investigated. The genes whose expressions are meas-
ured numbers as many as 58,003 in contrast to the small number of samples. As a result, gene expression profiles 
are formatted as a tensor, x

ij
[1]
5 j

[2]
5 j

[3]
5

∈ R
58003×3×2×3 , representing the expression of the ith gene at those treated 

by the j[1]5  th RNA, the j[2]5  th treatment ( j[2]5 = 1:control, j[2]5 = 2:ABCC1 activated,) and the j[3]5  th biological 
replicates.

Dataset 6: GSE163577.  This is an scRNA-seq dataset28 denoted as 6 (i.e., k = 6 ) in this study, including both 
AD and healthy controls from 25 hippocampus and superior frontal cortex samples across 17 control and eight 
AD patients. 25 individual datasets are formatted as a matrix, x

ij
[c]
6

∈ R
33538×M

[c]
6 , 1 ≤ c ≤ 25 , representing the 

expression of the ith gene at the j[c]6  th cell within the cth scRNA-seq profile. The number of cells, M[c]
6  , in indi-

vidual datasets vary and is roughly 104.

Integrated analysis of gene expression profiles.  Integrated analysis of datasets 1, 2, and 3.  When we 
integrate the datasets 1, 2, and 3, we apply SVD to them to get

Then, we compute xiℓk using Eq. (6) while setting L = 8 because M1 = 9,M2 = 24,M3 = 8 , and L cannot exceed 
Mk . Because the number of genes whose expressions are measured differs among datasets 1, 2, and 3, we employ 
N = 60617 as the number of genes whose expressions are measured in dataset 2 and the largest number of genes 
measured among datasets 1, 2, and 3. Then, these three gene expression profiles are formatted as a tensor,

where the missing expressions in datasets 1 and 3 caused by the smaller number of genes than in dataset 2 are 
filled with zero. HOSVD is applied to xiℓk as in Eq. (8).

Drug repositioning using the tensor obtained with datasets 1, 2, and 3.  HOSVD is applied to 
x
ij
[1]
4 j

[2]
4 j

[3]
4

∈ R
28044×94×4×3 . Then, xiℓ4 is computed using Eq. (7) with L[1]4 = 4, L

[2]
4 = 2 , and L[3]4 = 1 . The moti-

vations of this choice are as follows. Biological replicates are expected to have common gene expression, and the 
first singular value vector, u

1j
[3]]
4

 , is expected to have constant value regardless of j[3]4  , based upon previous studies. 
Thus, it is sufficient to consider only u

1j
[3]
4

 for biological replicates. Then, two choices remain, including 

L
[1]
4 = 4, L

[2]
4 = 2 or L[1]4 = 2, L

[2]
4 = 4 . Clearly, the former is reasonable because the number of drug combina-

tions, at 94, is much larger than that of dose density, which is four. Missing values are filled with zero. In addition 
to xiℓk , 1 ≤ k ≤ 3 , obtained in the previous subsection, HOSVD is applied to xiℓk ∈ R

60617×8×4 as in Eq. (8).

TL using the tensor obtained with datasets 1, 2, and 3.  To evaluate the performance of TL, HOSVD is applied to 
x
ij
[1]
5 j

[2]
5 j

[3]
5

∈ R
58003×3×2×3 . Then, xiℓ5 is computed using Eq. (7) with L[s]5 = 2, 1 ≤ s ≤ 3 . HOSVD is applied to 

xiℓk ∈ R
60617×8×4 , obtained with Eq. (8) after xiℓ4 is replaced with xiℓ5.

Integrated analysis of scRNA‑seq data.  SVD is applied to x
ij
[c]
6

, 1 ≤ c ≤ 25 one-by-one. Then, xiℓc is computed 
by Eq. (6) while replacing k with c and L = 10 . Then, HOSVD is applied to xiℓc ∈ R

33538×10×25.
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Methods to be compared.  In the following, we tested three methods that assume the latent variables 
attributed to genes, i, which are also common among datasets 1, 2, and 3.

Collective matrix factorization (CMF).  To perform CMF, we used xIj1 ∈ R
60617×9 , xij2 ∈ R

60617×23 , and 
xij3 ∈ R

60617×8 , such that they shared the same number of genes. Missing values were filled with zero and were 
normalized to have zero mean and a standard deviation of one, as denoted in the beginning of this section. The 
structure of assumed modeling is given as

where uℓi ∈ R
L×60617,u[k]ℓjk

∈ R
L×Mk , and b[k]i ∈ R

60617 , b[k]jk
∈ R

Mk , ε[k]ijk
∈ R

60617×MK . We also employed an option 
wherein xijk obeys a Poisson distribution because the negative signed binary distribution usually assumed for 
the RNA-seq dataset is not provided as an option. Before applying this model to xijk , some constants were added 
so that they do not take negative values, because Poisson distributions will not accept them. L = 4 because TD-
based unsupervised FE can identify a singular value vector correlated with classification in datasets 1, 2, and 3 
within the top four.

Group factor analysis (GFA).  The datasets used were the same as those used in the trials using CMF. The struc-
ture of assumed model is given as

The primary difference from CMF, which employs Bayesian inferencing, is that GFA does not assume the distri-
bution of xijk . L = 5 was assumed because it was employed in the example in the GFA tutorial and is larger than 
the number of singular value vectors computed with TD-based unsupervised FE correlated with classifications 
in datasets 1, 2, and 3.

Simple concatenation.  A matrix, xij ∈ R
60617×40 , where 40 =

∑3
k=1 MK , is generated by concatenating three 

matrices, xij1 , xij2 , and xij3 , to share the row number:

Then, SVD was applied to xij to obtain

vℓj for 1 ≤ j ≤ 9 were used for the latent variables attributed to nine samples in dataset 1, vℓj for 10 ≤ j ≤ 32 were 
used for the latent variables attributed to 23 samples in dataset 2, and vℓj for 33 ≤ j ≤ 40 were used for the latent 
variables attributed to eight samples in dataset 3.

Classification.  Evaluation of classification performances were tested via linear discriminant analysis (LDA) 
using +lda+ function in MASS package in R21. Labels are treated as factors and prior probabilities of individual 
labels are set to be equal. Leave one out cross validation was employed with setting “CV=T” option.

Source code.  Sample R21 source code is available as supplementary material (R version 4.1.3).

Data availability
All data sets used in this study can be obtained via the NIH/NCBI Gene Expression Omnibus (GEO) reposi-
tory using accession numbers GSE160224, GSE155567, GSE162873, GSE164788, GSE164642, and GSE163577.

Received: 31 October 2021; Accepted: 30 November 2022

References
	 1.	 Huang, C. et al. Integrated analysis of multiple gene expression profiling datasets revealed novel gene signatures and molecular 

markers in nasopharyngeal carcinoma. Cancer Epidemiol. Prev. Biomark. 21, 166–175. https://​doi.​org/​10.​1158/​1055-​9965.​EPI-​
11-​0593 (2012).

	 2.	 Hu, P. et al. Integrative analysis of multiple gene expression profiles with quality-adjusted effect size models. BMC Bioinform. 6, 
128. https://​doi.​org/​10.​1186/​1471-​2105-6-​128 (2005).

	 3.	 Kyoon Choi, J. et al. Integrative analysis of multiple gene expression profiles applied to liver cancer study. FEBS Lett. 565, 93–100. 
https://​doi.​org/​10.​1016/j.​febsl​et.​2004.​03.​081 (2004).

	 4.	 Yang, Z.-Y. et al. Multi-view based integrative analysis of gene expression data for identifying biomarkers. Sci. Rep.https://​doi.​org/​
10.​1038/​s41598-​019-​49967-4 (2019).

(20)xijk =

L
∑

ℓ=1

uℓiu
[k]
ℓjk

+ b
[k]
i + b

[k]
jk

+ ε
[k]
ijk
,

(21)xijk =

L
∑

ℓ=1

uℓiu
[k]
ℓjk

+ ε
[k]
ijk
.

(22)xij =







xij1 , j1 = j, 1 ≤ j ≤ 9

xij2 , j2 = j − 9, 10 ≤ j ≤ 32

xij3 , j3 = j − 32, 33 ≤ j ≤ 40

(23)xij =
∑

ℓ

uℓi�ℓvℓj .

https://doi.org/10.1158/1055-9965.EPI-11-0593
https://doi.org/10.1158/1055-9965.EPI-11-0593
https://doi.org/10.1186/1471-2105-6-128
https://doi.org/10.1016/j.febslet.2004.03.081
https://doi.org/10.1038/s41598-019-49967-4
https://doi.org/10.1038/s41598-019-49967-4


10

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21242  | https://doi.org/10.1038/s41598-022-25524-4

www.nature.com/scientificreports/

	 5.	 Wu, M., Yi, H. & Ma, S. Vertical integration methods for gene expression data analysis. Brief. Bioinform.https://​doi.​org/​10.​1093/​
bib/​bbaa1​69 (2020).

	 6.	 Taguchi, Y.-H. Unsupervised Feature Extraction Applied to Bioinformatics (Springer, 2020).
	 7.	 Kuleshov, M. V. et al. Enrichr: a comprehensive gene set enrichment analysis web server 2016 update. Nucl. Acids Res. 44, W90–

W97. https://​doi.​org/​10.​1093/​nar/​gkw377 (2016).
	 8.	 Huang, D. W. et al. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat. Protoc. 4, 

44–57. https://​doi.​org/​10.​1038/​nprot.​2008.​211 (2008).
	 9.	 Huang, D. W. et al. Bioinformatics enrichment tools: Paths toward the comprehensive functional analysis of large gene lists. Nucl. 

Acids Res. 37, 1–13. https://​doi.​org/​10.​1093/​nar/​gkn923 (2008).
	10.	 Raudvere, U. et al. g: Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucl. 

Acids Res. 47, W191–W198. https://​doi.​org/​10.​1093/​nar/​gkz369 (2019).
	11.	 Taguchi, Y.-H. Identification of candidate drugs using tensor-decomposition-based unsupervised feature extraction in integrated 

analysis of gene expression between diseases and DrugMatrix datasets. Sci. Rep.https://​doi.​org/​10.​1038/​s41598-​017-​13003-0 (2017).
	12.	 Rodriguez, S. et al. Machine learning identifies candidates for drug repurposing in alzheimer’s disease. Nat. Commun.https://​doi.​

org/​10.​1038/​s41467-​021-​21330-0 (2021).
	13.	 Weiss, K. et al. A survey of transfer learning. J. Big Datahttps://​doi.​org/​10.​1186/​s40537-​016-​0043-6 (2016).
	14.	 Chen, Y. et al. Gene expression inference with deep learning. Bioinformatics 32, 1832–1839. https://​doi.​org/​10.​1093/​bioin​forma​

tics/​btw074 (2016).
	15.	 ElAli, A. & Rivest, S. The role of ABCB1 and ABCA1 in beta-amyloid clearance at the neurovascular unit in alzheimer’s disease. 

Front. Physiol. 4, 45. https://​doi.​org/​10.​3389/​fphys.​2013.​00045 (2013).
	16.	 Cantini, L. et al. Benchmarking joint multi-omics dimensionality reduction approaches for the study of cancer. Nat. 

Commun.https://​doi.​org/​10.​1038/​s41467-​020-​20430-7 (2021).
	17.	 Chalise, P. & Fridley, B. L. Integrative clustering of multi-level ‘omic data based on non-negative matrix factorization algorithm. 

PLoS ONE 12, 1–18. https://​doi.​org/​10.​1371/​journ​al.​pone.​01762​78 (2017).
	18.	 Li, Y. et al. A review on machine learning principles for multi-view biological data integration. Brief. Bioinform. 19, 325–340. 

https://​doi.​org/​10.​1093/​bib/​bbw113 (2016).
	19.	 Rohart, F. et al. MINT: a multivariate integrative method to identify reproducible molecular signatures across independent experi-

ments and platforms. BMC Bioinform.https://​doi.​org/​10.​1186/​s12859-​017-​1553-8 (2017).
	20.	 Klami, A. et al. Group-sparse embeddings in collective matrix factorization. arXiv:​1312.​5921 (2014).
	21.	 R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria 

(2020).
	22.	 Leppäaho, E. et al. GFA: exploratory analysis of multiple data sources with group factor analysis. J. Mach. Learn. Res. 18, 1–5 (2017).
	23.	 Hu, Y. et al. WEDGE: Iimputation of gene expression values from single-cell RNA-seq datasets using biased matrix decomposition. 

Brief. Bioinform.https://​doi.​org/​10.​1093/​bib/​bbab0​85 (2021).
	24.	 Ye, T. et al. Efficient manipulation of gene dosage in human iPSCs using CRISPR/cas9 nickases. Commun Biolhttps://​doi.​org/​10.​

1038/​s42003-​021-​01722-0 (2021).
	25.	 Wißfeld, J. et al. Deletion of Alzheimer’s disease-associated CD33 results in an inflammatory human microglia phenotype. Glia 

69, 1393–1412. https://​doi.​org/​10.​1002/​glia.​23968 (2021).
	26.	 Hanna, R. et al. G-quadruplexes originating from evolutionary conserved l1 elements interfere with neuronal gene expression in 

Alzheimer’s disease. Nat. Commun.https://​doi.​org/​10.​1038/​s41467-​021-​22129-9 (2021).
	27.	 Jepsen, W. M. et al. Adenosine triphosphate binding cassette subfamily c member 1 (ABCC1) overexpression reduces APP process-

ing and increases alpha- versus beta-secretase activity, in vitro. Biol. Openhttps://​doi.​org/​10.​1242/​bio.​054627 (2020).
	28.	 Yang, A. C. et al. A human brain vascular atlas reveals diverse cell mediators of Alzheimer’s disease risk. bioRxivhttps://​doi.​org/​

10.​1101/​2021.​04.​26.​441262 (2021).

Acknowledgements
This work was supported by KAKENHI [Grant Numbers 19H05270, 20H04848, and 20K12067] to YHT. Also, 
this research work was funded by Institutional Fund Project under grant no (IFPIP: 924-611-1442). There-
fore, authors gratefully acknowledge technical and financial support from the Ministry of Education and King 
Abdulaziz University, DSR, Jeddah, Saudi Arabia.

Author contributions
Y.H.T. planned the research and performed analyses. Y.H.T. and T.T. evaluated the results, discussions, and 
outcomes and wrote and reviewed the manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​022-​25524-4.

Correspondence and requests for materials should be addressed to Y.T.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

https://doi.org/10.1093/bib/bbaa169
https://doi.org/10.1093/bib/bbaa169
https://doi.org/10.1093/nar/gkw377
https://doi.org/10.1038/nprot.2008.211
https://doi.org/10.1093/nar/gkn923
https://doi.org/10.1093/nar/gkz369
https://doi.org/10.1038/s41598-017-13003-0
https://doi.org/10.1038/s41467-021-21330-0
https://doi.org/10.1038/s41467-021-21330-0
https://doi.org/10.1186/s40537-016-0043-6
https://doi.org/10.1093/bioinformatics/btw074
https://doi.org/10.1093/bioinformatics/btw074
https://doi.org/10.3389/fphys.2013.00045
https://doi.org/10.1038/s41467-020-20430-7
https://doi.org/10.1371/journal.pone.0176278
https://doi.org/10.1093/bib/bbw113
https://doi.org/10.1186/s12859-017-1553-8
http://arxiv.org/abs/1312.5921
https://doi.org/10.1093/bib/bbab085
https://doi.org/10.1038/s42003-021-01722-0
https://doi.org/10.1038/s42003-021-01722-0
https://doi.org/10.1002/glia.23968
https://doi.org/10.1038/s41467-021-22129-9
https://doi.org/10.1242/bio.054627
https://doi.org/10.1101/2021.04.26.441262
https://doi.org/10.1101/2021.04.26.441262
https://doi.org/10.1038/s41598-022-25524-4
https://doi.org/10.1038/s41598-022-25524-4
www.nature.com/reprints


11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:21242  | https://doi.org/10.1038/s41598-022-25524-4

www.nature.com/scientificreports/

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2022

http://creativecommons.org/licenses/by/4.0/

	A tensor decomposition-based integrated analysis applicable to multiple gene expression profiles without sample matching
	Results
	Integrated analysis of datasets 1, 2, and 3. 
	Drug repositioning using the tensor obtained with datasets 1, 2, and 3. 
	Transfer Learning  using the tensor obtained with datasets 1, 2, and 3. 
	Integrated analysis of single-cell RNA-sequence (scRNA-seq) data. 

	Discussion
	Advantages of the proposed implementation. 
	Visualization of relation between samples without sample matching. 
	Comparisons with previous works. 
	Treatment of missing values. 
	Comparisons with the original individual studies. 
	Classification. 
	Comparison with principal component analysis applied to individual data sets. 
	Conclusion. 

	Methods
	Mathematical formulations. 
	Integration of multiple gene expression profiles with TD. 
	Gene selection. 
	Projection of individual gene expression profiles onto the space spanned by . 

	Gene expression profiles. 
	Dataset 1: GSE160224. 
	Dataset 2: GSE155567. 
	Dataset 3: GSE162873. 
	Dataset 4: GSE164788. 
	Dataset 5: GSE164642. 
	Dataset 6: GSE163577. 

	Integrated analysis of gene expression profiles. 
	Integrated analysis of datasets 1, 2, and 3. 
	Drug repositioning using the tensor obtained with datasets 1, 2, and 3. 
	TL using the tensor obtained with datasets 1, 2, and 3. 
	Integrated analysis of scRNA-seq data. 

	Methods to be compared. 
	Collective matrix factorization (CMF). 
	Group factor analysis (GFA). 
	Simple concatenation. 

	Classification. 
	Source code. 

	References
	Acknowledgements


