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Free convective trickling 
over a porous medium of fractional 
nanofluid with MHD and heat 
source/sink
Yuanjian Lin 1,2, Sadique Rehman 3, Nevzat Akkurt 4, Tim Shedd 5, Muhammad Kamran 6, 
Muhammad Imran Qureshi 7, Thongchai Botmart 8*, Abdulaziz N. Alharbi 9, Aamir Farooq 10 & 
Ilyas Khan 11

Nanofluids are considered as smart fluids that can improve heat and mass transfer and have numerous 
applications in industry and engineering fields such as electronics, manufacturing, and biomedicine. 
For this reason, blood-based nanofluids with carbon nanotubes (CNTs) as nanoparticles in the 
presence of a magnetic field are discussed. The nanofluid traverses the porous medium. The nanofluids 
move on a vertical plate that can be moved. The free convection heat transfer mode is considered 
when the heat source and heat fluxes are constant. Convective flows are often used in engineering 
processes, especially in heat removal, such as geothermal and petroleum extraction, building 
construction, and so on. Heat transfer is used in chemical processing, power generation, automobile 
manufacturing, air conditioning, refrigeration, and computer technology, among others. Heat transfer 
fluids such as water, methanol, air and glycerine are used as heat exchange media because these 
fluids have low thermal conductivity compared to other metals. We have studied the effects of MHD 
on the heat and velocity of nanofluids keeping efficiency in mind. Laplace transform is used to solve 
the mathematical model. The velocity and temperature profiles of MHD flow with free convection of 
nanofluids were described using Nusselt number and skin friction coefficient. An accurate solution is 
obtained for both the velocity and temperature profiles. The graph shows the effects of the different 
parameters on the velocity and temperature profiles. The temperature profile improved with 
increasing estimates of the fraction parameter and the volume friction parameter. The velocity of the 
nanofluid is also a de-escalating function with the increasing values of the magnetic parameter and 
the porosity parameter. The thickness of the thermal boundary layer decreases with increasing values 
of the fractional parameter.

List of symbols
⌢

ρ̃nf 	� Density of nanofluid
r	� Darcy’s resistance
⌢

µ̃nf 	� Absolute viscosity of nanofluid
B20	� Magnetic field strength
J	� Current density
B	� Total magnetic field
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α,β	� Fractional parameters
K	� Permeability of medium
M	� Magnetic parameter
S	� Extra stress tensor
I	� Unit tensor
T∞	� Ambient temperature
νf 	� Kinematic viscosity
Y 	� Space coordinates
T
(

Y , t̃
)

	� Temperature field
LT	� Laplace transforms
f 	� Base fluid
⌢

σ̃ nf 	� Electrical conductivity of nanofluid
(β)nf 	� Thermal expansion of nanofluid
g	� Acceleration due to gravity
(

Cp

)

nf
	� Specific heat of nanofluid

Q∗	� Coefficient of heat source/sink
knf 	� Thermal conductivity of nanofluid
γ	� Dimensional constant
τ	� Cauchy stress tensor
Pr	� Prandtl number
P	� Pressure
U0	� Amplitude of the motion
ϕ	� Volume fraction parameter
qw	� Heat passing from surface of wall
t̃	� Time
W

(

Y , t̃
)

	� Velocity field
nf 	� Nanofluid
s	� Solid nano-particles

Nowadays, most researchers and scientists pay great attention to those methods and techniques that are useful 
for improving heat transfer in various heat exchanger processes. To meet these requirements, researchers have 
developed a new type of fluid called a nanofluid. A nanofluid is a fluid that contains nanoparticles, which are 
nanometer-sized particles. Metals, their oxides, carbides and carbon nanotubes are the most commonly used 
nanoparticles in nanofluids. Nanofluids are helpful and have a wide range of applications, including microelec-
tronics, fuel cells, pharmaceutical processes, cross-race machines, temperature controls, heating systems, exhaust 
gasses from smokestacks, heat dissipation, and so on. Due to the importance of nanofluids, numerous experi-
mental and theoretical observations are being carried out by many researchers. In a detailed study, Kakac et al.1 
investigated how nanofluids increase the thermal conductivity of a base fluid. Due to the high predictability of 
nanofluids, the problems identical to decay, clumping of new charges, and sedimentation do not occur2. In recent 
years, researchers have focused on the thermal perspectives of nanofluid because it is practical and has more 
applications in heat transfer and cooling. Natural convection is the general mode of heat movement. The phe-
nomenon of natural convection allows heat to flow with external aids such as suction devices, fans, and pumps, 
etc., and these flows are created by changing the density of fluids. It has been observed that as the temperature 
changes, the density decreases, but the volume increases, so that the heated layer is loses its thickness and rises. 
In nature, free convection currents usually occur, caused by differences in concentration and density. The most 
important works and reviews by researchers can be such as Ghosh and Beg3 studied the effects of local thermal 
non-equilibrium (LTNE) on free convection in a uniformly curved, non-Darcian permeable annulus traversed by 
nanofluid. Fetecau et al.4 used an isothermal vertical plate to study a fractional nanofluid combining the effects of 
thermal radiation and natural convection, and found the solution of the temperature and dimensionless velocity 
using the Laplace transform and Caputo-Fabrizio time derivative. Toki and Tokis5 studied the free convection 
flow considering the time-dependent heating over a porous medium and used the Laplace transform to find an 
exact solution. Hussanan et al.6 studied mass and heat transfer using a vertical plate and a Newtonian heater and 
presented an accurate temperature and velocity analysis that satisfied the boundary conditions. Turkyilmazoglu 
and Pop7 studied a nanofluid over a vertical flat (infinite) surface in natural convection flow with radiation effect. 
Pramanik8 found a result for a Casson fluid flowing through a stretching surface exponentially porous under the 
influence of thermal radiation. Turkilmazgolu9 studied the effect of heat transfer and unsteady flow of a nanofluid 
through a moving vertical plate. Ge-JiLe et al.10 studied the radiated MHD flow of iron-containing nanoparticles 
with Brownian motion and thermophoresis through a cone. Kavya et al.11 revealed a hybrid nanofluid with MHD 
and heat extraction/injection through a shrinking/stretching cylinder with a suspension of MoS4 and copper 
nanoparticles. The study of a hybrid nanofluid composed of a Newtonian and a non-Newtonian fluid flowing 
over a stretching sheet was reported by12–17.

The magnetic field affects both man-made and natural currents. The magnetic field plays a major role in the 
pumping, stirring, and levitation of liquid metals and in the generation of electricity in industry. Molten metals 
are found in the Earth’s core, creating a magnetic field known as the geomagnetic field. Sunspots and solar flares 
form the solar magnetic field. Due to practical applications, the study of MHD with heat transfer is of particular 
importance, as evidenced by the buoyancy-induced effect in quasi-solid bodies, water bodies, and the atmos-
phere, e.g., the Earth. Khan et al.15 studied the unsteady MHD flow with free convection in a porous medium 
with heat diffusion and a sloped wall. Khan et al.16 also considered a porous medium with Newtonian heating 
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and a Casson type sodium alginate based nanofluid and analyzed the unsteady MHD flow. Yigra et al.17 dealt 
with mass transfer and convective heat in a nanofluid in applied magnetic field, flow past a permeable medium 
on a stretching sheet, chemical reaction, viscous dissipation and Soret effect. Gaffar et al.18 studied MHD (free 
convection) flow with ohmic dissipation of Eyring-Powell fluid and Hall/Islip flows in a porous medium on a 
vertical surface. Mahmoudi et al.19 obtained a result to improve the heat transfer and entropy generation in a 
flow with natural convection using a copper–water nanofluid and a two-dimensional trapezoidal enclosure with 
a continuous magnetic field. Khan et al.20 considered a non-compressible fluid (viscous) and worked on the 
results of MHD flow with free convection in a permeable medium located near an oscillating plate. Jha et al.21 
used a vertical annular microchannel in which a magnetic field is present and discussed free convection flow. 
Sheikholeslami et al.22 inquired about the flow behavior using a constant heat source and a porous medium and 
obtained results for a nanofluid by increasing the buoyancy forces to enhance the heat transfer. In the applied 
magnetic field, Fetecau et al.23 studied the natural convection flow with radiation effects. Zeeshan et al.24 studied 
the spontaneous convection flow through porous media under the influence of MHD and provided pictorial 
and mathematical results. Ashorynejad et al.25 studied hybrid nanofluid as natural convection flow in an open 
cavity under the influence of MHD. Turkilmazgolu26 studied the heat transfer and mass properties of electrically 
conducting fluids over a apartment plate (infinite and vertical) and represented them numerically. Sheikhole-
slami et al.27 studied the effects of MHD on natural convection in a 2D horizontal annulus for an Al2O3-water 
nanofluid. Azhar et al.28 discussed a fractional nanofluid as a free convection system with a constant heat flux 
and a heat source flowing over an endless vertical plate, focusing on the graphical and analytical results.

Wang et al.29 studied the heat and mass transfer of a general MHD-Oldroyd-B bio-nanofluid in a permeable 
medium with increasing conditions in comparison. Heat transport by free convection is an important branch 
of fluid dynamics that has been matured for applications such as geothermal, geo- and astrophysics, paramedi-
cal sciences, and oil reservoirs, etc. Ramudu et al.30 have studied the influence of Soret and Dufour on Casson 
MHD fluid flow on an extended surface. The solution of the model is obtained by the Runge–Kutta method 
(along shooting). Farooq et al.31 presented the free convective flow of an oscillating Maxwell nanofluid with heat 
and mass transport. The velocity is a decreasing function of the volume fraction, while the temperature profile 
grows with varying estimates of the volume fraction parameter. Tang et al.32 reported the comparative approach 
of naturally convective flow of a fractional Maxwell fluid with radiation and uniform heat flux. The well-known 
integral transform (Laplace transform) is used to solve the fractional Caputo and Caputo-Fabrizio model. The 
phenomenon of heat absorption/consumption has numerous applications in engineering such as reinforcement 
of thrust bearings, cooling of metal sheets, recovery of unpolished oil and in medicine etc. Anantha Kumar et al.33 
studied the first and second order slips in micropolar fluid flow over a convective surface with MHD and varying 
heat absorption/consumption. The velocity of the fluid increases as the second order slip is estimated, while the 
temperature decreases against the second order slip. Anantha Kumar et al.34 studied the MHD Cattaneo-Christov 
flow with variable heat source/sink over a cone and wedge. The study of non-Newtonian MHD fluid flow with 
heat absorption/consumption along different geometries was analyzed by35–37,41–46. Anantha Kumar et al.38 studied 
the MHD fluid Williamson with variable heat source/sink and chemical reaction on a curved/apartment surface. 
Also Anantha Kumar et al.39,40 presented the influence of free convection and nonlinear radiation of a micropolar 
MHD fluid near stagnation with convective surface.

From the literature review, no work has been done on convective heat transport of nanofluids along a porous 
medium under the effect of magnetism. Such geometries have many applications in science and technology, such 
as power generation, conductive plates, automobiles, refrigeration, power generation, etc. Blood is used as the 
base fluid for the suspension of CNTs. Carbon nanotubes (CNTs) as nanoparticles have great applications in the 
field of nanotechnology due to their unique electrical shape and mechanical properties. Applications of CNTs 
also include energy storage, conductive films, advanced electrodes, catalyst supports, coatings, biomedical and 
sensing applications, wearable electronics, solar and structural materials. CNTs have higher conductivity, which 
they use to build a network of conducting tubes. To identify the memory effect of nanofluids, the fractional 
derivative (Caputo-Fabrizio model) is solved exactly using Laplace technique (LT). Finally, various physical 
parameters are explained physically and graphically. The skin fraction and the Nusslet value are also obtained to 
determine the rate of heat transport and the drag forces of the nanofluid. Zakian’s algorithm is used to simulate 
graphs and tables41.

The research questions are as follows, which is helpful in understanding the novelty and key research findings;

–	 How do the SWCNTs and MWCNTs nanoparticles affect the flow of a viscous nanofluid with free convection?
–	 How does the Lorentz force affect the velocity of the nanofluid when magnetic parameters are used?
–	 How can the exact solution of the fractional model be determined and the memory effect on the nanofluid 

be established?
–	 How does the porosity parameter behave on the velocity of the nanofluid?
–	 How does the fractional parameter affect the thickness of the thermal boundary layer?

Mathematical statement of the problem
The equations for the free convection flow of an incompressible MHD fluid and the heat transfer in the presence 
of a heat source/sink at an infinite vertical plate in a porous medium subject to the Boussinesq approximation 
are as follows,

(1)∇ .V = 0,
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where, r denotes the Darcy’s resistance, J is the current density, B demonstrates the total magnetic field, V denotes 
the velocity vector i-e V =

[

W
(

Y , t̃
)

, 0, 0
]

,τ.L represents the term viscous dissipation, L = gradV , τ denotes the 
Cauchy stress tensor i-e τ = −PI+ S,P is the pressure, I represents the unit tensor, S expressed the extra stress 
tensor, ρnf , µnf , βnf ,

(

Cp

)

nf
, knf  are respectively density, absolute viscosity, thermal expansion coefficient of 

nanofluid, specific heat and nanofluid’s thermal conductivity, g is the gravitational acceleration and Q∗ denotes 
the coefficient of heat source/sink.

Consider the natural convection flow of electrically conducting and incompressible nano-fluids. The flow 
medium is an infinite vertical plate. The magnetic field strength B_o acts uniformly and perpendicularly on the 
plate. At a given time, both the plate and the fluid are in a stationary position with ambient temperature. When 
the timecomes, the plate starts to move with velocity Uo(1− e−γ t) , provided that no heat enters or leaves the 
system. Here shows the amplitude of the motion and denotes the dimensional constant. The non-Darcian modal 
with porous medium is considered. In the energy equation, viscous dissipation is not included because of its 
small size. The geometry of the flow problem is shown in Fig. 1. In addition, the assumptions made to idealize 
the above model are examined as follows:

The nanofluid consists of the base fluid blood and nanoparticles called SWCNTs and MWCNTs.

–	 The thermal equilibrium is balanced between the base fluid and the nanoparticles.
–	 The temperature buoyancy force in the momentum equation is a function of density.
–	 The viscous dissipation is ignored in the energy equation.
–	 The resulting magnetic field due to the nanofluid flow is neglected compared to the imposed magnetic field.
–	 The influence of the polarization of the nanofluid is ignored, so no external electric field is applied.

However, one-dimensional and unidirectional flow is studied, and the vertical plate is assumed to be infinite 
in length, so temperature and velocity are only a function of and Darcy’s law for viscous fluids is represented 
as follows

(2)ρnf

[

∂V

∂t
+ (V.∇)V

]

= µnf∇2V + J× B+ r + ρnf gβnf (T − T∞),

(3)
(

ρCp

)

nf

[

∂T

∂t
+ (V.∇)T

]

= knf∇2T + τ.L − Q∗(T − T∞).

(4)r = −
µnf

K
W

(

t̃,Y
)

.

Figure 1.   Geometry of the flow problem.
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and utilization of Ohm’s law that lead to,

The suspension of nanoparticles in a fluid cannot be left uncontrolled; it must be controlled or tightened. 
Fluid movement and temperature are components of and because they are interdependent. Blood (as the base 
fluid) plus nanoparticles SWCNTs and MWCNTs form the nanofluid. Table 1 lists the physical and thermal 
properties of the particles.

In response to Eqs. (4)–(6) and all the assumptions mentioned, Eqs. (2) and (3) for nanofluids can be con-
sidered as follows28;

 Here ⌢σ nf  , K are respectively the electrical conductivity of nanofluid, permeability of porous medium, T
(

Y , t̃
)

 is 
the temperature of the nano-fluid and W(Y , t̃) denotes the velocity of nanofluid.

The expressions of ⌢ρnf  , 
(

⌢
ρ

⌢

β

)

nf

,
(

⌢
ρCp

)

nf
,
κnf
κf
, and µnf  , 

σnf
σf

 are;

Here  ϕ̈ , ⌢ρf  , 
⌢
ρs , Cp κf , κs ,µf  represent the volume fraction of the nanoparticles, the density of the base fluid, the 

density of the solid particles or the specific heat at constant pressure, the thermal conductivity of the base fluid, 
the thermal conductivity of the base fluid and the viscosity of the base fluid.

For the prescribed Pde’s (Eq. 7 and Eq. 8), the corresponding boundary conditions and initial conditions are 
as follows;

qw represents heat passing from surface of wall.
Now incorporate the unit less parameters

(5)divB = 0, curlB = µmJ, CurlE = −∂B

∂t
,

(6)J× B = −
(

σnf B
2
0W , 0, 0

)

.

(7)
⌢
ρnf

∂W(Y , t̃)

∂ t̃
= ⌢

µnf

∂2W(Y , t̃)

∂Y2
−W(Y , t̃)

⌢
σ nf B

2
o −W(Y , t̃)

⌢
µnf

K
+ g

(

⌢
ρ

⌢

β

)

nf

(

T(Y , t̃)− T∞
)

,

(8)
(

⌢
ρCp

)

nf

∂T(Y , t̃)

∂ t̃
=

⌢

knf
∂2T(Y , t̃)

∂Y2
− Q∗(T(Y , t̃)− T∞),Y , t̃ > 0.

(9)
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⌢
ρnf = ϕ̈

⌢
ρs + (1− ϕ̈)

⌢
ρf ,

�

⌢
ρCp

�

nf
= (1− ϕ̈)

�

⌢
ρCp

�

f
+ ϕ̈

�

⌢
ρCp

�

s
,

�

⌢
ρ

⌢

β

�

nf

= (1− ϕ̈)

�

⌢
ρ

⌢

β

�

f

+ ϕ̈

�

⌢
ρ

⌢

β

�

s

,µnf = µf (1− ϕ̈)−2.5,

κnf

κf
=

(κs + 2κf )− 2ϕ̈
�

κf − κs
�

(κs + 2κf )+ ϕ̈
�

κf − κs
� = g(ϕ̈),

σnf

σf
= 1+

�

σs
σs

− 1
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

(10)W(Y , 0) = 0, T(Y , 0) = T∞ Y ≥ 0,

(11)W
(

0, t̃
)

= Uo

(

1− e−γ t̃
)

, knf
∂T

(

Y , t̃
)

∂Y

∣

∣

∣

∣

∣

Y=0

= −qw , t̃ > 0,

(12)W(Y , t̃) = 0,T(Y , t̃) = T∞, as Y → ∞.

Table 1.   Shows the thermo-physical characteristics of human blood and nanoparticles.

Thermo-Physical properties Human blood (base fluid) SWCNTs (nanoparticles) MWCNTs (nanoparticles)

ρ
(

kg/m3
)

1053 2600 1600

Cp

(

J/kgK
)

3594 425 796

k(W/mK) 0.492 6600 3000

σ(S/m) 0.8 10
6 − 10

7
1.9× 10

−4

β × 10
5(1/K) 0.18 27 44
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and by neglecting ∗ from Eqs. (7), (8) and from Eqs. (10–12), we get the unit less form given as;

ϑ1 , ϑ2 , ϑ∗
3  , ϑ∗

4  , ϑ3 , and ϑ4 are values in the equations before which can be expressed as;

where Pr,M,Kp are respectively represents the Prandtl number, the Magnetic factor and the inverse permeability.
To obtain a fractional model, we include the Caputo-Fabrizio time derivative in Eqs. (7) and (8):

The Caputo-Fabrizio time fractional derivative and their Laplace transform are given by;

‘L’ denotes the LT.

Solution of the problem
Temperature field.  Taking LT on (21) and make use of respective transformed ICs and BCs along with 
Eq. (23), we obtained

where

(13)

















Y∗ = Y

N
, t̃∗ =

υf

N2
t̃,W∗ = N

υf
W ,� =

kf

qw
(T − T∞)

N =





kf υ
2
f

g
⌢

β f qw





1
4

,Uo =
υf

N
, γ ∗ = γN2

υf
,

















(14)ϑ1
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∂ t̃
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∂Y2
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4W(Y , t̃)+ ϑ2�(Y , t̃),Y , t̃ ≥ 0

(15)ϑ3
∂�(Y , t̃)

∂ t̃
= ∂2�(Y , t̃)

∂Y2
− ϑ4�(Y , t̃),Y , t̃ ≥ 0,

(16)W(Y , 0) = 0,�(Y , 0) = 0,Y > 0,

(17)W(0, t̃) = Uo

(

1− e−γ t̃
)

, g(h, ϕ̈)
∂�(Y , t̃)

∂Y

∣

∣

∣

∣

Y=0

= −1, t̃ > 0,

(18)W(Y , t̃) = 0,�(Y , t̃) → 0, as Y → ∞.
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(20)ϑ1
CFδα̂t W(Y , t̃) = ∂2W(Y , t̃)

∂Y2
− ϑ∗

3W(Y , t̃)− ϑ∗
4W(Y , t̃)+ ϑ2�(Y , t̃), 0 < α̂ ≤ 1,Y , t̃ ≥ 0,

(21)ϑ3
CFδ

β̂
t �(Y , t̃) = ∂2�(Y , t̃)

∂Y2
− ϑ4�(Y , t̃), 0 < β̂ ≤ 1,Y , t̃ ≥ 0.

(22)CFδχτ Z(Y , τ) =
1

1− τ

τ
∫

0

∂Z(Y , r)

∂r
e

(

− χ(τ−χ)
1−χ

)

dr, 0 < χ < 1,

(23)L
{

CFδχτ Z(Y , τ)
}

= rZ(Y , r)− Z(Y , 0)

(1− χ)r + χ
.

(24)
∂2�(Y , r)

∂Y2
=

[

ηq+ χ

r + ψ

]

�(Y , r)
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r represents the Laplace frequency and β is the fractional parameter.

For the solution of Eq. (24) and utilizing Eq. (25), we get

where

also

Now we have to find � which is solved by using Laplace inverse over � but the given function is not a simple 
function, it is a compound function and can be defined as;

If F(r) be a function then the Laplace inverse F(r) of is F(t̃) . Then the LIT of F(d(r)) is represented by;

 

Taking LIT to Eq. (28) and utilizing Faltung product present in Eq. (23), here F(r) =
(

1√
r

)

e−Y
√
r and 

d(r) = dβ(r) , we acquired the Laplace inverse of �(Y , r; η,χ ,ψ) , we have

The unit step Heaviside function H(t) and the Bessel modified function of order one and first types are 
expressed in the preceding equation. The more reliable form of Eq. (30) is given below;

Applying LIT upon Eq. (26) we acquired

Nusslet number.  The Nusselt number Nu, is taken from23,

η = ϑ3

(1− β̂)
+ ϑ4,χ = ϑ4β̂

1− β̂
,ψ = β̂

1− v
, β̂ ∈ (0, 1),

(25)
∂�̄(Y , r)

∂Y

∣

∣

∣

∣

Y=0

= −1

g(ϕ̈)r
, �̄(Y , r) → 0, Y → ∞.

(26)�(Y , r) = 1

g(ϕ̈)

1

r
�(Y , r; η,χ ,ψ),
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r

1
√

ηr+χ
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e
−Y

√

ηr+χ
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r

1
√

d
β̂
(r)

e
−Y

√

d
β̂
(r)
,

(28)d
β̂
(r) = ηr + χ

r + ψ
=

[

ϑ3 + (1− β̂)ϑ4

]

+ ϑ4β̂

(1− β̂)r + ϑ4
,

L−1{F(d(q))} =
∞
∫

0

F(m)s(m, t̃)dm, and
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∞
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×

∞
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√
n

J1

�

2
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(31)
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√
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√
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π

∞
∫
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e

(
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∫
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(

2
√

(ηψ − χ)mn
)

dndm,

(32)�(Y , t̃) = 1

g(h, ϕ̈)

1

r
�(Y , t̃; η,χ ,ψ).

(33)Nu(r) = Nqw
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�(Y , t̃)
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The expression �(0, t̃; η,χ ,ψ) has been acquired by using

To find the thermal boundary layer thickness in term of fractional derivative. We will integrate thermal layer 
Eq. (24) from Y → 0 to Y → ∞

By utilizing the ICs and BCs in Eqs. (17) and (18), we acquired

After solving Eq. (37) and using respective ICs and BCs, we acquired

For β̂ → 1 (integer order derivative), Eq. (38) becomes.

Dimensional less velocity and skin Friction coefficient.  Taking LT of Caputo-Fabrizio derivative of 
Eq. (23) upon Eq. (20) and their respective ICs and BCs and incorporate Eq. (27), we acquired

Where

After solving Eq. (40) and using ICs and BCs, we acquired

and

where l11 = (q1+ψ)(q1+j)
q1−q2

, l12 = (q2+ψ)(q2+j)
q1−q2

.
And
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(
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


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e
−Y

√

d
β̂
(r)

s = ϑ1

1− α̂
,j= α̂

1− α̂
,
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

γ

r(r + γ )
ζ (Y , r; s, j,ϑ∗

3 ,ϑ
∗
4 )+ a2D(r))�(Y , r)

−a2�(0, r)D(r)ζ (Y , r; s, j,ϑ∗
3 ,ϑ

∗
4 )







,

ζ (Y , r; s, j,ϑ∗
3 ,ϑ

∗
4 ) = e−Y

√
Uα̂ (r), Where Uα̂(r) =

sr

r + j
+ ϑ∗

3 + ϑ∗
3 ,

(42)

D(r) =















(r + ψ)(r + j)

(s + ϑ∗
3
+ ϑ∗

4
− η)r2 − r(ηj + χ − sψ − ϑ∗

3
ψ + ϑ∗

4
− jψϑ∗

3
− ϑ∗

4
j)− (jχ − ϑ∗

3
jψ − ϑ∗

4
jψ)

= 1

s − η

�

1+ l11

r − q1
− l12

r − q2

�

, s �= η.

















9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20778  | https://doi.org/10.1038/s41598-022-25063-y

www.nature.com/scientificreports/

are the polynomial roots

Applying Laplace inverse transform to Eq.  (41) using Eq.  (29) i.e. Eq. of compound function. with 
E(r) = e−Y

√
r and Uα̂(r) = sr

r+j + ϑ∗
3 + ϑ∗

3 , we acquired

where

The LIT of D(r) , present in Eq. (42) is,

Applying the Laplace inverse transformation on Eq. (41) and Faltung theorem, we acquired

Skin friction coefficient is a basic physical quantity of relevance that is defined as

where

The LIT of skin friction coefficient is;

With

Numerical results and discussions
In the following section, a detailed graphical description of the results obtained in the previous section is given. 
Figures 2, 3, 4 and 5 show the behavior of various parameters with respect to the temperature curve. Figure 2 
shows the physical observation of the fractional parameter on the temperature field. It shows that the tempera-
ture of nanofluids increases with the increase of the estimated fractional parameter. Physically, this behavior 
is due to the kernel of the fractional operator. The kernel studied the memory of the function and is capable of 
impectvely capturing the memory effect through the process. Thus, temperature of nanofluid elevates. From 
Fig. 3 it can be seen that the temperature of the nanofluid increases with increasing value of the volume fraction 
physically, this result is due to the high thermal conductivity of CNTs, which causes the thermal conductivity of 
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the base fluid to increase when CNTs are added to it. Consequently, the temperature profile grows. This result 
highlights the importance of nanoparticles in the heating and cooling process. Figure 4 shows the temperature 
of the outline when the heat injector or the heat sink is is associated to the system. The temperature field falls 
with the intensifying estimations of. In associated graph, represents heat consumption, represents heat injec-
tion and represents that no heat is consumed or supplied. Physically, the addition of heat means an increase in 
the temperature of the nanofluid, while the consumption of heat means a decrease in the temperature of the 
nanofluid. In this process, heat is consumed because the temperature is lowered. Figure 5 shows the transient 
effect on the temperature curve. The nanofluid temperature curve increases as the time period increases. The 
temperature of the nanofluid is high near the plate and finally reaches zero asymptotically away from the plate. 
Figures 6, 7, 8, 9, 10, 11 and 12 show the characteristics of various relevant parameters on the velocity contour. 
Figure 6 describes the effect of the fractional parameter on velocity. It is worth noted that the nanofluid’s velocity 

Figure 2.   Temperature profile for different values of β.

Figure 3.   Temperature profile for different values of ϕ̈.

Figure 4.   Temperature profile for different values of Q.



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:20778  | https://doi.org/10.1038/s41598-022-25063-y

www.nature.com/scientificreports/

boost with accelerating the fractional parameter. Physically, it is due to the higher value of momentum boundary 
layer, the velocity is boosted.

Figure 7 shows the effects of the fractional parameter on the velocity contour. The higher the fractional 
parameter is estimated, the higher the velocity of the nanofluids. Figure 8 shows the behavior of the volume 
fractional parameter on the velocity contour. From Fig. 8, it can be seen that the velocity and momentum of the 
boundary layer of the nanofluids increases. Physically, the resistance between the particles of the nanofluid is low 
due to the higher temperature, so the velocity increases. This is also due to the fact that the suspension of CNTs 
in the base fluid reduces the viscous forces and leads to an increase in the momentum boundary layer. Figure 9 
shows the characteristics of the magnetic factor on the velocity sketch. The velocity of the nanofluid decreases at 
a higher value of the magnetic factor. This is because the magnetic field acts on electrically isolated nanofluids, 
which behave as a source for generating Lorentz drag forces. Because of these drag forces, the velocity of the 
nanofluids decreases. As the fluids move away from the plate, the Lorentz force weakens and the fluid comes to 

Figure 5.   Temperature profile for different values of t .

Figure 6.   Velocity profile for different values of β.

Figure 7.   Velocity profile for different values of α.
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rest. Figure 10 shows the influence of the inverse permeability parameter on the velocity of the nanofluid. The 
momentum boundary layer thickness and velocity decreases with a larger estimate of permeability parameters . 
Physically, due to the high porosity of the medium, the resistance in the nanofluid particles increases, causing the 
velocity to decrease. In Fig. 11, the influence of on the velocity of the nanofluid is shown. It can be seen that the 
velocity increases as the estimate of increases. The velocity is initially higher, later it asymptotically approaches 
zero. Physically, this happens because there is inverse relation between and viscous forces. As we elevate the 
estimation of, the viscous forces reduce. As a result, velocity of nanofluid rises. Figure 12 shows that the velocity 
of nanofluids increases with increasing time value. The momentum boundary layer is raised for a higher estimate 
of the transient effects. Figure 13 shows the effect of SWCNTs and MWCNTs on the temperature distribution. 
The temperature of SWCNTs is higher than that of MWCNTs due to the high thermal conductivity of SWCNTs. 
Figure 14 shows the comparison between the velocity of SWCNTs and MWCNTs. It shows that the velocity of 

Figure 8.   Velocity profile for different values of ϕ̈.

Figure 9.   Velocity profile for different values of M.

Figure 10.   Velocity profile for different values of K.
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MWCNTs is larger than that of SWCNTs. Figure 15 is the contour plot for the thickness of the thermal layer. 
The thickness of the thermal boundary layer decreases as we increase the estimates of the fractional parameters 
Table 2 shows the properties of various relevant parameters on the Nusselt number of SWCNTs and MWCNTs. It 
can be seen that the heat transport rate increases with the increase of heat source/sink and the time while decrease 
occurs against fractional parameter and volume fraction From Table 3, it can be seen that the skin fraction (drag 
forces) increases with the increase in the fractional parameter while the function against the other fractional 
parameter for both SWCNTs and MWCNTs. Similarly, skin friction is dominant with the increasing value of the 
magnetic factor, permeability parameter and heat source or sink. Moreover, the drag forces are de-escalates with 
the escalation of volume fraction time and furthermore, the skin fraction of MWCNTs is lower than the SWCNTs.

Figure 11.   Velocity profile for different values of γ.

Figure 12.   Velocity profile for different values of t .

Figure 13.   Analysis of SWCNTs and MWCNTs on �(Y , t).
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Conclusion
The main topic of this research is to investigate the MHD and permeability effects on CNT-based nanofluids. 
SWCNTs and MWSNTs are suspended in blood (base fluid). Laplace transform is a very powerful mathematical 
tool used in various fields of physics and electrical power engineering. The Laplace transform is very important 
in circuit analysis, system modeling, analog signal processing, digital signal processing, process control, and 
radioactive decay, etc. Laplace transform technique is used to solve the non-dimensional fractional model. 
The exact solution for the velocity, temperature and thermal layer thickness is obtained by the above method. 

Figure 15.   Analysis of β on thermal boundary layer thickness.

Table 2.   Demonstrated the influence of various parameters on Nusslet number of both SWCNTs and 
MWCNTs.

β Q Pr ϕ̈ t Nu(SWCNTs) Nu(MWCNTs)

0.1 3.0 21 0.1 4.0 − 545.658554 - 546.832866

0.5 − 706.781229 − 708.382133

1.0 − 2585.680572 − 2591.940846

− 10 − 384.950000 − 546.832865

0 − 383.294381 − 384.949666

10 − 112.772886 − 114.019810

0.1 − 545.658554 − 546.832866

0.2 − 615.597709 − 616.643750

0.3 − 759.999526 − 762.116157

3.0 − 689.453825 − 694.570271

4.0 − 545.658554 − 546.832866

5.0 − 349.131762 − 349.883078

Figure 14.   Analysis of SWCNTs and MWCNTs on W(Y , t).
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Zakian’s algorithm is used for the simulations and inverse Laplace transform. The physical parameters such as 
skin fraction (drag force) and Nusselt number (heat transfer rate) are also studied. The conclusions of this study 
are presented below:

•	 The temperature of the nanofluid is higher due to the increasing estimate of the volume fraction parameter 
ϕ̈ , fractional parameter β , and time t .

•	 The greater the value of the heat source or heat sink, the lower the temperature curve.
•	 The velocity of nanofluids in escalating function as we estimate the volume escalated fractional parameter 

ϕ̈ , fractional parameters α and β , time t  , and γ .
•	 The velocity of the nanofluid is deescalated to increase the estimate of the magnetic factor M and permeability 

parameter K due to high drag forces.
•	 Nanofluid temperature is higher for SWCNTs, while the reverse effects on velocity are seen.
•	 The thermal boundary layer increases against the fractional parameter β .
•	 The heat transport rate is lower for both SWCNTs and MWCNTs as a function of fraction parameters β and 

ϕ̈ higher as a function of heat source/sink and time.
•	 Reinforcement occurs in the skin fraction with the growing estimate of M,K ,α and γ while boosting the 

value of β , ϕ̈,Q and t, reduces the skin fraction.

In future, we will study, what will be the effects of various fractional operators on free convective trickling 
over a porous medium of nanofluids with MHD and heat source/sink.
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