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Comparison of artificial intelligence 
algorithms and their ranking 
for the prediction of genetic merit 
in sheep
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Ishraq Hussain

As the amount of data on farms grows, it is important to evaluate the potential of artificial intelligence 
for making farming predictions. Considering all this, this study was undertaken to evaluate various 
machine learning (ML) algorithms using 52-year data for sheep. Data preparation was done before 
analysis. Breeding values were estimated using Best Linear Unbiased Prediction. 12 ML algorithms 
were evaluated for their ability to predict the breeding values. The variance inflation factor for all 
features selected through principal component analysis (PCA) was 1. The correlation coefficients 
between true and predicted values for artificial neural networks, Bayesian ridge regression, 
classification and regression trees, gradient boosting algorithm, K nearest neighbours, multivariate 
adaptive regression splines (MARS) algorithm, polynomial regression, principal component regression 
(PCR), random forests, support vector machines, XGBoost algorithm were 0.852, 0.742, 0.869, 0.915, 
0.781, 0.746, 0.742, 0.746, 0.917, 0.777, 0.915 respectively for breeding value prediction. Random 
forests had the highest correlation coefficients. Among the prediction equations generated using 
OLS, the highest coefficient of determination was 0.569. A total of 12 machine learning models were 
developed from the prediction of breeding values in sheep in the present study. It may be said that 
machine learning techniques can perform predictions with reasonable accuracies and can thus be 
viable alternatives to conventional strategies for breeding value prediction.

The fundamental responsibility of an animal breeder is to ensure that the animals of each generation are better in 
performance than the previous generation. This is achieved through accurate identification of superior animals 
and their scientific selection which in turn depends on the prediction of breeding values. The process of computa-
tion of the genetic merit of animals is largely data-driven and requires complex computations. Techniques devel-
oped by breeders and statisticians have worked very well so far and have yielded tremendous results for improving 
production. However, the fast-evolving world is now facing new, hitherto unknown challenges like population 
explosion, climate change, and environmental degradation only to name a few. In response, farming practices are 
evolving, and new technologies are being adopted. All this is leading to the generation of an enormous amount 
of diverse data daily and age-old methods and conventional strategies are unable to keep up with this growing 
amount of data and they alone cannot suffice in meeting the challenge of managing the data quickly and accu-
rately. Among the methodologies used for the prediction of breeding values, Best Linear Unbiased Prediction 
(BLUP) is considered to be the most accurate as it combines all this information optimally and  automatically1. 
breeding value estimations are cumbersome and extremely difficult for people with little know-how of animal 
breeding. Therefore, if the technique is performed only once and the labels are subsequently used for training 
a model, that model can be deployed and used multiple times without any burden on computational resources.

State-of-the-art machine learning techniques for data mining like neural networks, decision trees, etc. in 
animal genetics and breeding may become major game-changers in this regard. These technologies are already 
chauffeuring the world towards a major technological revolution. Data-driven intelligent systems as well as 
cutting-edge digital fabrication technologies are already rapidly becoming a part of the biological world and are 
making it possible to embrace new and innovative methods to deliver food security, economic opportunities, 
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and of course environmental sustainability. They can, therefore, transform the science of animal breeding which, 
in itself, is a data-intensive science.

The fact that animal genetics and breeding (AGB) is based on biometrical genetics and advanced statis-
tics which is also the core of artificial intelligence is yet another reason to integrate the two. Also, the central 
paradigm of animal breeding revolves around making futuristic predictions which is also the heart of artificial 
intelligence. On top of this, data mining techniques offer a myriad of other advantages as well; they are rapid, 
low cost, accurate and can also handle nonlinear and complex data even when it is imprecise and  noisy2 which 
is not possible using conventional techniques.

Related work
Artificial Intelligence has been transforming various spheres of life for quite some time now. For example, 
research is being conducted for the prevention and control of COVID-193, for the reduction in the emission of 
greenhouse  gases4, and their impact on climate  predictions5, etc. The interdisciplinary work combining Artificial 
Intelligence and Machine Learning in Animal Sciences is picking up the world  over2,6–8. Research in this area has 
been done by various researchers (Table 1). Though the field of machine learning has the potential to revamp 
every sphere of animal sciences, this field is still in its infancy. The studies reported in this review show great 
promise of machine learning in improving animal sciences, the number of studies that are specific to animal 
genetics and breeding is even more insufficient to explore and unleash the full potential of machine learning for 
animal genetic improvement.

A comprehensive study comparing the important and state-of-the-art supervised machine learning tech-
niques for the prediction of breeding values of animals could not be traced. This study is therefore novel research 
to explore artificial intelligence techniques in depth so that not only would the potential of each technique be 
explored but the best algorithms could be chosen for use on the farms. Through this study, reusable machine 
learning models could also be created which, upon deployment on servers could be used by farmers for genetic 
improvement of their animals. This would particularly be useful in developing parts of the world like India 
where the scientific selection of animals is rare, and selection is mostly intuition-based. The present study was 
therefore undertaken to fill such gaps between these two critical subjects, viz. animal breeding, genetics, and 
artificial intelligence.

Results
Missing values. The number of missing features for the dataset was low. The lighter colors in the figure 
represent missing values. Our results indicate that out of the numerical variables in the data, birthweights had 
the least number of null values.

VIF and feature selection. The VIF results for the dataset indicated that most of the variables were lowly 
or moderately correlated with most of the features having variance inflation factors of less than 3. The sire breed-
ing values, and dam breeding values had high feature selection scores, but they were not used for training the 
model.

Input variables. The features/input variables selected for the machine learning approaches included birth 
weight (BW), weaning weight (wean), 6-month weight (m6), 9-month weight m9, 12-month weight (12mwt), 
sire 12-month weight (sire12mwt), dam 12-month weight (dam12mwt), sex effect, year effect. These were done 
based on feature selection based on the selection score (> 10).

Machine learning algorithms. PCR. The results of the principal component analysis indicated that a 
total of 7 variables explained greater than 95% variance. The explained variance ratios were 0.39, 0.12, 0.12, 0.11, 
0.10, 0.07, 0.05 for the extracted features. For the principal component regression (PCR), the validation dataset 
was heuristically set at 10%. The variance inflation factors for all features were 1.

Table 1.  A brief review of the use of various algorithms in animal sciences.

Algorithm(s) Prediction of Reference

Multivariate adaptive regression splines (MARS) Body weights 40

Radial basis function (RBF) Body weights 40

Multivariate adaptive regression splines (MARS) Fattening weights 38

Multiple regression Live body weights 61

Multilayer perceptron Body weights 39

Convolutional neural networks (CNNs) Feed intake and milk production measurement and frequency 62

Genetic algorithms Problems associated with low-birth-weight infants 42

Support vector regression Body weights 63

Regression trees Body weights 64

Convolutional neural networks (CNNs) Feed intake and milk production measurement and frequency 62

CNN’s using RGB—D cameras Feed intake for individual cows 62

Machine vision-based visual image analysis Monitor BW in growing pigs for feeding 65
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OLS. Ordinary Least Squares (OLS) The prediction equations based on their statistical significance are given 
in Table 2. The overall adjusted  R2 value of the prediction equation was highest for the feature-selected dataset 
with a higher number of features. Equations (3a) and (4a) given in Table 2 contain all variables in the dataset for 
the dataset upon which PCA and feature selection was performed respectively. Equations (3b) and (4b) contain 
only the features which were found to be highly significant in Eqs. (3a) and (4a) respectively.

Bayesian ridge regression. The results of the Bayesian regression model training for the dataset are given in 
Table 3. The correlation between true and predicted values for the algorithms for breeding value prediction is 
given in Fig. 1.

Artificial neural networks. A total of 35 models were trained to determine which group of hyperparameters 
could train the model best. Out of the models trained the top 13 are given in Table 4. For hyperparameter opti-
mization using axclient, with the increase in the number of iterations, the correlation coefficient also increased. 
However, the results obtained did not improve significantly after the 1000th trial.

Support vector machines. The algorithm with default parameters was able to predict the test labels with a higher 
correlation than the grid search algorithm.

Regression trees and random forests. Random search algorithm showed the most model convergence. Random 
forests outperformed regression trees in terms of all the scoring criteria used in the present study. The coeffi-
cients of determination for regression trees were 0.86 and for random forests (grid search and random search), 
they were 0.905 and 0.904 respectively.

Gradient boost. The correlation obtained by grid search was slightly lower than using the algorithm without 
hyperparameters. The coefficients of determination for grid search were higher for the no tuning algorithm (0.9) 
than grid search (0.887).

Polynomial regression. The 1st-degree polynomial had the highest correlation coefficient viz. 0.642. The coef-
ficients of determination for the mean of the regressions and the best equation were 0.545 and 0.546 respectively.

XGBoost. A high correlation coefficient for the testing dataset was found for the XGBoost algorithm viz. 0.915. 
Low error values of prediction were also seen for this algorithm. The  R2 values were equal to 0.88.

K nearest neighbors. For the breeding values, the k nearest neighbor algorithm was able to predict the breeding 
values with a correlation of 0.781 with the test dataset. The n neighbors arrived at using hyperparameter tuning 
were 9. The  R2 value for the same was 0.635.

MARS. The correlation coefficient between the predicted and true values was found to be 0.746 while applying 
multivariate adaptive regression splines.

Table 2.  Prediction equations for PCA features based on the significance. Where birthweight = bw, weaning 
weight = wean, 6-month weight = m6, 9-month weight = m9, 12-month weight = m12, sire’s 12-month 
weight = sire12m, dam’s12 month weight = dam12m, sex effect = sexe, year effect = yeare.

No Prediction equation for PCA features R2

3a − 0.415 + 0.292 × 1 − 0.341 × 2 − 0.221 × 3 + 0.037 × 4 − 0.178 × 5 − 0.076 × 6 0.514*

3b − 0.415 + 0.292 × 1 − 0.341 × 2 − 0.221 × 3–0.178 × 5–0.076 × 6 0.513*

No Prediction equation for feature selected features R2

4a − 0.4152 − 0.013bw − 0.0218wean − 0.053m6 − 0.168m9 − 0.223m12 − 0.080 × 6sirem12 + 0.324damm12 
− 0.002sexe + 0.516 × 9yeare 0.569*

4b − 0.415 − 0.109m9 − 0.206m12 − 0.078sire12m + 0.323dam12m + 0.525yeare 0.568*

Table 3.  Model comparison for PCR and Bayesian ridge regression.

Measure

PCR

Bayesian ridge regression (test)Mean cross-validation Mean test values

Mean absolute error 0.510 0.495 s 0.498

Root mean squared error 0.718 0.644 0.648

Coefficient of determination 0.440 0.552 0.547

Correlation coefficient 0.556 0.746 0.742
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Figure 1.  Correlation between true and predicted values for breeding value prediction.
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Algorithm ranking. The training and testing results of various algorithms are given in Table 5. Tree-based algo-
rithms gave the best results with the random forest outperforming the rest by a small margin. Among these, 
random forests had the highest correlation coefficients (Table 6).

Discussion
The values for coefficients of determination in our study were moderate to high for all models. High  R2 values of 
0.988, 0.929, and 0.976 using various machine learning approaches were also stated by Huma and  Iqbal6 which 
correspond with the results obtained in the present study and indicate that machine learning approaches are 
quite effective in making animal-centric predictions. Valsalan et al.7 also used principal component analysis in 
Malabari goats to arrive at the growth performances and found the model obtained to have a coefficient of deter-
mination  (R2) value equal to 74% which is similar to the result obtained in this study. A tenfold cross-validation 
approach was reported to train the best model by Huma and  Iqbal6 which also correlated with the data split 

Table 4.  Artificial neural networks for prediction of breeding values.

Heuristically trained models
Hyperparameter 
Optimization

1 2 3 4 5 6 7 8 9 10 11 12 13 Model1 Model2 Model3

Optimum hyperparameters

Activation swish ReLU swish ReLU ReLU tanh swish Leaky ReLU PReLU swish swish swish swish ReLU ReLU ReLU

Layers 15 6 3 4 7 7 15 3 15 7 13 11 12 9 9 9

Neurons 90 90 90 20 50 80 90 90 90
80 (3) 80 (5) 80 (3) 80 (3) 257 40 40

10 (4) 10 (8) 10 (8) 10 (8)

Optimizer adam adam adam adam adam adam adam adam adam adam adam adam rAdam adam adam adam

Learning rate 0.0009 9E-04 9E-04 9E-04 9E-04 9E-04 9E-04 9E-04 0.0009 0 1E-04 9E-04 1E-05 0.005 0.002 0.002

Batch size 20 20 20 20 20 20 20 20 20 50 10 100 100 10 30 30

Epochs (500) 31 17 32 31 26 12 31 30 13 16 56 58 58 12/17 17/17 17/17

Evaluation metrics

Validation MSE 0.276 0.312 0.254 0.32 0.287 0.502 0.276 0.27 0.363 0.29 0.291 0.252 0.284 0.574 0.72 0.631

Validation MAE 0.4 0.421 0.387 0.441 0.413 0.574 0.4 0.397 0.481 0.42 0.416 0.374 0.399 0.6 0.694 0.647

Test MAE 0.37 0.39 0.374 0.418 0.395 0.573 0.372 0.387 0.477 0.4 0.391 0.359 0.385 0.614 0.606 0.582

Test MSE 0.244 0.28 0.248 0.298 0.276 0.519 0.244 0.264 0.367 0.29 0.261 0.231 0.266 0.576 0.541 0.488

Test loss 0.244 0.28 0.248 0.298 0.276 0.519 0.244 0.264 0.367 0.29 0.261 0.231 0.266 0.576 0.541 0.488

Test r 0.841 0.825 0.838 0.806 0.821 0.621 0.841 0.825 0.75 0.81 0.828 0.852 0.836 0.569 0.675 0.734

RMSE 0.494 0.53 0.498 0.546 0.525 0.72 0.494 0.514 0.589 0.53 0.511 0.481 0.516 0.759 0.675 0.699

Iterations 500 1000 2000

Table 5.  Training and testing results of various algorithms. “Default” suggests that the default 
hyperparameters of the algorithm were used for training the data. No hyperparameter tuning was done for 
the algorithms. (Reg. Trees = Regression Trees; Polynom. Reg. = Polynomial Regression). “rbf ” = radial bases 
function.

Support vector regression Reg. trees Random forests Gradient boost Polynm. reg

XGBOOSTGrid Search Grid search Random Search Grid search Mean Best

Hyper param-
eters Kernel: rbf

C:6
Gamma:0.0001
Kernel: rbf

Default

Bootstrap: True
max depth: 15
max features: 
auto
n estimators: 20

n estimators: 23
max-features: 
auto
max depth: 10
bootstrap: True

Default

Learning rate: 
0.0 max depth: 4
n estimators: 
2000
random state:1 
subsample: 0.75

Default

Colsample-
bytree: 0.7
Learning rate: 
0.01
Max depth: 7
Min child 
weight: 1
n estimators: 
1000
Objective: Sq. 
error
Subsample: 0.7

Default

Evaluation metrics

Test RMSE 0.608 0.695 0.496 0.384 0.383 0.388 0.39 0.642 0.649 0.392 0.645

Test MAE 0.685 0.74 0.597 0.524 0.53 0.531 0.537 0.545 0.546 0.537 0.705

Test r 0.777 0.699 0.869 0.917 0.917 0.915 0.912 0.705 0.706 0.915 0.746
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used in this study that was heuristically determined and any further increase in the validation dataset did not 
improve the results further.

Our results also indicate that PCA eliminated all multicollinearity in the dataset. This has also been established 
in literature by several  authors9,10. PCA the present study was useful in allowing for a better understanding of the 
correlations among the traits at the same time, ensuring that feature reduction was achieved as was also stated  by9.

A correlation coefficient of 0.658 was reported by Solberg et al.11 for the model to predict breeding values 
between true breeding values using PCR which is lower than the result of 0.746 as reported by us. Du et al.12 also 
endorsed the use of PCR in breeding value prediction in their study.

In the regression analysis for the breeding value dataset, seven features explained nearly 95% of the variance 
and is hence an effective technique for dimensionality reduction for large datasets. Pinto et al.9 also reported 
that the first five principal components explained nearly 93.3% of the variation, and the first component alone 
explained about 66%. The results obtained by Valsalan et al.7 also indicate that the first two components accounted 
for a high variance with an  R2 value equal to 0.74. Khan et al.13 also reported the first two principal components 
to show maximum variance (61.86% and 26.14%). The components explaining a majority of the variance can be 
used for selection and breeding, especially for the construction of selection  indices14.

The prediction equations derived for ordinary least squares had a moderate coefficient of determination. Such 
a moderate performance was also reported by Moser et al.15 who also found least-squares to not outperform other 
machine learning algorithms in their study to predict the breeding values of dairy cattle. Ordinary least squares 
regression has, however, been reported to give unbiased results with low variance as compared to many non-
linear  models16. Ordinary least squares has been a popular technique in biometrical genetics for many decades.

The model predictions for ridge regression were similar to Bayesian ridge regression but the Bayesian mod-
els gave slightly better predictions. da Silva et al.17 also compared Bayes models to report that Bayesian ridge 
regression performed best for predicting breeding values. The use of penalties in the model for multiple predic-
tors in the regression also makes it an effective  technique18. The bottom-up approach of the Bayesian method 
which starts with priors has been reported to give robust results. The  R2 value of the PCR model in this study 
was only marginally better than the Bayesian ridge regression model though Bayesian models have been seen 
to outperform  OLS19.

Their study on the breeding values prediction using machine  learning20, however, demonstrated a better 
predictive accuracy of ridge regression and Szyndler-Nędza et al.21 reported the regression model to perform 
better than the machine learning model for the prediction of carcass meat percentage which may be due to the 
less complexity of the problem at hand. Whittaker et al.22 proved the ridge regression model to be efficient to 
improve the mean response to selection and reduce the variability of the selection response. da Silva et al.17 used 
multiple Bayesian models for making genomic breeding values predictions and among them, the Bayesian ridge 
regression model had the lowest mean error value which is different from the results obtained in this study. A 
higher correlation of 0.90 between BV and predicted BV, using the Bayesian technique was observed for the 
prediction of BVs in the Harnali breed of sheep by Bangar et al.23.

Out of the models, model 12 had the highest correlation but a much higher correlation (0.92). A very high 
correlation was reported by Shahinfar et al.24 for the breeding values prediction in dairy cattle as well as Lopes 
et al.25 for the genomic. Artificial Neural Networks are being used in all spheres of biological sciences today. In 
our study, however, the tree-based algorithms outperformed ANNs. One contributing reason to this may be that 
the tree-based methods are deterministic and not probabilistic and thus perform well on structured data and 
their outperforming Bayesian methods may be justified.

A higher correlation of 0.89 between BV and predicted BV, using ANN was observed for breeding values 
prediction in Harnali breed sheep by Bangar et al.23. Our results correlate well with the reports of Ghotbaldini 
et al.26 for the breeding values prediction in Kermani sheep who used two ANN models to arrive at the correlation 
coefficients of 0.703 and 0.864 for them. The results obtained in this study are also consistent with the findings 
of other researchers in the areas of ANN application in animal  science8,27.

The activation function called swish proved to achieve the best model convergence in artificial neural net-
works. Ramachandran et al.28 in their results, also found swish to consistently either match or outperform ReLU 

Table 6.  Ranking of algorithms for the prediction of breeding values.

Rank Algorithm Correlation coefficient (test)

1 Random forests 0.917

2 Gradient boosting algorithm 0.915

3 XGBoost algorithm 0.915

4 Classification and regression trees 0.869

5 Artificial neural networks 0.852

6 K nearest neighbours 0.781

7 Support vector machines 0.777

8 Principal component regression 0.746

9 MARS algorithm 0.746

10 Bayesian ridge regression 0.742

11 Polynomial regression 0.742
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on deep neural networks. Swish function possesses strong regularization which is especially important for func-
tions with negative values. Like our results, a low learning rate was similarly found to yield better results than a 
higher learning rate by  Brownlee29 because large learning rates often lead to unstable training and may sometimes 
cause the neural network to never actually converge because the weights oscillate on the learning curve. Crump 
et al.30 used genetic algorithms for the estimation of molecular breeding values and showed that the correlation 
coefficients between actual and predicted values ranged from 0.66 to 0.79.

The dataset with default parameters could predict the test labels with a higher correlation than the grid search 
algorithm. The Gaussian process analysis of hyperparameter functions has revealed that all the hyperparameters 
do not matter in all machine learning algorithms and their importance depends on the type of search problem 
at hand. Due to this, the search sometimes does not produce the best solution.

SVR was reported to give the highest accuracy compared to many other machine learning methods for the 
breeding values prediction in dairy bulls by Moser et al.15. Ogutu et al.18 however reported a low correlation of 
SVR of 0.503 for genomic breeding value prediction and reported a value closer to the present study of 0.797. 
The rbf kernel gave better prediction results than the linear kernel. Long et al.31 also reported an improvement in 
correlation from 0.689 for the linear kernel to 0.700 for the rbf kernel. The better performance of the rbf kernel 
also indicates a nonlinear dependency of breeding values on the independent features.

For regression trees and random forests, the random search algorithm for the estimation of hyperparameters 
showed better model convergence compared to grid search. However, a lower correlation than the results in 
the present study between the predicted and observed trait responses was stated by Sarkar et al.32 viz 0.591 and 
0.431 for random forests, and ridge regression, respectively. They also implied the superiority of random forests 
over ridge regression techniques in genomic prediction like our present study. Among these results, the random 
forests algorithm had the highest correlation coefficients, however, Neves et al.33 compared random forests and 
SVM for the genomic evaluation of a population of mice and did not observe any significant differences between 
the two methods. Sant’Ana et al.34 used eight regression-based machine learning techniques and found that the 
random forest regressor obtained  R2 values of 0.687 and MAE of 3.099 suggesting that the model used in this 
study converged better than Sant’Ana et al.34 for the same model.

The 1st-degree polynomial predicted the breeding values with better accuracy than higher degrees. This also 
took the least amount of time to train. The popularity of linear models in the breeding values prediction also 
validates the results attained in this study.

A high correlation coefficient for the testing dataset was found for the XGBoost algorithm. Gradient boost 
gave higher correlation values than most other algorithms in the present study. Ogutu et al.18 who compared 
boosting, RF, SVM, and ridge regression BLUP (RRBLUP) also reported that accuracy was the highest for the 
boosting algorithm. Boosting algorithms are much greedier regarding decreasing the training error compared 
with SVM, which results in higher prediction accuracy, though this can reflect in longer computational time 
which was also seen in the present study. This is due to this strategy that boosting algorithms tend to have a lower 
training error as was also seen in the present study. Moreover, González-Recio and  Forni35 compared multiple 
algorithms to report that boosting outperformed random forests, which is not in agreement with the present 
results. However, not unlike the results obtained in the present study, random forest and gradient boost report-
edly consistently surpassed the XGBoost in the prediction  accuracy36.

The K nearest neighbors’ algorithm was able to predict the breeding values with a correlation of 0.781 with 
the test dataset. The correlation coefficient between the predicted and true values was found to be 0.75 with a 
coefficient of determination of 0.557 while Aksoy et al.37 reported a much higher coefficient of determination of 
0.968. They also reported that the MARS algorithm had greater predictive accuracy compared to the multiple 
regression analysis. The superiority of the MARS algorithm was reported in  cattle38 (Aytekin et al.). Eyduran 
et al.39 obtained a lower  R2 of 0.75 in the OLS for the prediction in goats. Also, Eyduran et al.39 found two ANN 
algorithms that they tested to be much inferior to those obtained for MARS. Similarly, Aytekin et al.38, Celik 
et al.40, and Ertürk et al.41 also highlighted the superiority of MARS.

The ML techniques used in the present study predicted the values that were derived using BLUP (Best Lin-
ear Unbiased Prediction). These were used as labels to evaluate how close the ML techniques would be to these 
values so that their convergence could effectively be tested. BLUP breeding values are standardized values that 
are proclaimed the world over for breeding values prediction with high  accuracy18 and therefore act as standard 
values for any further research. True breeding values cannot be directly measured using phenotypic  data42 and 
hence one must rely on EBV which has the highest accuracy. EBV or estimated breeding value is based on the 
information obtained from observed phenotypes. The addition of information from additional sources e.g., 
relatives and pedigree take the estimated values closer to the true breeding values by increasing their accuracy. 
The BLUP procedure combines all this information optimally and  automatically1.

Comparison with any standard technique (use of controls) is a norm. This study used predicted breeding 
values instead of true values in most cases because the underlying relationships between features of true and 
predicted labels are the same and they are considered to be accurate.

BLUP breeding value estimations are cumbersome and extremely difficult for people with little know-how of 
animal breeding due to which it is hardly ever performed on farms, especially in developing countries. Therefore, 
if the technique is performed only once and the labels are subsequently used for training a model, that model 
can be deployed and used multiple times without any burden on computational resources.

Thus, the foundational research could help in handling the huge amount of data on farms especially as farm 
automation becomes a norm. The present research, therefore, used breeding values as labels to evaluate many 
techniques and find the ones that work best for sheep data. Also, the input data will always differ across farms, 
species, and even years which is a research limitation, but a robust technique with a larger and across-farm dataset 
would help in mitigating this to a large extent. The evaluation of unsupervised machine learning techniques and 
reinforcement learning could possibly help in overcoming this limitation as well.
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Conclusion
Globally, ML approaches are transforming animal genetics and this research was conducted to explore various 
techniques that could potentially impact the selection strategies on farms, especially in developing countries. 
A total of 12 reusable and deployable models were successfully developed for the prediction of breeding values. 
Most of the trained models had high prediction ability. Such models if adopted for the prediction of breeding 
values on the farms could help in the effective and timely selection of animals, especially in developing countries 
where selection is mostly intuition-based. The developed models are computationally much less expensive than 
the conventional methods and therefore have good prospects in future breeding strategies.

Recommendations
The adoption of deployable ML models for the scientific selection of animals could help in the genetic improve-
ment of animals. Machine learning could also be useful for managing other aspects of animal farming eg. early 
prediction of body weight, disease prediction, etc. The use of data spanning data across farms as well as the 
inclusion of genomic data can help in the development of models that can be used in diverse scenarios and farms.

Methods
A brief research framework for the present study is presented in Fig. 2.

Data collection. Data for the Corriedale breed of sheep for the last 52 years (1969–2021) was collected 
from the university sheep farm, SKUAST-K. The total number of data points available for the study was 76,835 
with 18 features. The features included body weights at various ages of all animals under study, their pedigree, 
and other relevant features like sex, birth year, season, etc. Initially, the raw data was manually cleaned. Rows 
with missing values were treated as MAR (missing at random) values. Rows with too many missing values were 
removed altogether. Data imputation for the current dataset was done iteratively in  Python43 based on multivari-
ate imputation by chained equations (MICE). To handle the outliers in the dataset, the winsorization technique 
was used and the maximum winsorization limit was set at 99%44.

Data preparation. The data was appropriately encoded before training the model. The least-squares means 
were used for a model with sex and the year of birth as fixed and these were used instead of label encoding year 
and sex. Label encoding years would have reduced the accuracy of the model under real-life situations. The data-
set was also normalized. Pair plots in Python were used to check for multicollinearity.

Input variable selection and labels. The final features/ input variables used for training the feature 
scores were determined heuristically and using the feature selection method. Through feature selection, an opti-
mal feature subset was selected centered on the one that optimized the scoring function. The criterion set for the 
input variables to be used in all the machine learning approaches was determined based on feature scores. The 
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Figure 2.  Brief research framework for the present study.
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input variables were kept constant across all ML methods to eliminate any bias caused by the uneven number of 
features/ input variables during training.

The EBVs (Estimated Breeding Values) for 12-month  weights1 were derived and used as labels for training 
the data. BLUP animal model was used for the estimation of breeding  values45. In this model, the fixed effects 
used were sex, year, and the random effects of the animal were used. Smart Sheep Breeder, a tool developed at 
SKUAST-K46 was used for the purpose. The model in the matrix and mixed model solutions are given  below47:

where, Y = Selected trait, b = Fixed vector for different non-genetic factors assumed to influence the traits, u = Ran-
dom vector for breeding values of sires (to be predicted), e = Random error, X, Z = Incidence matrices, λ = (4-h2 
)/h2,  h2 = Heritability (estimated using animal model)48, A = Numerator Relationship Matrix. In this model, the 
fixed effects used were sex, year, and the random effects of the animal were used. Body weights at 12 month age 
were used as labels.

Machine learning methods. Various machine learning algorithms were compared in this study. These 
included the following:

 1. Principal component  regression49: principal component analysis (PCR) for regression as a regularized 
shrinkage estimator was used. The principal components of the explanatory variables obtained from prin-
cipal component analysis (PCA) were used as regressors. The principal components explaining most of 
the variance were used as features for training the dataset.

 2. Ordinary least  squares50: a technique for estimation of linear regression coefficients to minimize error 
between the actual and predicted values was used. It was aimed, through this technique, to minimize the 
sum of squared residuals between the actual and predicted values.

 3. Bayesian ridge  regression43: This technique was employed to evaluate whether output or response ‘y’ drawn 
from a probability distribution rather than a single value would train the model better than the others. 
The probabilistic model estimates of the regression problem were derived using this technique. The prior 
for the coefficient w was given by spherical Gaussian. Using this regression method, the L2 regularization 
was tested which is effective for  multicollinearity43. The cost function in this method used a lambda term 
for penalty to reduce the model complexity, shrink the parameters to arrive at unbiased estimates.

 4. Artificial neural  networks51: Machine Learning technique inspired by biological neurons for finding opti-
mum solutions to myriad problems. A typical neural network is a collection of connected units/nodes 
called artificial  neurons52. The connection between neurons resembling synapses in a biological brain. 
Real numbers are transmitted as signals between neurons and the output of every neuron is computed by 
a non-linearity applied on the sum of its inputs. Neurons are aggregated into layers and as the number of 
layers increase, a dense neural network is formed.

 5. Support vector  machines53: supervised machine learning algorithm (SVM) for solving group classification 
problems or for regression analysis. SVM creates a maximum-margin hyperplane lying in a transformed 
input space to maximize the distance to the nearest cleanly split examples. The hyperplane solution param-
eters are derived from a quadratic optimization problem.

 6. Classification and regression trees algorithm (CART)54: This algorithm builds a decision tree based on 
Gini’s impurity index to arrive at a final decision. In such decision trees each fork represents a decision 
causing a split in a predictor variable and each end node arrives at a prediction for the target variable.

 7. Random  forests55: an ensemble learning method that constructs many decision trees at training time to 
arrive at the most optimum solution. The mean or average prediction of all such trees is used as the final 
output for regression tasks.

 8. Gradient  boosting56: it uses an ensemble of many weak prediction decision trees, and the model is built 
in a stage-wise fashion. Generalizing other boosting methods, A gradient-boosting algorithms-built trees 
stage-wise by allowing the optimization of an arbitrary differentiable loss function.

 9. Polynomial  regression57: the relationship between independent and dependent variables is shown as the 
 nth degree polynomial. This regression technique offers an advantage that it fits a nonlinear relationship 
between x and y, which is denoted as E(y |x).

 10. XGBoost58: a decision-tree-based ensemble algorithm using a gradient boosting framework for finding 
optimum solutions. The primary features of this technique include penalization of trees, extra randomiza-
tion parameter, proportional shrinking of leaf nodes and newton boosting

 11. K Nearest  Neighbours59: a non-parametric learning classifier using proximity for making predictions about 
data points. This algorithm works off the simple assumption that points that are similar would be found 
close to each other. For regression problems, the average the k nearest neighbours is used as the prediction.

 12. MARS60: finds many simple linear functions and aggregates them to find the best fitting curve for the data. 
In other words, Multivariate Adaptive Regression Splines combine a few linear functions using “hinges.” 
into an aggregate equation for making predictions in situations where linear regression or polynomial 
regression would not work.

(1)Y = Xb+ Zu+ e

(2)
[

X ′X X ′Z
Z′X Z′Z + �A

−1

][

b
u

]

=
[

X ′y
Z′y

]
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Model development. Models were developed and optimized either heuristically or using search algo-
rithms or a combination of both. The details of each ML method are given below.

For optimizing the ANN models, hyperparameter optimization was attempted by the Ax Client9 for hyper-
parameter optimization and heuristic tuning was done as well. The optimization algorithm for included itera-
tions = 2000, learning rate options = 0.001, 0.5, dropout rates = 0.01, 0.9, hidden layers numbers = 1, 10, neurons 
per layer = 1 to 400, batch sizes = 8, 10, 16, 20, 30, activation functions = ’tanh’, ’LeakyReLU’, ’ReLU’, ’sigmoid’, 
and Optimizer = ’adam’, ’rms’, ’sgd’, ’RAdam’. 3 models were also created based on the number of iterations (500 
for model 1, 1000 for model 2, and 2000 for model 3).

For support vector regression, for the hyperparameter tuning, a grid search in sklearn was performed. The 
grid search parameters for breeding values were param grid (c) =  − 1, 0.01, 0.1, 1, 6, 8, 10, 20, 50, 60, 100, 1000, 
gamma = 1e−4, 1e−3, 1, 0.1, 0.01, 0.001, 0.0001, 0.0009, kernel = ’rbf ’, ’sigmoid’.

Both grid and random search were attempted for regression tree hyperparameter tuning.
Hyperparameter tuning for random forests were bootstrap = True, max depth = 5, 10, 20, 15, 30, None, max 

features = ’auto’, ’log2’, n estimators = 5–13 and15, 20.
Up to 10 degrees of polynomials were tested for the polynomial regression. Each evaluation was attempted 

6 times for all the datasets.
The gradient boost hyperparameters (grid search) were n estimators = 500,1000,2000, learning 

rate = 0.0001,0.001,0.01,0.1, max depth = 1,2,4, subsample = 0.5,0.75,1, random state = 1.
Hyperparameter tuning for XGBoost included learning rate = 0.001, 0.01, 0.05, 0.1, max depth = 3, 5, 7, 10, 

20, min child weight = 1, 3, 5, subsample = 0.5, 0.7, colsample by tree = 0.5, 0.7, n estimators = 50, 100, 200, 500, 
1000, objective = ’reg: squarederror’.

Grid search was employed for arriving at the best n-neighbors for KNN which were specified in a tuple 
 as2–8,17,44.

MARS was used to fit the training data of all three datasets K fold cross-validation. The number of splits 
used was 10 and the number of repeats was equal to 3. TensorFlow Serving was used for the optimized models.

Statistical metrics. The data was split into training and testing, and the optimal train test split was heuristi-
cally determined. The following percentages of data were used for constructing the model for most algorithms: 
testing data = 10% of the dataset, training data = 90% of the dataset, and validation data = 10% of training data.

For evaluating the models, the scoring criteria employed were mean squared error or MSE (Eq. 3), mean 
absolute error or MAE (Eq. 4), coefficient of determination or  R2 (Eq. 5), and correlation coefficient or r (Eq. 6).

where: yi = actual value for the ith observation, xi: calculated value for the ith observation and n: Total number 
of observations.

Ethics declarations. This work is based on retrospective data and ethics declaration was not applicable in 
this study.
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The datasets generated and/or analyzed during the current study are not publicly available because permission 
is required from competent authority at the University but are available from the corresponding author upon 
reasonable request.
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