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The effects of passive and active 
administration of heroin, 
and associated conditioned stimuli, 
on consolidation of object memory
Travis Francis , Michael Wolter  & Francesco Leri *

Mode of administration (i.e., active vs passive) could influence the modulatory action that drugs 
of abuse exert on memory consolidation. Similarly, drug conditioned stimuli modulate memory 
consolidation and, therefore, acquisition and extinction of this conditioned response could also be 
influenced by mode of drug administration. Exploring these questions in male Sprague–Dawley 
rats, Study 1 assessed memory modulation by post-training 0, 0.3 and 1 mg/kg heroin injected 
subcutaneously in operant chambers (i.e., drug conditioned context). Study 2 asked a similar question 
but in rats trained to self-administer 0.05 mg/kg/infusion heroin intravenously, as well as in rats that 
received identical amounts of intravenous heroin but passively, using a yoked design. The period of 
heroin exposure was followed by repeated drug-free confinement in the conditioned context, and 
by sessions during which responses on the active lever had no scheduled consequences. Study 2 
also included a cue-induced reinstatement session during which lever responses reactivated a light 
cue previously paired with intravenous heroin infusions. The post-training effects of injected/self-
administered/yoked heroin, extinction and reinstatement sessions on memory consolidation were 
tested using the object location memory task. It was found that post-sample heroin enhanced memory 
in injected and yoked, but not self-administering, rats. However, post-sample exposure to the heroin 
cues (i.e., context or/and light cue) modulated memory equally in all groups. Taken together, these 
data support the conclusion that mode of administration impacts the cognitive consequences of 
exposure to drugs but not of environmental stimuli linked to their reinforcing effects.

Drugs of abuse influence behaviour in part through their ability to enhance memory consolidation; a process by 
which recently acquired memories are stabilized over time1,2. In fact, when passively administered immediately 
after training (i.e., post-training method3) heroin, cocaine, amphetamine, alcohol, nicotine, and caffeine enhance 
acquisition of a variety of tasks, in a variety of species4–10. These observations have implications for addiction 
because drugs that enhance the consolidation of actions performed prior to, or during, drug intoxication have 
the potential to increase the probability that these behaviours will be repeated in the future11.

Interestingly, environmental stimuli associated with the effects of drugs (i.e., conditioned stimuli; CSs) also 
acquire the ability to enhance memory consolidation9,10. Hence, using the spontaneous object recognition mem-
ory task, we found that drug-free rats exposed immediately post-training to drug-paired CSs displayed enhanced 
object memory when tested 72 h later9,10. This is remarkable because it is well established that drug paired CSs 
play multiple roles in addictive behaviors such as maintaining drug intake12,13, modulating tolerance14, and pre-
cipitating relapse15,16. As recovery programs often focus on decreasing the intensity of responses to drug CSs by 
cue-exposure17, it is valuable to establish whether the memory effects of CSs can also be affected by extinction 
procedures.

Furthermore, when considering the relevance of the memory effects of drugs and their CSs to addictive 
behaviours, it becomes apparent that drugs are usually self-administered, rather than passively received, and 
there is significant evidence in animals that whether a subject self-administers or passively receives a drug dif-
ferentially impact brain systems involved in memory consolidation18–23. For example, dopamine (DA) activity in 
the nucleus accumbens (NAc) plays a critical role in modulating memory consolidation24,25 and DA levels in this 
region are differentially affected by mode of administration19. Moreover, DA is involved in cue learning in both 
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humans and animals26,27 and it is currently unknown whether mode of drug administration would also impact 
the development of conditioned memory modulation by drug CSs. In other words, in a typical self-administration 
situation, subjects would be exposed passively and actively to various contextual and discrete drug cues, and it 
is not clear whether different CSs would be equally capable of becoming memory modulators.

The first objective of the current studies was to explore whether mode of administration could impact the 
ability of heroin to modulate memory consolidation. Therefore, in Study 1, rats received passive subcutaneous 
(SC) injections of different doses of heroin in a specific context. The same context (i.e., operant chambers) was 
used in Study 2 to answer the question of whether self-administered intravenous (IV) heroin would have a similar 
effect on memory. However, because of many pharmacokinetic differences between SC and IV heroin, Study 2 
also included a yoked group that received identical amounts of IV heroin, but passively19,28,29.

The second objective of both studies was to examine different aspects of conditioned memory modula-
tion. Therefore, Study 1 explored the effects of repeated, drug-free exposure to the heroin-paired context on 
its ability to modulate memory consolidation. Similarly, Study 2 explored extinction of conditioned memory 
modulation by a heroin-paired context accompanied by simultaneous extinction of lever pressing. Study 2 also 
assessed possible memory modulation by a non-extinguished discrete light CS that would be expected to rein-
state lever-pressing15,30.

Because memory tasks based on the innate tendency of rats to explore novel stimuli are sensitive to memory 
enhancement by drugs of abuse and their CSs10, this study employed an object location memory task31. Therefore, 
using the post-training method to selectively modulate consolidation3, animals were first exposed to two identical 
objects in two locations (i.e., sample phase), and then are immediately exposed to heroin (SC, self-administered 
IV or yoked IV) and/or to the heroin paired CSs. After a 72 h retention period, rats were tested for their ability 
to discriminate between familiar and novel locations of sample objects. Because previous studies in our labora-
tory indicated that at, this retention interval, drug-naïve rats cannot discriminate between familiar and novel 
objects9,10, the observation of significant discrimination at choice is interpreted as enhanced consolidation of 
object memory.

Materials and methods
Subjects.  Eighty-eight male Sprague–Dawley rats (Charles River, QC) weighing between 250 and 300 g at the 
beginning of the experiments were individually housed in standard rat cages (polycarbonate; 50.5 × 48.5 × 20 cm) 
with standard environmental enrichment. Upon arrival, rats were given 1 week of acclimatization to the facility 
and were maintained on a 12-h reverse light/dark schedule (lights off 7:00 A.M., on 7:00 P.M.). All behavioral 
testing was conducted during the dark period. Rats had access to 25 g per day of standard rat chow, and water 
ad libitum in their home cages. All procedures followed the guidelines of the Canadian Council on Animal Care 
and ARRIVE and were approved by the University of Guelph Animal Care Committee.

Surgery.  Rats in Study 2 were surgically implanted with IV silastic catheters (Fisher Scientific, Whitby, ON) 
in the right jugular vein under general anesthesia induced by isoflurane (4% induction, 2% maintenance). Melox-
icam (5 mg/kg SC, Ontario Veterinary College, Guelph, ON) was administered approximately 30 min before and 
24 h after surgery. Rats were given atropine sulfate (10 mg/kg SC, Ontario Veterinary College, Guelph, ON) 
prior to surgery and received a small injection of Lidocaine (2.0%–0.05 ml) at the sites of incision. Depocillin 
(300,000 IU, 0.1 ml/rat IM, Ontario Veterinary College, Guelph, ON) was administered immediately following 
surgery. The catheter was secured to the vein with silk sutures and was passed SC to the back of the rat, approxi-
mately 3 cm posterior from the front shoulder blades where it exited into a connector (a modified 22-gauge 
cannula; Plastics One, Roanoke, VA) secured to surgical mesh with dental cement. A plastic blocker was placed 
over the opening of the cannula when not in use. Catheters were flushed daily with saline and every second day 
with 0.1 ml of a saline–heparin solution (15 IU/ml Heparin, Ontario Veterinary College, Guelph, ON). Rats were 
given at least 7 days to recover after surgery before behavioural testing began.

Apparatus.  Operant chambers.  Twenty Plexiglas operant chambers (model ENV-008CT, Med Associates, 
Georgia, VT) were each enclosed in larger sound-attenuating plywood cabinets (model ENV-018 M, Med As-
sociates). Each operant chamber contained a house light (28 V), and two levers, one retractable (active) and 
one stationary (inactive), located 10 cm apart and 8 cm above the floor. The active lever entered and remained 
extended during the entire duration of all sessions, and all responses were recorded. In addition, presses on 
this lever activated a white light (28 V) located 3 cm above the lever that served as a discrete CS that was paired 
with heroin delivery in Study 2. The inactive lever served to control for non-specific lever responding, presses 
on this lever had no consequence but were recorded. Presses on the active lever also activated infusion pumps 
(Razel Scientific Instruments, Stanford, CT) positioned outside the sound-attenuating cabinets that were used to 
deliver IV heroin infusions in Study 2.

Object location memory.  The object location memory task assesses the ability of rats to discriminate between 
familiar and novel locations of objects placed in an open field31. The apparatus consisted of an open box 
(70 cm × 70 cm × 60 cm) made of white corrugated plastic. The floor was black and two walls opposite from 
each other were covered with two distinct patterns. Objects used varied in height, size, and texture. An overhead 
camera was used to record object exploration while in the apparatus.

Procedures.  Study 1.  Conditioning.  In this study, conditioning involved pairing the effects of injected 
heroin (unconditioned stimulus; US) with an operant chamber (context CS), in the presence of levers and a 
discrete light stimulus also employed in Study 2 (see below).
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Rats were randomly assigned to one of three doses of heroin (0, 0.3, or 1 mg/kg; n = 16 per group). For each 
of the 6 conditioning sessions, rats were transported from their home colony to the testing room, injected, and 
immediately confined in the operant chambers for 1 h. The number of US-CS pairings was established based on 
our previous place conditioning studies with heroin10,32. Each session began with activation of the house light, 
entry of the retractable lever, and activation of the discrete light stimulus above the lever for 30 s. After this 
interval, lever presses activated the discrete light stimulus for 5 s, but no infusions were delivered. Responses on 
the stationary lever were also recorded and had no consequences.

Extinction.  Each session lasted 1 h, using the above conditioning parameters, but all rats received SC injections 
of vehicle prior to confinement in the chambers. The total number of extinction sessions was established based 
on our previous place conditioning studies with heroin10,32.

Object location memory tests.  Each test included a sample and a choice phase. During the sample phase, two 
identical objects were placed approximately 5 cm from the walls and 15 cm from each other in adjacent corners 
of the apparatus, and rats were allowed to explore both objects for a total of 180 s, until 25 s of total object explo-
ration was reached, or whichever came first. Object exploration was defined as the nose pointed directly at the 
object within 2 cm and/or touching the object with the nose. Following a 72-h retention period, rats were tested 
in the choice phase, during which the apparatus contained the same two sample objects, but one object was 
moved to a new location. The choice phase lasted 2 min, and the time spent exploring each object was recorded. 
Time spent investigating objects were scored by an experimenter blind to experimental group allocations.

Figure 1A illustrates how the object location memory task was employed to explore the effects of conditioning 
and extinction sessions on the consolidation of object location memory. Study 1 investigated whether condi-
tioning and extinction sessions experienced immediately after the sample phase would improve discrimination 
between familiar and novel object locations assessed 72 h later during the choice phase.

For habituation, rats were placed in the object location apparatus for 10 min and in 4 subsequent days, 
exposed to the task as described. The 6th conditioning session was selected to assess the effect of heroin as well as 
the context CS on consolidation because it was reasoned that animals would have learned the CS-US association 

Figure 1.   (A) experimental design employed in Study 1 showing the relationship between conditioning and 
extinction sessions to the tests of object location memory. (B) experimental design employed in Study 2 showing 
the relationship between conditioning, extinction, and reinstatement sessions to the tests of object location 
memory.
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by then. Therefore, for Test 1, immediately following the sample phase, rats were injected with 0, 0.3 or 1 mg/
kg heroin and placed in the chambers for 1 h. At the conclusion of the session, they were transferred to their 
home colony where they remained undisturbed for 72 h. After this retention period, they were transported back 
to the testing room, placed in the open field, and assessed for object location memory during the choice phase.

The same animals were retested to assess the effects of exposure to the context CS in the absence of heroin, 
before and after extinction. Thus, Tests 2 and 3 were conducted using the same procedures as Test 1, but in con-
junction with the 1st and 6th extinction session (Fig. 1A).

It is important to note that during all sample and choice phases of all tests, rats were drug-free. As well, on 
each test, rats were exposed to new, never-before-seen objects, and the locations of the moved object were coun-
terbalanced for each rat and for each test.

Study 2.  Self‑administration/yoked conditioning.  Following recovery from surgery, rats were randomly 
assigned to self-administration (SA; n = 20) or yoked (Y; n = 20) groups. The SA group was trained to actively 
self-administer 0.05 mg/kg/inf heroin on a fixed ratio 1 (FR1; one lever press per infusion). Rats in the Y group 
were individually linked to rats in the SA group by connecting the infusion pumps and the discrete light CS. For 
each of the 12, 3 h conditioning sessions, SA and Y rats were transported from their home colony to the testing 
room, placed in the operant chambers and attached to the infusion lines. Each session began with activation 
of the house light, entry of the retractable lever, and illumination of the discrete light CS above the active lever 
for 30 s. If a SA rat responded on the active lever during this first period, it received a 150 µl infusion of heroin. 
Responses made by Y rats on both active and inactive levers were without consequences. Similarly, subsequent 
presses on the active lever by SA rats led to heroin infusions and simultaneous illumination of the discrete light 
CS for 5 s, but responses by Y rats were without consequences. Importantly, each rat in the Y group received a 
heroin infusion and activation of the light CS each time its paired SA rat received one. This procedure ensured 
that rats in the two groups received the same pattern and number of pairings between the context CS and heroin 
infusions, and between heroin infusions and the discrete light CS above the active lever.

Extinction.  For these 1 h long sessions, the same parameters used during self-administration/yoked condition-
ing were employed, but responses on the active lever by SA rats did not lead to heroin infusions nor did they 
result in activation of the discrete light CS for both SA and Y rats. In other words, the chamber was no longer 
paired with heroin infusions (as in Study 1), and operant responding was no longer followed by heroin infu-
sions or by the activation of the discrete light CS. Extinction was conducted over 6 sessions because prior work 
indicated that this number of sessions is generally sufficient to produce a significant decrease in lever pressing33.

Reinstatement by the light CS.  For this final 1 h session, the same parameters used during extinction were 
employed, but active lever presses by the SA rats now resulted in activation of the discrete light CS for both them 
and their yoked counterpart. This procedure was used because previous work indicated that introduction of a 
response-contingent heroin-paired CS after extinction of lever pressing reliably reinstates operant responding33.

Object location memory tests.  Using the same logic and approach of Study 1, the object location memory task 
was employed to explore the effects of self-administration/yoked conditioning, extinction, and reinstatement 
sessions, on the consolidation of object location memory (Fig. 1B).

Drugs.  Heroin (Diacetylmorphine hydrochloride, Toronto Research Chemicals, Toronto, ON) was dissolved 
in 0.9% physiological saline and injected SC at a volume of 1.0 ml/kg in Study 1 or self-administered/yoked IV 
at a dose of 0.05 mg/kg/infusion and a volume of 150 µl/infusion in Study 2. The range of SC heroin doses was 
selected based on observations that both 0.3 and 1 mg/kg reliably produce a conditioned place preference32, 
and that post-training administration of these doses enhance acquisition in a similar object memory task10. The 
intravenous dose was selected based on previous self-administration studies in our laboratory33–35.

Data analysis.  Analysis of object location memory involved the calculation of a discrimination ratio (DR) 
in the first minute of the choice phase using the formula: [(time exploring object in novel location – time explor-
ing object in familiar location)/total exploration time]36. A score of 0 indicated equal exploration of both objects, 
while a positive score indicated more time spent investigating the object in the novel location. A sample DR was 
also calculated using an if/then scenario: (if “the right object is in a novel location” during the choice phase, then 
[(right object exploration – left object exploration)/total exploration of both objects]. A minimum exploration 
time was not used in these calculations. Sample vs choice DRs were compared using paired t-test within group, 
and the alpha level was adjusted using the Bonferroni correction. Total object exploration for each sample and 
choice was calculated to rule out possible non-specific drug effects on object exploration. Because this variable 
was never significantly different between groups, data are not shown, and statistical analyses not reported.

Three-factor mixed repeated measures ANOVA were used to analyze lever responses. In cases where the 
assumption of sphericity was violated, the Greenhouse–Geisser (GG) corrected P value was used. In case of 
significant interactions, individual mean differences were identified by multiple simple comparisons using the 
Bonferroni correction. Analyses were performed using Statistical Package for the Social Sciences (V28 for Mac, 
SPSS Inc., IBM). The threshold for significant difference was < 0.05. Lever pressing in Study 1 was recorded, but 
because it was not associated with delivery of heroin, data are not shown.
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Results
Study 1.  Figure 2A represents mean (SEM) sample and choice DRs on Test 1, performed in conjunction with 
the last conditioning session. T-tests between sample and choice DRs were significant for 0.3, [t(15) = − 3.11, 
p = 0.007] and 1 mg/kg [t(15) =  − 4.42, p < 0.001] heroin groups only.

Figure 2 also represents mean (SEM) sample and choice DRs for Test 2 (Panel B, performed in conjunction 
with the first extinction session) and Test 3 (Panel C, performed in conjunction with the last extinction session). 
T-tests on Test 2 sample and choice DRs was significant [t(15) = − 6.20, p < 0.001] only in the group conditioned 
with 1 mg/kg heroin. On Test 3, sample and choice DRs were not different in any group [p = 0.49; p = 0.209; 
p = 0.12].

Study 2.  At the conclusion of self-administration/yoked conditioning, catheter patency was confirmed by 
connecting a piece of tubing to a 1 ml syringe, attaching it to the cannula, and slowly pulling back on the syringe. 
Catheters were considered patent if blood could be drawn. This verification excluded 4 rats from data analysis 
leading to SA group n = 18 and Y group n = 18.

Figure 3 represents mean (SEM) responses on the active and inactive levers across all 12 self-administration 
sessions for SA (Panel A) and Y (Panel B) groups, as well as the number of infusions. The ANOVA revealed 
significant Lever by Group [F(1, 34) = 33.5, p < 0.001] and Session by Lever [F(3.93, 133.6 GG corrected) = 2.72, 
p = 0.033] interaction effects as well as a significant main effect of Lever [F(1, 34) = 39.1, p < 0.001]. Multiple 
comparisons indicated that responses on the active lever were significantly greater than on the inactive lever as 
well as in comparison to active lever responses of the Y group across all sessions, and that there was a significant 
increase in active lever responses from Session 1 to Session 12 in the SA group only. The t-test comparing number 
of infusions delivered during session 1 and session 12 was significant, [t(17) = − 3.73, p = 0.002].

Figure 3C represents mean (SEM) sample and choice DRs for Test 1, performed in conjunction with the 
last conditioning session. The t-test comparing sample and choice DRs was significant only in the Y group 
[t(17) = − 4.67, p < 0.001]; SA group, p = 0.42].

Figure 4 represents mean (SEM) responses on the previously active and inactive levers across all 6 extinction 
sessions for SA (Panel A) and Y (Panel B) groups. The ANOVA on lever presses revealed significant Session by 
Lever by Group [F(5, 170) = 16.8, p < 0.001], Session by Group [F(5, 170) = 16.0, p < 0.001], Lever by Group [F(1, 
34) = 51.1, p < 0.001], and Session by Lever [F(1.60, 54.4 GG corrected) = 17.6, p < 0.001] interactions, as well 
as significant main effects of Session [F(1.56, 53 GG corrected) = 21.8, p < 0.001] and of Lever [F(1, 34) = 60.8, 
p < 0.001]. Multiple comparisons revealed that responding on the active lever by the SA group significantly 
decreased over sessions, but no such extinction curve was observed in the Y group. As well, the SA group dis-
played significantly more responding on the active lever than the Y group across the entire extinction phase.

Figure 4 also represents mean (SEM) sample and choice DRs for Test 2 (Panel C, performed in conjunction 
with the first extinction session) and Test 3 (Panel D, performed in conjunction with the last extinction session). 
On Test 2, t-tests comparing sample and choice DRs were significant in both SA [t(17) = − 4.05, p < 0.001] and 
Y [t(17) = − 4.59, p < 0.001] groups. On Test 3, no significant differences between sample vs choice DRs were 
found [p = 0.24; p = 0.85].

Figure 5 represents mean (SEM) responses of SA (Panel A) and Y (Panel B) groups on the active and inac-
tive levers during the last extinction session (Ext 6) and the reinstatement session (R). The ANOVA revealed 
significant Session by Lever by Group [F(1, 34) = 9.73, p = 0.004], Session by Group [F(1, 34) = 4.70, p = 0.037], 

Figure 2.   Effects of injected heroin and exposure to context CS on object location memory. (A) mean (SEM) 
DRs from sample and choice phases of 0, 0.3, and 1 mg/kg groups on the test of memory modulation by the last 
conditioning session. (B) mean (SEM) DRs from sample and choice phases on the test of memory modulation 
by the first extinction session. (C) mean (SEM) DRs from sample and choice phases on the test of memory 
modulation by the last extinction session. The * indicates a significant difference between phases.
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Lever by Group [F(1, 34) = 12.0, p = 0.001] and Session by Lever [F(1, 34) = 11.8, p = 0.002] interactions, as well as 
main effects of Session [F(1, 34) = 25.8, p < 0.001] and of Lever [F(1, 34) = 15.4, p < 0.001]. Multiple comparisons 
in the SA group indicated a significant increase in responding selectively on the active lever from Ext 6 to R, and 
significantly more responding on the active vs inactive lever during reinstatement. In contrast, the increase in 
responding observed in the Y group during reinstatement was not lever selective, and overall, there was signifi-
cantly less responding in the Y group in comparison to the SA group.

Figure 5C represents mean (SEM) sample and choice DRs for Test 4 performed in conjunction with the 
reinstatement session. The t-tests comparing sample and choice DRs were significant in both SA [t(17) = − 2.25, 
p = 0.038] and Y [t(17) = − 6.70, p < 0.001] groups.

Discussion
The first objective of the current studies was to explore whether mode of administration would impact the ability 
of heroin to modulate memory consolidation. The second objective was to examine whether mode of administra-
tion could also impact the ability of different drug associated CSs to modulate memory consolidation at various 
stages of exposure in the absence of heroin. To explore these questions, Study 1 investigated memory modula-
tion by 0, 0.3 and 1 mg/kg heroin injected SC in operant chambers and Study 2 asked a similar question but in 
rats trained to self-administer 0.05 mg/kg/infusion heroin IV, as well as in rats that received identical amounts 
of IV heroin but passively, using a yoked design. The post-training effects of injected/self-administered/yoked 
heroin, extinction and reinstatement sessions on memory consolidation were assessed using the object location 
memory task. It was found that post-sample heroin enhanced object location memory in injected and yoked, 
but not self-administering, rats. However, post-sample exposure to the heroin cues (i.e., context or/and light 
cue) modulated memory equally in all groups. Taken together, these data support the conclusion that mode of 
administration impacts the cognitive consequences of exposure to drugs but not of environmental stimuli linked 
to their reinforcing effects.

The current study generated an important and new finding about the effect of heroin on memory consolida-
tion. More specifically, in rats that were able to self-administer heroin (on session 12) following the sample phase 
of an object location memory task, there was no evidence of memory facilitation when tested 72 h later, drug 
free, in the choice phase (Fig. 3C). This is notable because animals that received an identical amount of heroin, 
in the same pattern of intravenous infusions, did display enhanced memory 72 h later (Fig. 3C).

Perhaps, this key difference between self-administered and yoked heroin was observed because drugs admin-
istered passively can produce aversive effects37. This is a possibility as aversive stimuli, including precipitated 
morphine withdrawal, can enhance consolidation of object recognition memory38,39. However, Study 1 demon-
strated that 0.3 and 1 mg/kg heroin passively administered in the same operant chambers enhanced memory at 
72 h (Fig. 2A), and similar doses/protocols employed in other conditioning studies revealed clear preferences, 
not avoidances, for environments associated with the effects of passively injected heroin32,40. Furthermore, the 
overall amounts of heroin administered post-sample in Study 1 and Study 2 were similar: 1 mg/kg SC and an 
average of 1.48 mg/kg IV. Because there are no obvious reasons to suspect that route of administration could 
reverse the emotional valence of a given drug, and because there is substantial evidence that post-training 
administration of opiates can enhance memory consolidation in other tasks and species8,10,41,42, it seems more 

Figure 3.   Effects of self-administered and yoked heroin on lever responses and object location memory. (A) 
mean (SEM) active and inactive lever presses for rats in the self-administration group (SA; n = 18). (B) mean 
(SEM) active and inactive lever presses for rats in the yoked group (Y; n = 18). The * indicates a significant 
difference between levers. The # indicates a significant difference in responding between SA and Y groups on 
the active lever. (C) mean (SEM) DRs from sample and choice phases of SA and Y groups on the test of memory 
modulation by the last conditioning session. The * indicates a significant difference between phases.
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likely that the memory effects observed in the SA and Y groups were caused by factors other than potential 
aversive effects of heroin.

At this time, exactly what these factors may be remains elusive, but it is possible to postulate a role of pre-
diction error and associated DA activation. In fact, a prediction error is generated when there is a discrepancy 
between what occurs and what is expected43–45 and the neurobiological correlate of this cognitive response is 
activation of mesolimbic DA27,46–48. Accordingly, it is possible that once drug-taking behaviour becomes well 
established and the outcome of lever pressing is anticipated by the subject, the experience of engaging in those 
behaviours and the pharmacological effects of the drug become expected, and the DA signal is reduced/lost. Such 
interpretation is consistent with measures of DA concentrations in the NAc indicating that both passive18,49,50 
and self-administered51 morphine/heroin elevate DA, but that this DA response is lost after repeated heroin 
self-administration18. Because DA plays a key role in memory consolidation52–54, and our laboratory has dem-
onstrated that DA antagonists can block the facilitation of memory consolidation by cocaine and nicotine when 
passively administered55, it is possible that self-administered heroin in well trained rats can no longer modulate 
memory consolidation. Clearly, it will be important to directly explore whether the memory enhancing function 
of post-sample passive heroin is dependent on DA activity.

The current study also generated three significant findings relevant to the concept of conditioned memory 
modulation. First, as observed in Study 1 and replicated in Study 2, the context CS in the absence of heroin 

Figure 4.   Effects of exposure to contextual heroin CSs on lever responses and object location memory. (A) 
mean (SEM) active and inactive lever presses for rats in the SA group during extinction. (B) mean (SEM) active 
and inactive lever presses for rats in the yoked group during extinction. The * indicates a significant difference 
between levers. The # indicates a significant difference in responding between groups on the active lever. (C) 
mean (SEM) DRs from sample and choice phases of SA and Y groups on the test of memory modulation by the 
first extinction session. (D) mean (SEM) DRs from sample and choice phases of SA and Y groups on the test of 
memory modulation by the last extinction session. The * indicates a significant difference between phases.
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significantly improved object location memory when experienced post-sample (Figs. 2B, and 4C, respectively). 
These results are not only consistent with previous findings employing the object recognition task10, but also gen-
eralize the effect of a drug-paired CS to a task that presumably engages different memory systems31,56. Moreover, 
the fact that this finding was identical in self-administering and yoked groups (Fig. 4C) clearly suggests that the 
mode of administration plays a minor role in conditioned memory modulation presumably because Pavlovian 
conditioning occurs regardless of whether a drug is self-administered or passively received.

Second, as observed in Study 1 and replicated in Study 2, the enhancing effect of the context CS on consolida-
tion of object location memory was lost after repeated exposure to the context in the absence of heroin (Fig. 2C, 
and 4D, respectively), and this occurred regardless of mode and route of administration. As far as we know, this 
is the first demonstration that conditioned memory modulation follows the Pavlovian principle of extinction57, 
similarly to other conditioned responses. This finding opens a variety of related and interesting questions includ-
ing whether conditioned memory modulation would also display spontaneous recovery58 and/or renewal59.

Third, Study 2 indicated that the cue paired with each IV heroin infusion also gained the ability to modulate 
object location memory consolidation. This observation in the Y group is a further replication the context CS 
effect outlined above, with the only difference that in this case, this was a discrete CS rather than a context CS. 
However, this finding is much more interesting in the self-administration group because it co-occurred with 
reinstatement of extinguished lever pressing. That is, in this group, response-contingent presentation of the dis-
crete CS significantly and selectively increased responding on the previously active lever (Fig. 5A). This typical 
demonstration of cue-induced reinstatement15,35 clearly indicates that the discrete CS was effective in acting as a 
conditioned reinforcer60 and this result represents, as far as we know, the first evidence in support of the “memory 
enhancing function of reinforcers” hypothesis3, applied to conditioned reinforcing stimuli.

In sum, this study examined the potential role for mode of drug administration in the effects of heroin and 
heroin-paired cues on memory consolidation. Admittedly, object location memory could have been tested at 
other stages of drug exposure, other memory tasks could have been employed revealing different opiate effects 
on memory consolidation61–65, different heroin doses or schedules could have been used, and the study could 
have also included female animals as females are known to acquire opiate self-administration quicker, consume 
more opioids, and be more motivated to consume opioids66–68. Notwithstanding these limitations, our data reveal 
interesting interactions between the pharmacological effect of heroin and environmental cues in determining 
their shared effects on cognitive processes. That is, heroin’s action on memory formation may be dependent on 
how the drug is received and may change over repeated administration. Moreover, our data also clearly indicate 
that a significant level of conditioning occurs to a variety of cues present during drug exposure regardless of how 
the drug is administered, and these cues appear to have reliable and predictable effects on memory consolida-
tion processes.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author upon reasonable request.

Figure 5.   Effects of the discrete heroin CS on reinstatement of lever responses and object location memory. 
Mean (SEM) active and inactive lever presses during the last extinction (Ext 6) and the cue-induced 
reinstatement (R) sessions for rats in the SA (A) and Y (B) groups. The * indicates a significant difference 
between levers. The ** indicates a significant difference in active lever responding from Ext 6 to R. The # 
indicates a significant difference in active lever responding between SA and Y groups. (C) mean (SEM) DRs 
from sample and choice phases of SA and Y groups on the test of memory modulation by the reinstatement 
session. The * indicates a significant difference between phases.
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