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Identifying accurate link predictors 
based on assortativity of complex 
networks
Ahmad F. Al Musawi1,3*, Satyaki Roy2 & Preetam Ghosh3

Link prediction algorithms in complex networks, such as social networks, biological networks, 
drug-drug interactions, communication networks, and so on, assign scores to predict potential links 
between two nodes. Link prediction (LP) enables researchers to learn unknown, new as well as future 
interactions among the entities being modeled in the complex networks. In addition to measures like 
degree distribution, clustering coefficient, centrality, etc., another metric to characterize structural 
properties is network assortativity which measures the tendency of nodes to connect with similar 
nodes. In this paper, we explore metrics that effectively predict the links based on the assortativity 
profiles of the complex networks. To this end, we first propose an approach that generates networks 
of varying assortativity levels and utilize three sets of link prediction models combining the similarity 
of neighborhoods and preferential attachment. We carry out experiments to study the LP accuracy 
(measured in terms of area under the precision-recall curve) of the link predictors individually 
and in combination with other baseline measures. Our analysis shows that link prediction models 
that explore a large neighborhood around nodes of interest, such as CH2-L2 and CH2-L3, perform 
consistently for assortative as well as disassortative networks. While common neighbor-based local 
measures are effective for assortative networks, our proposed combination of common neighbors with 
node degree is a good choice for the LP metric in disassortative networks. We discuss how this analysis 
helps achieve the best-parameterized combination of link prediction models and its significance in the 
context of link prediction from incomplete social and biological network data.

A wide range of real-world problems can be effectively solved by modeling them as complex networks which 
are represented as a graph having nontrivial topological characteristics compared to random  networks1. Such 
complex networks play a significant role in identifying the significance of nodes and understanding the different 
connectivity patterns using different algorithms.

Existing algorithms on complex networks can answer different questions such as ranking the nodes based on 
some characteristics, predicting the structures of different topologies, and showing the flow of node/edge influ-
ence within the network among others. Link prediction (LP) models form an important class of such algorithms 
for complex networks. They are widely used on social networks (like Facebook, Twitter, LinkedIn, YouTube, etc.) 
as a way for suggesting friends, groups, videos, and any sort of possible group affiliation. In recommendation 
systems (such as books, movies, music, etc.), LP models were used to improve the similarity measurement of 
collaborative filtering methods, by exploring the association within user-item interactions to predict user interests 
and  preferences2. For example, they have been used to promote products for people who share the same shopping 
behavior e.g., on Amazon, or promote movies on YouTube or Netflix and so on. Similarly, in biological systems, 
the high-throughput methods often detect an incomplete view of the network and exhibit high false-positive and 
false-negative rates of protein  interactions3. LP models play a key role in predicting the possible Protein–Protein 
interactions in the biological  system4. Other applications are collaborative prediction in scientific co-authorship 
 networks5, predicting the spread of epidemic disease, detecting the drug-target interactions for drug  discovery6,7 
and even in bio-inspired  networking8–11.

The prediction of the future structure, or more precisely a future edge in a complex network is considered 
an active and ongoing research area that affects several applications in network science. Apparently, the entry 
of a new node (or set of nodes) into the network or the creation of new edges (or removing edges) is applicable 
to many network applications. Therefore, the prediction of future links plays a critical role in understanding the 
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future structure of the network and hence its effect on the functionality of the entire network or on a particular 
section of it. It is essential to reveal the mechanism by which a new (or an existing) node makes a connection 
with another, considering the difference in functionality and structure of the different networks. Hence, link 
prediction in complex networks has received wide attention using different approaches, such as graph theoretical 
methods, machine learning methods, probabilistic and statistical methods and so  on12,13. Among them, the graph 
theoretic approach is considered a favorable way of computing the possible future links in comparison with the 
other methods, due to its general applicability. It uses the different graph features of the network to score possible 
future links between two given nodes. These methods consider the similarity between the two nodes as a way 
of determining the future link(s). Existing similarity-based methods can be classified into three categories: (1) 
local approaches, (2) global approaches and (3) quasi-local methods. We mainly focus on the local approaches 
due to their high performance and accuracy. In local similarity-based approaches, the nodes’ local structure 
(neighborhood) is the key metric used to compare different nodes. Local approaches are faster than the rest of 
the methods as they only require a scan of one layer of the neighborhood for each comparison. Several methods 
exist that measure the similarity of two nodes based on their local information.

Due to the complexity exhibited in the structures of complex networks, several algorithms measure either 
the overall network properties (like the degree distribution, clustering coefficient, hierarchical structures, and 
so on) or rank a network’s nodes by measuring the node’s influence or contribution in the network (e.g., differ-
ent centrality measures such as degree, eigenvector, PageRank,  betweenness14 and so  on15). Another important 
metric is the assortativity of the  network16–18—a network property that refers to the preference of the nodes to 
affiliate/connect with other nodes that share similar features. Such features could refer to the similarity in degree, 
neighborhood, the existence of shared shortest paths, and so on. Specifically, a network is said to be assorta-
tive if its high-degree nodes connect with other high-degree nodes and low-degree nodes connect with other 
low-degree nodes. For example, in social networks (like Facebook), a node (or a person) has a high chance to 
make a relationship with others that share the same set of nodes (friends). Conversely, a network is said to be 
disassortative if its high-degree nodes connect with low-degree nodes. For example, biological networks exhibit 
such connectivity patterns where nodes with low-degree tend to have a connection with high-degree nodes.

Contributions. In this paper, we make the following contributions. First, we propose three sets of link pre-
diction models based on (1) the similarity, (2) the dissimilarity of neighborhoods, and (3) extended preferential 
 attachment19 models—all using local topologies of the two nodes. We did not consider other path dependent 
metrics (such as  betweenness14,  closeness20, average shortest path etc.). Instead, we considered the global and 
local influence of a node relative to the network as a measure of the node’s participation (or influence) within 
the network. Second, we propose a model for link prediction for a missing edge (x, y) using a parameterized 
combination of two different methods and compare their different versions against the assortativity value. In 
course of the analysis, we employ a combination of common neighbors method and each one of the three predic-
tion models (similarity, dissimilarity, and extended preferential attachment). The common neighbor method is 
selected by default in the parameterized combination model due to its simplicity, intuitiveness, and performance. 
Also, it has earlier shown very competitive results in comparison with many complex approaches on real-world 
 networks13. It is possible that two nodes establish a connection if they are similar in relationships (i.e., share the 
same neighborhood) and both nodes provide a relatively better influence within the network. In this context, 
similarity of two nodes (x, y) refers to the degree of similarity between neighbors of nodes x, y, while influence 
refers to the degree of connection (number of edges) that a node has. We make several modifications to measure 
a node’s influence with regard to its neighbors’ influence and the average network influence.

Third, and most importantly, we explore how the accuracy of the link prediction models varies with the 
assortativity of the networks. To this end, we present an approach that adapts an existing assortative network 
generation algorithm by Zhou et al.21 to create networks of varying levels of assortativity (and disassortativity). 
We use this approach to determine the best-parameterized combination of link prediction models. Finally, we 
carry out extensive experiments on real-world and synthetic networks to evaluate the proposed link prediction 
models against standard local similarity-based algorithms and well-studied link prediction metrics taken from 
the literature. We show that similarity-based models perform better in highly assortative networks where a large 
percentage of edges connect nodes having a similar degree to each other. On the contrary, the dissimilarity-based 
models perform better in highly disassortative networks where nodes tend to form connections with other nodes 
that are dissimilar.

Material and methods
Dataset. We employ network data from the following sources to validate the proposed link predictors. 
(Table 1 shows the essential statistics for each of the selected networks.) 

 1. Karate22,23 is a network of 34 members of a Karate club that reflects the members’ state of affiliation into 
groups due to a conflict between administrators and instructors. The dataset was collected and studied by 
Wayne W. Zachary from 1970 to 1972.

 2. Dolphins23,24 is a network that represents the frequent associations among 62 bottlenose dolphins.
 3. Polbook is a network of US politics books (as nodes). Edges represent the frequent co-purchasing of books 

on amazon.com by the same buyer. The network dataset was retrieved from http:// www. orgnet. com/.
 4. USAir25 is a network of airports (as nodes) and airlines (as edges) that represents the US air transportation 

system connecting the US around the globe.

http://www.orgnet.com/
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 5. Word Adjacency23,26 is a network that represents the existence of either noun-noun, adjective-noun, or 
adjective-adjective adjacent words in the novel of “David Copperfield”. Nouns and adjectives are repre-
sented as nodes, and their adjacency is represented as edges.

 6. Escherichia Coli GRN27 is a biological network that reflects the genes and transcription factors of E. Coli 
and how they interact with each other to regulate the functionality of the organism. Genes and transcrip-
tion factors represent the nodes and their interactions represent the edges of the network.

 7. Barabasi-Albert28 is an algorithm that generates random scale-free networks using a preferential attachment 
model, i.e., the probability of a new node creating a connection with an existing node is proportional to 
the number of connections that the existing node has. This would result in new nodes tending/preferring 
to form connections with highly connected nodes.

 8. Facebook348, Facebook41429 are two social networks extracted from Facebook. Here the nodes represent 
users (friends) and the edges represent the different web-based social interactions (of liking, sharing, or 
messaging).

 9. ca-sandi_auths30 is a collaboration network of 86 scientists at Sandia National Labs.
 10. fb-pages-food30 represents Facebook pages of several food companies (collected in 2017) and how they 

mutually interact among each other.
 11. soc-tribes30 is a network acquired from the study conducted on the tribes of central Highlands of New 

 Guinea31. It shows the cultural-linguistic groups of that area and what similarities and differences exist 
among them.

 12. bn-cat-mixed-species_brain_130,32,33 is the neural connection networks (connectome) of cortical areas from 
the brain of cats.

 13. bn-macaque-rhesus_brain_230,32 represents the connectome that existed in the brain of rhesus macaque 
monkeys.

 14. bio-celegans23,30,33 represents the connectome network of the Caenorhabditis  elegans34,35.
 15. soc-firm-hi-tech30 represents a network of friendships among employees of a small hi-tech computer firm.

Table 1.  Network properties of 29 networks used in the analysis; |V|: number of nodes in the network, |E|: 
number of edges in the network, r: Assortativity coefficient value, GCC & ACC: Global and average clustering 
coefficients, ASP: Average shortest path, d: diameter, and D : graph density. The networks are sorted according 
to the assortativity level; ( 0 > r ≥ −1 ) for disassortative networks, ( 1 ≥ r > 0 ) for assortative networks.

Name |V| |E| GCC ACC ASP r d D

Bn-macaque-rhesus_brain_2 91 582 0.2678 0.8601 1.8681 − 0.7698 3 0.1421

Karate 34 78 0.2557 0.5706 2.4082 − 0.4756 5 0.1390

E. coli 1565 3742 0.0155 0.2116 3.5791 − 0.3411 9 0.0031

Ca-sandi_auths 86 124 0.2721 0.4149 4.8140 − 0.2558 11 0.0339

Soc-firm-hi-tech 33 123 0.3875 0.6705 1.7689 − 0.2557 2 0.2330

Circuits1 122 304 0.0709 0.5656 1.9744 − 0.2487 3 0.0412

Bio-celegans 758 2025 0 0 3.7294 − 0.2233 11 0.0071

USAir97 332 2126 0.3964 0.6252 2.7381 − 0.2079 6 0.0387

Word adjacencies 112 425 0.1569 0.1728 2.5356 − 0.1293 5 0.0684

Polbooks 105 441 0.3484 0.4875 3.0788 − 0.1279 7 0.0808

Barabasi_albert_graph 500 1491 0.0322 0.0543 3.2335 − 0.0882 6 0.0120

Soc-tribes 17 76 0.6131 0.6488 1.4485 − 0.0792 2 0.5588

Dolphins 62 159 0.3088 0.2590 3.3570 − 0.0436 8 0.0841

fb-pages-food 620 2102 0.2226 0.3309 5.0887 − 0.0282 17 0.0110

bn-cat-mixed-species_brain_1 65 730 0.5747 0.6614 1.6995 − 0.0254 3 0.3510

ENZYMES8 141 133 0 0 4.3333 0.0161 10 0.0135

Reptilia-tortoise-network-sg 24 26 0.4390 0.2639 3.6538 0.0162 9 0.0942

Reptilia-tortoise-network-mc 15 28 0.6724 0.7094 1.6727 0.0408 3 0.2667

CAG_mat72 72 750 0.6541 0.7511 2.1291 0.0470 6 0.2934

Reptilia-tortoise-network-pv 35 66 0.5045 0.4884 2.4589 0.0583 6 0.1109

ENZYMES123 135 127 0 0 5.7098 0.0912 12 0.0140

Reptilia-tortoise-network-lm 45 106 0.3644 0.4345 2.6439 0.1181 6 0.1071

Aves-weaver-social 445 1335 0.5881 0.6685 4.4699 0.2000 12 0.0135

Facebook348 448 6384 0 0 3.0253 0.2227 10 0.0638

Facebook414 300 3386 0 0 3.1918 0.3064 8 0.0755

Reptilia-tortoise-network-bsv 136 374 0.3649 0.3335 3.7357 0.3254 10 0.0407

Reptilia-tortoise-network-cs 73 132 0.4158 0.3146 2.4022 0.3934 6 0.0502

Reptilia-tortoise-network-fi 787 1197 0.4199 0.2680 7.9334 0.4766 21 0.0039

Bio-SC-TS 636 3959 0.9137 0.4712 1 0.9211 1 0.0196
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 16. Circuits36 represents electrical circuits networks, retrieved from (http:// www. weizm ann. ac. il/ mcb/ UriAl 
on/ downl oad/ colle ction- compl ex- netwo rks.

 17. Aves-weaver-social30,37 represents animal social networks that represent the usage of the same nest cham-
bers by several sociable weavers.

 18. Bio-SC-TS30,38 is a high-precision gene network representation of gene-to-phenotype associations which 
resulted from the modified Bayesian integration of several data-type-specific networks.

 19. CAG_mat7230,39 represents a Computer Algebra Group (CAG) matrix set aimed to solve a combinatorial 
problem.

 20. ENZYMES123,  ENZYMES830 represent real-world examples of biological networks comprising regulatory 
interactions.

 21. Reptilia-tortoise-network-(bsv, cs, fi, lm, mc, pv, sg)30,40 provides seven animal social networks that rep-
resent the interaction of desert tortoises. All networks were projected from a bipartite network type into 
single-mode tortoise nodes.

Formal problem setting. Let G = (V ,E) be an undirected graph, with a set of nodes (or vertices V) and 
a set of edges E, where each edge represents a relationship between two nodes. We excluded circles (or loops), 
repeated edges, and isolated nodes from the network. Assume U to be the set of all possible edges between all 
nodes within the network. Let L represent the set of missing links of the graph G, i.e. L = U − E . The link pre-
diction aims at predicting possible non-existing links between nodes at a future time slot ( ti+1 ) given the graph 
structure at the current time slot ( ti ). The link prediction model uses the different topological and structural 
features of the graph at the current time slot that may contribute to the forecasting of future links. Therefore, the 
different link prediction models compute the possibility of having edges depending on a pre-defined scheme. 
Several criteria exist for the link prediction models as discussed next.

Each network dataset G = (V ,E) is divided into two subgraphs with non-overlapping edge sets: GT and GP , or 
the training and probe graphs, respectively. GT is obtained by randomly sampling edges (and their nodes) from 
the original network G; let’s refer to edges in GT as ET . GP

= G − GT , such that the probe graph comprises the 
remaining edges referred to as EP . For experimental purposes, 80% of the edges in G go to ET and form GT and 
the rest go to EP to form GP . Apparently, E = ET + EP , and nodes in both the training and probe graphs may 
overlap. Training graph GT will be the input to the link prediction model. The model will only process the local 
connectivity of the GT networks and predict the possibility of whether there will be an edge among the node 
pairs in the probe graph GP and form a new graph G′41.

Proposed models. We assume that two nodes could form an edge if they satisfy one or both of the follow-
ing: 

1. Nodes x, y share similar neighborhoods.
2. Nodes x, y have different influence/impact levels within the network.

The proposed model depends on two basic concepts of complex networks: common neighbors and the degree 
of the nodes. Common neighbors refer to the number of nodes that exist as a neighbor between both x and y, 
see Eq. (10). The degree of the node may refer to the amount of (connections, influence, contribution, or power) 
of the node within the network. Node degree refers to the number of (edges/connections/relationships) a node 
has with other nodes. The degree of node x can also be interpreted by the number of neighbors, presented as 
|Ŵx| . We considered the node’s power/degree as a factor due to the fact that low-degree nodes tend to create a 
connection with high-degree nodes in a phenomenon known as rich becomes richer; however, nodes that can 
make more connections tend to form a cluster of nodes with each other such that they share the same range of 
middle to high degree neighborhood. Low-degree nodes have neither the tendency to form connections nor 
carry enough information about neighbors’ similarities. As a result, to measure the possibility for two nodes 
x, y to create a future link, we considered the difference in power (or influence) and the common neighborhood 
of the two nodes.

Node influence. We propose two measurements to compute the contribution or influence of a node: (1) global 
node’s influence (GI) and (2) local node’s influence (LI). 

1. Global influence of a node (GI): In this model, the node’s degree is compared to the average degree of the 
network to reflect the global influence of the node within the network. Equation (1) depicts node u’s influ-
ence relative to the average degree of the network, ( IGu  ). 

2. Local influence of a node (LI): In this model, the node’s degree is compared to the average degree of the 
node’s neighbors to reflect the local influence of the node within its neighborhood area. Equation (2) depicts 
a node u’s influence with respect to the average degree of its neighbors, ( ILu ). 

(1)IGu =
|Ŵu|

1
|V |

∑

v∈V
|Ŵv|

u ∈ V

http://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks
http://www.weizmann.ac.il/mcb/UriAlon/download/collection-complex-networks
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 Based on node influence, we present three groups of models (discussed hereafter) to measure the possibility of 
having a link between two nodes: (1) extended preferential attachment models, (2) dissimilarity models and (3) 
similarity-based models.

Extended preferential attachment model. A well-known phenomenon of rich becomes richer [i.e., preferential 
attachment, see Eq. (13)] is where low-degree nodes tend to form a connection with highly connected nodes, 
especially in networks that follow a power law degree distribution. However, nodes may also tend to create a 
connection with other nodes based on the degree of influence within the network. Future links can be calculated 
using the same methodology as the preferential attachment, but using the node’s influence instead of the node’s 
degree. Herein, the node’s influence towards attachment can utilize the node’s global influence ( IGu  ) or its local 
influence ( ILu ), u ∈ V  . Preferential attachment using global influence (PAGI) and preferential attachment using 
local influence (PALI) is used for scoring the potential for having a link/edge between x, y ∈ V  using Eqs. (3) 
and (4).

Dissimilarity models. The second model can be viewed as an extension to the preferential attachment where 
low-degree nodes tend to establish a connection/link with higher-degree nodes. Given this scenario, the poten-
tial for having an edge is increased as the difference in power/influence between the two nodes is increased. 
Herein, the absolute difference of either global influence (GI) or local influence (LI) has been used as a way to 
measure the possibility of establishing a link between the two given nodes. Therefore, as the difference (or dis-
similarity) in power increases, there will be a higher chance of creating a link. Dissimilarity-based attachment 
using global influence (DAGI), and dissimilarity-based attachment using local influence (DALI) are used for 
scoring the potential of having a link between x, y ∈ V  using Eqs. (5) and (6).

Similarity models. Herein, distance is mostly used to check the degree of similarity of two given items; the high 
distance value means less similarity and vice versa. Thus, the third model can be viewed as an inverse of the 
dissimilarity-based attachment using global influence (inDAGI), and dissimilarity-based attachment using local 
influence (inDALI), see Eqs. (7) and (8).

These three different models consider the local and global influence of the nodes (an extension of the node’s 
degree) in the prediction of a connection between the two nodes. These metrics can also contribute to the local 
similarity-based metrics (such as common neighbors) in forming the connection. The resultant combined link 
prediction model that calculates the potential link score is given as follows:

 A parameterized contribution of both of common neighbors and one of the proposed models would provide the 
final score. The α parameter ranges in [0.2, 0.4, 0.6, 0.8]. We used the α value to show the degree of the contribu-
tion that each measure has towards better overall link prediction. As the contribution of one measure increases, 
the contribution of the other will decrease.

Baseline algorithms. We compared our proposed models (refer to Section “Proposed models”) with the 
following local similarity-based algorithms. Local similarity-based approaches use node neighborhoods to 
measure the similarity of each node with other nodes in the network. Local approaches are faster than non-local 
approaches and it is highly parallelizable and efficient for dynamic networks. However, all of the following algo-
rithms have a computation complexity of O(vk3) except for the preferential attachment which has a computation 
complexity of O(vk2) ; v refers to the number of vertices (nodes) and k refers to the degree of the node. Most of 
these methods are well explained in Martinez et.  al13. 

(2)ILu =
|Ŵu|

1
|Ŵu|

∑

v∈Ŵu

|Ŵv|
u ∈ V

(3)SPAGIx,y =IGx ∗ IGy

(4)SPALIx,y =ILx ∗ ILy

(5)SDAGIx,y =|IGx − IGy |

(6)SDALIx,y =|ILx − ILy |

(7)SinDAGIx,y =
1

SDAGIx,y

=
1

|IGx − IGy |

(8)SinDALIx,y =
1

SDALIx,y

=
1

|ILx − ILy |

(9)Sx,y = α.SCNx,y + (1− α).SModel
x,y Model ∈ {PAGI , PALI ,DAGI ,DALI , inDAGI , inDALI}
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 1. Common Neighbors42 (CN) is the simplest and fundamental local technique. It measures the number of 
shared neighbors between two nodes x, y. A confirmed  hypothesis43 shows that for two distinct nodes, 
there is a correlation between the number of shared neighbors and the probability of being connected. The 
formula for SCNx,y  is as follows: 

 2. Adamic-Adar Index44 (AA) is another variation of common neighbors which measures the similarity 
between x, y by logarithmically penalizing the shared neighbors. 

 3. Resource Allocation Index45 (RA) is another variation of both common neighbors and the Adamic-Adar 
index which models the unit of resources between two unconnected nodes through neighborhood nodes. 
The number of resource units transmitted from node x using x’s neighbors and received by node y reflects 
the degree of similarity between x, y. 

 4. Preferential attachment19 (PA) is based on a premise that in a large set of real networks, node degrees tend 
to follow a power law distribution resulting in scale-free networks. The probability of having an edge 
between two nodes increases as their degrees increase. 

 5. The Jaccard Index46 (JA) is a widely used similarity measurement that measures the ratio of shared neigh-
bors in the complete set of neighbors for two nodes. 

 6. Salton Index47 (SA) is another related measure to the Jaccard index, which is mostly known as the cosine 
similarity. In several experiments, the Salton index has been shown to be approximately twice the Jaccard 
index. 

 7. Sorensen Index48 (SI) is a very similar method to the Jaccard index, used to compare the similarity between 
different ecological community data samples. 

 8. Hub Promoted Index49 (HPI) measures the similarity between x, y by comparing the ratio of common 
neighbors of nodes x, y to the minimum degree of either node. 

 9. Hub Depressed Index49 (HDI) measures the similarity between x, y by comparing the ratio of common 
neighbors of nodes x, y to the maximum degree of either node. 

 10. Local Leicht-Homle-Newman Index50 (LLHN) is a model where the similarity between x, y nodes is meas-
ured as the ratio of common neighbors of the x, y nodes to the multiplication of neighbors of the x, y nodes. 

 11. Cannistraci-Alanis-Ravasi-based variation of the resource allocation33,51 (CAR) is a model, where two nodes 
are likelier to have a connection if their common neighbors share very strong inner-links, forming so-called 
“local-community LC”. 

(10)SCNx,y = |Ŵx ∩ Ŵy|

(11)SAAx,y =

∑

z∈Ŵx∩Ŵy

1

log |Ŵz |

(12)SRAx,y =

∑

z∈Ŵx∩Ŵy

1

|Ŵz |

(13)SPAx,y = |Ŵx||Ŵy|

(14)SJAx,y =
|Ŵx ∩ Ŵy|

|Ŵx ∪ Ŵy|

(15)SSAx,y =
|Ŵx ∩ Ŵy|
√

|Ŵx||Ŵy|

(16)SSIx,y =
|Ŵx ∩ Ŵy|

|Ŵx| + |Ŵy|

(17)SHPIx,y =
|Ŵx ∩ Ŵy|

min(|Ŵx |, |Ŵy|)

(18)SHPIx,y =
|Ŵx ∩ Ŵy|

max(|Ŵx |, |Ŵy|)

(19)SLLHNx,y =
|Ŵx ∩ Ŵy|

|Ŵx||Ŵy|
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 12. CH2-L2 Index52,53 is a link prediction model that assigns a reward for the internal connectivity existing 
among common neighbors and penalizes outside connectivity. 

Here Ci represents the number of neighbors of node i that exist in Ŵx ∩ Ŵy , Oi represents the number of 
neighbors of node i that do not exist in Ŵx ∩ Ŵy nor in x or y.

 13. CH2-L3 Index52,53: very similar to CH2-L2 metric, this metric considers all three path lengths (two inter-
mediate nodes i, j) between the targeted edge (x, y). 

Here C̄i represents the number of links between node i and all the nodes that exist in the set of intermediate 
nodes on all 3-hop paths connecting nodes x and y, Ōi represent the number of links between node i and 
all nodes that are not x, y nor the intermediate nodes on any 3-hop paths connecting x and y.

Network assortativity. Assortativity, or assortative mixing, is a preference for the nodes to attach to other 
nodes that are similar in some way. Degree-based assortativity coefficient r of a network is measured as the Pear-
son correlation  coefficient54,55 of the degree between all pairs of linked nodes, ranging from (− 1 to 1). Positive 
assortativity indicates a tendency of nodes to connect with other nodes of a similar degree. On the other hand, a 
negative correlation suggests that connections are more likely to exist between node pairs of dissimilar degrees.

 Here, A is the adjacency matrix of the network, ki , kj is the degree of node i, j respectively, δij is Kronecker delta. 
Equation (23) is an example of a Pearson correlation coefficient where it has covariance in the numerator and a 
variance in the denominator. Figure 1 shows two networks of assortative and disassortative types.

(20)SCARx,y =

∑

z∈Ŵx∩Ŵy

Ŵx ∩ Ŵy ∩ Ŵz

|Ŵz |

(21)SCH2−L2
x,y =

∑

i∈Ŵx∩Ŵy

1+ Ci

1+ Oi

(22)SCH2−L3
x,y =

∑

i∈Ŵx ,j∈Ŵy

Ai,j

√

(1+ C̄i)(1+ C̄j)
√

(1+ Ōi)(1+ Ōj)

(23)r =

∑

ij(Aij − kikj/2m)kikj
∑

ij(kiδij − kikj/2m)kikj

Figure 1.  Level of assortativity for two networks. High-degree nodes are colored dark green while low-degree 
nodes are colored with a lighter color. Each node is labeled with its degree. (a) Assortative networks ( r = 0.6 ) 
where high-degree nodes are attached to high-degree nodes and low-degree nodes are attached to low-degree 
nodes. (b) Disassortative networks ( r = −0.84 ) where high-degree nodes are attached to low-degree nodes.
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Generation of networks of varying assortativity. As discussed in Section “Introduction”, we extend the Monte 
Carlo sampling approach presented by Zhou et al.21 to generate assortative and disassortative networks of a given 
order. While Zhou et al. constrain the degree distribution, we constrain the graph density of the final network. 
Since the degree distribution affects the assortativity of a network, constraining it may restrict the approach 
from achieving the necessary level of assortativity (Algorithm 1). The algorithm takes as input the following: the 
number of nodes in the final generated network N, assortativity level ρ , mode m (equal to 0, 1 for assortative and 
disassortative, respectively), initial network order n0 and maximum node degree in the final network dmax with 
graph density D , and outputs the undirected network G.

As shown in Algorithm 1, the final complete network G is initialized with n0 nodes. Subsequently, new 
nodes (v) are added to the network iteratively as follows. In lines 5–7, we calculate Ê as the difference between 
the number of edges in G and the number of edges needed to achieve graph density D . If Ê = 0 the edges count 
requirement has already been met; otherwise surplus links are necessary. Specifically, once the surplus edge 
condition Ê = 0 is met, the assortative network generation algorithm goes to the next new node. We calculate 
ρ as the ratio of the surplus edges to be added and the number of nodes left to be added, i.e., ρ = ⌈

Ê
N−|V |

⌉ , and 
assign the degree of new node v as k = random(1,min(ρ, dmax)) . Next, we generate a hash table L that indexes 
each node u ∈ V  by the absolute difference between its degree and k, i.e., abs(degree(G, u)− k) (lines 8–13). As 
depicted in Fig. 2, u-th element in the hash table L is the absolute difference between the degree of new node v 
and node u, such that, the lower the difference, the more similar are nodes u and v. For every new node v, the 
idea is to choose a neighbor u with a (1) low Lu or (2) high Lu in order to generate a (1) assortative network or 
(2) disassortative network, respectively.

We input mode m = 0 to generate an assortative network, where higher ι → |L| will make the network increas-
ingly less assortative. Conversely, for disassortative network, m is set to 1, for which ι → 0 will make the network 
increasingly less disassortative (lines 14–19). Specifically, the algorithm controls the extent of assortativity, by 
sorting L in the increasing order of Lu and introducing the assortativity level ρ . The parameter ρ is necessary to 
determine ι which marks the index of nodes u in L that will be candidates for neighbors of u. Finally, in lines 
22–27, we select k neighbors for node v ( u ∈ V  ) depending on the choice of mode m, while enforcing the degree 
distribution, i.e., not|[w : w ∈ V& degree(G,w) = degree(G, u)]|) ≤ N × Pdegree(G,u) . Finally, the network G is 
returned as output.
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Results
Evaluation criterion. The link prediction models mentioned in the algorithms section measure a similarity 
score Smx,y for every missing edge (x, y) in GP , (m refers to the link prediction model in use). The resultant score 
estimates the possibility of having an edge between nodes x, y given its neighbors’ structures. If the similarity-
score value Smx,y equals or surpasses a threshold, then an edge between x, y is considered as predicted (or true 
positive TP) and otherwise rejected (false positive FP).

The range of similarity-score values that resulted from implementing the link prediction models varied even 
for the same graph. Therefore, to assess the performance of the different link prediction models on the given 
graph, the AUC (Area Under the receiver operating characteristic Curve) and AUPRC (Area Under Precision-
Recall Curve) metrics are used. Given true positive (TP), true negative (TN), and false positive (FP) calculated 
on the true and predicted link labels, AUC and AUPRC are measured as  follows56–59: 

1. Area under Curve (AUC) is a metric that measures the extent to which the model is capable of distinguishing 
between classes. In the context of this paper, AUC measures the probability that a randomly chosen existing 
edge is given a higher similarity score Sx,y than a randomly chosen non-existing edge. AUC is measured as 
follows: 

Here, n1 is the number of times that the missing edge got a higher score than an unconnected edge, n2 is the 
number of times when they are equal, and n is the number of observations done. If AUC = 0.5, then the score 
is generated from an independent and identical distribution. Thus, an AUC value closer to 1 indicates how 
much better the link prediction model is when compared to the prediction by chance. Overall, the higher 
the AUC, the better the model is at assigning the right labels to different classes.

2. Area under Precision-Recall Curve (AUPRC) captures the trade-off between precision and recall, where preci-
sion is equal to TP

TP+FP and recall is TP
TP+TN  . A high AUPRC suggests that the model exhibits both high preci-

sion and recall.

Generation of assortative and disassortative networks. Algorithm 1 allows us to generate networks 
with varying assortativity (by modulating the assortativity level ρ ). Table 2 shows the mean and standard devia-
tion of the standard topological properties of 100 networks of size 250 nodes along with the level of assortativ-
ity and disassortativity and level of density. High assortative networks ( r > 0.7 ) and less assortative networks 
( 0.25 < r < 0.6 ) are generated with ρ = 0 and ρ = 0.2 , respectively. Conversely, high disassortative networks 
( r < −0.45 ) and low disassortative networks ( −0.40 < r < −0.25 ) are generated with ρ = 1.0 and ρ = 0.8 , 
respectively. A correlation analysis is conducted between the graph density ( D ) and network assortativity (r) for 

(24)AUC =
n1 + 0.5n2

n

Figure 2.  For each newly added node v, hash table L, where Lu is the absolute difference between the degree 
of new node v and node u. The keys in L are arranged in the increasing order of Lu . The parameter ι marks the 
offset that controls the level of assortativity.

Table 2.  Topological properties of a sample of the generated synthetic networks (of size 250) used in the 
analysis; Mean (and standard deviation of) GCC & ACC: Global and Average Clustering Coefficients, ASP: 
Average Shortest Path, r: Assortativity Coefficient value, d: diameter, and D : graph density.

GCC ACC ASP r d D

High density

High assortative 0.67 (0.04) 0.64 (0.02) 2.76 (0.23) 0.74 (0.03) 7.46 (1.44) 0.18 (0.01)

Less assortative 0.35 (0.02) 0.29 (0.02) 2.03 (0.03) 0.3 (0.07) 4 (0.01) 0.19 (0.01)

Less disassortative 0.18 (0.02) 0.2 (0.02) 1.86 (0.01) − 0.28 (0.05) 3.19 (0.39) 0.19 (0)

High disassortative 0.24 (0.02) 0.47 (0.04) 1.81 (0.01) − 0.43 (0.02) 2.59 (0.49) 0.19 (0.01)

Low density

High assortative 0.54 (0.01) 0.17 (0.02) 11.92 (0.18) 0.88 (0.01) 24.97 (0.72) 0.01 (0)

Less assortative 0.21 (0.03) 0.15 (0.03) 2.74 (0.24) 0.47 (0.05) 5.57 (0.64) 0.08 (0.02)

Less disassortative 0.1 (0.01) 0.15 (0.02) 2.64 (0.05) − 0.37 (0.01) 4.82 (0.39) 0.05 (0)

High disassortative 0.11 (0.01) 0.15 (0.01) 2.66 (0.05) − 0.51 (0.03) 4.73 (0.45) 0.05 (0)
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networks created by the generative algorithm. As shown in Fig. 3, no relationship exists between r,D on both 
high density networks (Fig. 3a) and low density networks (Fig. 3b).

In addition to the standard sampling criteria that have been used in the literature for dividing the network 
edges into training ( ET ) and testing ( EP ), we apply another edge sampling criteria (termed similar degree edges, 
SDE criteria) to evaluate the performance of the different categories of the link prediction models. We collect 
the edges that have nodes with the same degree, sorted by the difference of degrees. This results in a descend-
ing list of edges, ranked in the decreasing order of score equal to the absolute value of the difference of nodes’ 
degree, i.e., ||Ŵx| − |Ŵy|| . We have shown in Section “The effect of edge sampling” that the removal of similar 
degree links results in disassortative training networks. Therefore, this sampling criteria represents a worst-case 
scenario where the metrics are used to predict edges among similar degree nodes despite being trained on disas-
sortative networks.

Cross validation on the synthetic networks. We implement the following cross-validation strategy. 
Unless otherwise stated, link prediction results reflect 50 runs (with 25 folds each) on 100 networks each of order 
100, 200, 250, 500, and 1000 nodes. 

1. For each of the 25 folds, the network set was randomly divided into 80% training and 20% testing set of 
networks. A network participates in either the training or the testing set.

2. The resultant evaluation values of the different link prediction models were collected and averaged resulting 
in an average over 25 folds × 50 runs.

Prediction on standard networks. Standard networks are divided based on the assortativity coefficient r 
into assortative ( 1 ≥ r > 0 ) and disassortative networks ( 0 > r ≥ −1 ), see Table 1. Figure 4 shows the accuracy 
of the different link prediction metrics on assortative and disassortative networks, measured in terms of Area 
Under the Precision-Recall Curve (AUPRC). Figure 4a and b show the AUPRC for the assortative network group 
for random and similar degree edge removal, respectively, where local similarity-based metrics (AA, RA, and 
CH2-L2), relying on common neighborhoods, perform better than other metrics.

In the case of disassortative networks using random sampling of Fig. 4c, we also noticed that several weighted 
forms of the combined dissimilarity-based model of (CN+DALI, CN+DAGI) perform better than other local 
similarity models. Most of the standard and combined link prediction models that use local similarity (such as 
SA, JA, SO, CN+inDAGI, CN+inDALI) perform poorly. In Fig. 4d, we note that (CN+inDAGI) outperformed 
other metrics, using a similar degree of edge removal. We have not shown the results for preferential attachment 
using global influence (or PAGI as discussed in Section “Proposed models”). This is because it has a very similar 
formulation (i.e., the PAGI score is equivalent to the PA score divided by a constant) and yields the same accuracy 
as the preferential attachment (PA) metric for both standard and synthetic networks. However, we have reported 
high accuracy for the combination of PAGI with the common neighbor (CN).

Prediction on synthetic networks. Figures  5 and 6 summarise the AUPRC results by implementing 
the link prediction metrics on the assortative and disassortative, high density ( D = 0.15, 0.19 ) synthetic net-
works, respectively. (The corresponding AUC results for the synthetic networks have been shown in Supple-
mentary section 1 and section 2. Furthermore, the AUPRC results for the low-density networks (with density 
D = {0.01, 0.05, 0.1} ) have been shown in Supplementary Section 3).

Figure 3.  Assortativity coefficient value (r) and the corresponding density ( D ) for all the synthetic networks 
ranked in the increasing order of assortativity. (a) shows the correlation between r,D using high density 
( D = 0.15, 0.19 ). (b) shows the correlation between r,D using low density ( D = 0.01, 0.05, 0.1 ). (In each 
figure, the first 1000 networks correspond to disassortative (or mode m = 1 ), while latter 1000 networks are for 
assortative (or m = 0)).



11

Vol.:(0123456789)

Scientific Reports |        (2022) 12:18107  | https://doi.org/10.1038/s41598-022-22843-4

www.nature.com/scientificreports/

Assortative networks analysis. Like in the standard assortative networks (discussed in Section “Prediction on 
standard networks”), the local similarity measures, namely CH2-L2, CH2-L3, Jaccard, HDI, and CAR, once 
again exhibit high accuracy for both random as well as similar degree edge sampling (see Fig. 5). The superior 
performance of local similarity-based metrics that rely on shared neighbors suggests that the similar degree 
nodes in the assortative networks are strongly interconnected.

Disassortative networks analysis. Figure 6 shows the AUPRC scores for the disassortative networks. CH2-L3, 
DALI, and DAGI outperform other LP metrics for the highly disassortative network, followed by combined 
dissimilarity-based models (with low CN contribution). Unlike the assortative networks, most similarity-based 
models (along with combined models) show very low AUPRC performance. Interestingly, in the case of similar 
degree edges sampling, similarity-based models of (inDALI and inDAGI) show higher AUPRC performance 
than preferential attachment extension and dissimilarity metrics).

Key observations from the prediction models. First, we find that CH2-L2 and CH2-L3 perform 
consistently well for assortative and disassortative networks. This is because, unlike local similarity-based LP 
metrics, these metrics explore larger neighborhoods around the nodes of interest. Second, we report that the 
combined LP metrics of common neighbors (CN) and inDAGI exhibit an improvement over local similarity-
based metrics in standard assortative networks (see Fig.  4b). This shows that a combined influence of local 
and global neighborhoods can often be a better strategy for standard assortative networks. Also, since similar 
degree nodes tend to group together in assortative networks, the local similarity-based metrics that rely on 
common neighbors (such as AA, RA, CN, etc.) can emerge as good choices for LP metrics. Third, for synthetic 
networks, since nodes in assortative networks tend to have connections with similar degree nodes, the AUPRC 
of the local similarity-based metrics decreases with network assortativity. We find low (positive) assortativ-
ity to be associated with the improved performance of the dissimilarity metrics (DALI, DAGI, etc.) as well as 
the preferential attachment combined metrics (PAGI, PALI) with CN. This is most evident in case of random 
sampling, as depicted in Figs. 5a,c and 6a,c. Fourth, we find CN + inDAGI to perform well in case of similar 

Figure 4.  Performance of the LP models (i.e., the AUPRC values) implemented on the standard networks using 
random edges sampling (a, c), descending Similar Degree Edges (b, d). Assortative networks are shown in (a, 
b), and disassortative networks are shown in (c, d). Refer to Table 1 for details on the assortativity group each 
standard network belongs to. Red bars refer to standard LP models, blue bars refer to dissimilarity-based metrics 
along with their extensions and green bars refer to similarity-based metrics along with their extensions.
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degree node removal and disassortative networks. A combination of low CN and high inDAGI has proven to be 
effective, showing the importance of the global influence of nodes (measured by their degree) in determining 
their network connections. Two nodes seem more likely to be connected if they have similar degrees rather than 
neighbor-based similarity. Overall, we intuit that the combined models can be particularly useful for predicting 
connections in real-world networks (namely, biological, social, and technological networks) which are often 
disassortative in  nature60.

The effect of edge sampling. The standard random sampling of edges guarantees that the type of edge 
to be selected is not biased and that no specific global or local feature of the network is targeted. Therefore, we 
observe that the assortativity coefficient r for the different standard networks maintained a close distance (small 
error ranges) with future sampling. Figure 7a reports the values of the assortativity coefficient r for each of the 
given networks such that we removed (20%) of the edges 30 times.

On the other hand, similar degree edges removal (or sampling) guarantees that the edges to be selected are 
determined by the similarity in degree of the two nodes at the specified edge. It is noteworthy that the two nodes 
are not necessarily similar in neighbors (as in common neighbors) or other standard local similarity-based 
metrics. Intuitively and after the removal of similar degree edges, the resultant network would have less assorta-
tivity coefficient r value, as can be seen in sFigure 7b, where we report r for standard networks after (20%) edges 
removal of the top similar degree ones, and for 30 times. We observe that the assortativity coefficient r is effected 
in a descending fashion, and gradually converts the network into disassortative networks. We can assume that 
the opposite is true such that the removal of dissimilar degree edges will increase the assortativity level.

Overall, the random and similar edge removal techniques are employed to demonstrate two aspects of the 
link prediction analysis. The random edge removal approach eliminates links without bias. Thus, the prediction 
occurs on probe networks very similar to the original networks (see Fig. 7a and refer to Section “Formal problem 
setting” for details on training and probe networks). On the other hand, as depicted in Fig. 7b, the similar edge 
removal scheme challenges the predictors by altering the assortativity coefficients of the training networks. In 

Figure 5.  Performance of the LP models (i.e., the average AUPRC values) implemented on the high density, 
assortative synthetic network sets of size (100, 200, 250, 500, and 1000 nodes), 500 networks each. See Table 2 
for high and less assortativity coefficient r ranges, respectively. Red bars refer to standard LP models, blue bars 
refer to dissimilarity-based metrics along with their extensions and green bars refer to similarity-based metrics 
along with their extensions.
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Figure 6.  Performance of the LP models (i.e., the average AUPRC values) implemented on the high density, 
disassortative synthetic networks of size (100, 200, 250, 500, and 1000 nodes), 500 networks each. Table 2 
depicts the high and less disassortativity coefficient r ranges, respectively. Red bars refer to standard LP models, 
blue bars refer to dissimilarity-based metrics along with their extensions and green bars refer to similarity-based 
metrics along with their extensions.

Figure 7.  The average and standard deviation of the assortativity level of each of the standard networks after 
removing 20% of network edges at random for 30 separate runs. Edge removal of each run is implemented 
independently of other runs.
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other words, the training is carried out on a disassortative network and the metrics are used to predict the pos-
sibility of links and degree-similar nodes.

Exploratory analysis of α and the combined model. To better understand the impact of ( α ) 
in the combined model, we reported the results that were collected from different simulations by using 
α = [0, 0.05, 0.1, · · · , 1] . We have already noticed the effect that r plays along with the two edge sampling 
approaches (Random, and SDE). Also, we have demonstrated that the combined model is constructed by two 
terms: common neighbors and either one of the proposed metrics of 1) similarity models (inDAGI, inDALI), 
2) preferential attachment extension models (PAGI, PALI) and 3) dissimilarity models (DAGI, DALI). As the 
assortativity coefficient value r increases, the combined model tends to incorporate similarity metrics, i.e., CN + 
inDAGI and CN + inDALI, putting high weight on the CN model. Similarly, as the assortativity coefficient value 
r decreases (to disassortativity level), the combined model tends to incorporate dissimilarity metrics, i.e., (CN + 
DAGI and CN + DALI), putting high weight on the dissimilarity metrics.

However, in order to find the effect of ( α ) on the combined model at high r, we particularly report additional 
analysis on the best similarity metrics of (CN + inDAGI) by considering a range of discrete values of α . If α = 0 , 
we consider 100% of the inDAGI value. Likewise, if α = 1 , then we consider 100% of the CN value, see Fig. 8. 
We count the average AUPRC value (with its standard deviation) for the 500 networks of size 200 nodes, using 
high assortative, and less assortative networks with random edges sampling. Also, we count average AUPRC 
values (with their standard deviation) using similar degree edges. These three models show the best AUPRC 
performance for CN + inDAGI. We notice that there is a marginal contribution of the (inDAGI) of 10% in the 
high and less assortative networks (refer to Fig. 8).

Discussions
In this paper, we have attempted to identify metrics for link prediction based on network assortativity. As part 
of this task, we introduced an approach that generates networks of varying assortativity levels and proposed 
three different models for link prediction that measure the different link properties. These models are local 
dissimilarity-based models (DAGI, DALI), extended preferential attachment models (PAGI, PALI) and finally 
similarity models (inDAGI, inDALI). These link prediction models are then combined with the most standard 
local similarity-based metric of common neighbors to form the weighted combined models. We have also 
introduced an algorithm to generate assortative and disassortative networks of varying levels. We carry out 
extensive simulation experiments to demonstrate the contribution of several standard local neighborhood-based 

Figure 8.  Exploratory analysis for α . Showing the best AUPRC performance of the contribution of both of CN 
and inDAGI in ( SCN_inDAGI

x,y  ), used on the 100 synthetic networks (of size 250), with different weights ( α).
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metrics along with the common neighbors in the composition of the accurate link predictors for most cases. 
Our dissimilarity-based models outperform most of the other models in link prediction. Although there is less 
association between the assortativity coefficient of the network r and the link prediction models, we were able 
to show high prediction accuracy of specific models for assortative and disassortative networks.

This work opens up a few interesting research directions. First, we shall employ the proposed similarity and 
dissimilarity metrics to predict links in large-scale social and biological networks. In addition to the assorta-
tivity levels, this analysis will take into account other node and link labels as well as the directionality of links. 
Second, Fig. 8 shows the effect of varying the weighing parameter α on the overall accuracy of link predictions. 
Going forward, we intend to leverage these findings to infer general rules that will inform the selection of the 
link prediction metrics contingent on the assortativity and relevant feature information (of the nodes and links). 
Specifically, the rules will be mined using adaptive optimization algorithms that will learn the right α that maxi-
mizes accuracy for myriad assortativity levels as well as other topological properties of networks. Moreover, 
we shall delve deeper into the relationship between graph density and network assortativity in Algorithm 1. 
This will involve finding a range of graph densities for which it is feasible to generate networks of a prespecified 
assortativity coefficient. This effort will be particularly useful to the community of social and biological network 
researchers who need to analyze and make inferences from diverse families of partially available network datasets.

Data availability
The datasets used, generated, and/or analyzed during the current study along with the associated code are avail-
able in the GitHub repository (https:// github. com/ almus awiaf2/ Ident ifying- Accur ate- Link- Predi ctors- based- 
on- Assor tativ ity- of- Compl ex- Netwo rks/).
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