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One‑pot synthesis 
of naphtho[1,2‑e][1,3]oxazines 
in the presence of FNAOSiPAMP*/
CuII as an almond shell based 
nanocatalyst
Mina Keihanfar & Bi Bi Fatemeh Mirjalili*

In the present research work, a novel catalyst based on natural material, namely, Fe3O4@nano-
almondshell@OSi(CH2)3/NHCH2pyridine/CuII abbreviated (FNAOSiPAMP/CuII) was designed and 
prepared. The properties of the catalyst was identified by Fourier-transform infrared spectroscopy (FT-
IR), Thermogravimetry ananlysis (TG), X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy 
(EDS), Field emission scanning electron microscopy (FESEM), Transmission electron microscopy 
(TEM), and Mapping. Furthermore, the evaluation of catalytic activity was done in the course of 
naphtho-1,3-oxazines synthesis. Solvent-free conditions, simplicity of operation, easy work-up and 
use of an eco-friendly catalyst are some of advantages of this protocol.

One-pot multicomponent reaction has several merits over the routine and step-by-step reaction. The advantages 
of one-pot multicomponent reactions are the rapid achievement of complexity and variety in the synthesis of 
organic materials through highly practical and time-saving approaches. Moreover, this synthetic tool allows 
chemists to meet the criteria of green chemistry, such as waste prevention, atom and step economy, saving of 
solvents and reagents, uncomplicated purification procedures, avoidance of hazardous materials, and energy 
efficiency1–8. Recently, chemists, by consideration of green chemistry law, choice eco-friendly synthetic methods 
such as solvent-free condition and using nanocatalyst for organic reactions9–15.

Cellulose, as a naturally abundant biopolymer and renewable resource containing OH groups is one of the 
most ideal coating layers for Fe3O4 NPs16,17. Almond shell is a natural and readily available source of cellulose. 
Heterogeneous catalyst based on magnetic nanoparticles have high dispersion in reaction mixture and simple 
removing by an external magnet advantages18–21. CuII as ecofriendly cation is a good Lewis acid and can active 
the carbonyl group for nucleophilic addition reactions22.

1,3-Oxazines23–25 have potential biological and pharmacological properties such as antibacterial26, analgesic27, 
antitumor28, antihypertensive29, anti-HIV30, antithrombotic31, antiulcer32, and anti-Parkinson’s disease33 activities. 
Recently, some protocols have been developed for the synthesis of benzo-fused 1,3-oxazines, such as, Mannich-
type condensation of formaldehyde, β-naphthol, and amine34, acidic aza-acetalizations of aromatic aldehydes 
with 2-(N-substituted aminomethyl) phenols35,36, and electrooxidative cyclization of hydroxyamino compounds37. 
According to literature, the multicomponent reaction of formaldehyde, β-naphthol and amine 1° were done in 
the present of a catalyst such as ZrOCl2

38, 1-benzyl-3-methyl imidazolium hydrogen sulfate [bnmim] [HSO4]39, 
PEG-40040, alum (KAl(SO4)2·12H2O)41, Thiamin hydrochloride (VB1)42 and Cl3CCOOH43.

Herein, we report an eco-friendly protocol for the synthesis of naphtho[1,2-e][1,3]oxazines in the presence of 
Fe3O4@nano-almondshell@OSi(CH2)3/NHCH2pyridine/CuII, abbreviated, FNAOSiPAMP/CuII, as a new natural-
based green catalyst via the reaction of β-naphthol, primary amines and formaldehyde.

General.  Chemicals were purchased from Merck, Fluka, and Aldrich Chemical Companies. The electrical 
mortar-heater was prepared from Borna- Kherad Co., Iran, Yazd. 1H NMR (400 MHz) and 13C NMR (100 MHz) 
spectra were obtained by a Bruker (DRX-400, Avance), Fourier transform infrared (FT-IR) spectra recorded by 
ATR method on a Brucker (EQUINOX 55) spectrometer. Melting points were found on a B¨uchi B-540 instru-
ment. The X-ray diffraction (XRD) spectra was obtained by a Philips Xpert MPD diffractometer equipped with 
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a Cu Kα anode (k = 1.54 Å, radiation at 0 kV and 0 mA) in the 2θ range from 10° to 80°. Field Emission Scan-
ning Electron Microscopy (FESEM) (MIRA 3 TESCAN) and TEM (CM120) apparatus was used for recording 
of FESEM and TEM images. A vibrating sample magnetometer (VSM, Meghnatis Daghigh Kavir Co. Kashan 
Kavir, Iran) was used for measurements of magnetic property of catalyst. Energy-dispersive X-ray spectrometer 
(EDS) and maps of catalyst were recorded by MIRA II Detector SAMX. Thermal gravimetric analysis (TGA) was 
done using SDT Q600 V20.9 Build 20 instrument. Inductively coupled plasma mass spectrometry (ICP-MS) was 
recorded by AGILENT 7500 apparatus.

Experimental
Synthesis of nano‑almond shell.  Firstly, 5 g of almond shell was well powdered and reacted with 80 ml 
of 17.5% NaOH solution under reflux conditions for 24 h. Then, almond shell was filtered and washed with dis-
tilled water. It was then bleached with 20 ml of sodium hypochlorite solution and 60 ml of distilled water under 
reflux conditions for 2 h. Subsequently, the almond shell was filtered and washed well with distilled water. The 
obtained almond shell powder was added to 80 ml of the 35% sulfuric acid aqueous solution and heated under 
reflux condition for 6–7 h. The resulting suspension was diluted with water and centrifuged many times to obtain 
the resulting nano-almond shell.

Synthesis of Fe3O4@nano‑almond shell.  7 G (0.026 mol) of FeCl3·6H2O and 2.6 g (0.0130 mol) of 
FeCl2·4H2O were added to a mixture of 2 g nano-almondshell and 200 mL 0.05 M acetic acid and mixed for 4 h 
at 80 °C. Then, 12 mL of 25% NH4OH was added drop wise into the obtained mixture. After 0.5 h stirring, by 
using an external magnet, the obtained Fe3O4@nano-almondshell as a black solid (3 g) was separated, washed 
with water, dried at 80 °C and stored.

Synthesis of Fe3O4@ nano‑almondshell@OSi(CH2)3Cl.  1G of Fe3O4@nano-almondshell and 3 ml 
3-chloropropyl trimethoxysilane were dissolved in 10 ml chloroform. The reaction mixture was heated under 
reflux condition for 4 h. Then, the obtained precipitate was separated with external magnet, washed with dichlo-
romethane and dried at room temperature.

Synthesis of Fe3O4@nano‑almondshell@OSi(CH2)3/NHCH2pyridine (FNAOSiPAMP).  0.5G of 
nano-Fe3O4@almondshell @OSi(CH2)3Cl and (1 mmol, 0.1 mL) 2-aminomethylpyridine were dissolved in 5 ml 
dimethylformamide and heated for 24 h at 80 °C. Then the obtained precipitate was filtered, washed with dichlo-
romethane and dried at room temperature.

Synthesis of Fe3O4@nano‑almondshell@OSi(CH2)3/NHCH2pyridine/CuII (FNAOSiPAMP/
CuII).  0.5G of nano-Fe3O4@almondshell @OSi(CH2)3/NHCH2pyridine and (1 mmol, 0.17 g) of CuCl2 were 
dissolved in 5 ml methanol and stirred for 1 h. Then, the solid product was filtered, washed with methanol and 
dried.

Synthesis of naphtho[1,2‑e][1,3] oxazines.  In an electrical mortar-heater vessel, amine 1° (1.0 mmol), 
formaldehyde 37% (2.0  mmol), β-naphthol (1.0  mmol) and FNAOSiPAMP/CuII (0.04  g) were charged and 
ground at room temperature for determined time. Finally, the obtained mixture was poured in hot ethanol 
(3 mL) and the catalyst was separated by using an external magnet. Then, cold water was added to residue and 
the obtained solid product was filtered, washed with water and dried at room temperature.

Test of hot filtration and metal leaching.  To study the leaching of (FNAOSiPAMP/CuII), a hot filtra-
tion test was done. For hot filtration test, we have run a model reaction in the presence of catalyst. After ten min-
utes, the catalyst was removed from reaction mixture by an external magnet. The remained mixture was stirred 
for 15 min. The progress of reaction was not of observed and shown no leaching of catalyst in this protocol.

Spectral data for selected compounds.  3‑Phenyl‑2,4‑dihydro‑1H‑naphtho[1,2‑e][1,3]oxazine (Table 2, entry 1, 
4a).  White solid, m.p. 45–47 °C; FT-IR (ATR) ῡ (cm−1): 3057, 1623, 1597, 1496, 1376, 1230, 941, 747; 1H NMR 
(Acetone-d6, 400 MHz)/δ ppm: 7.89 (d, 1H, 3  J = 8.4 Hz, Ar–H), 7.85 (d, 1H, 3  J = 8 Hz, Ar–H), 7.73 (d, 1H, 
3 J = 8.2 Hz, Ar–H), 7.53–7.57 (m, 1H, Ar–H), 7.38–7.42 (m, 1H, Ar–H), 7.23–7.28 (m, 4H, Ar–H), 7.04 (d, 1H, 
3 J = 8.2 Hz, Ar–H), 6.87–6.91 (m, 1H, Ar–H), 5.54 (s, 2H, O–CH2–N), 5.06 (s, 2H, –Ar–CH2–N). (See SI, Fig. 
S1-S3).

3‑(4‑Bromophenyl)‑2,4‑dihydro‑1H‑naphtho[1,2‑e][1,3]oxazine (Table  2, entry 2, 4b).  White solid, m.p. 
118–119 °C; FT-IR (ATR) ῡ (cm-1): 3070, 2978,1622, 1590, 1487, 1371, 1223, 933, 808; 1H NMR (Acetone-d6, 
400 MHz)/δ ppm: 7.84 (t, 2H, 3  J = 8.2 Hz, Ar–H), 7.71 (d, 1H, 3  J = 8.2 Hz, Ar–H), 7.52 (t, 1H, 3  J = 8.4 Hz, 
Ar–H), 7.37–7.40 (m, 3H, Ar–H), 7.20 (d, 2H, 3J = 8.2 Hz, Ar–H), 7.01 (d, 1H, 3 J = 8.2 Hz, Ar–H), 5.51 (s, 2H, 
O–CH2–N), 5.03 (s, 2H, –Ar–CH2–N); (See SI, Fig. S4, S5).

3‑(4‑Chlorophenyl)‑2,4‑dihydro‑1H‑naphtho[1,2‑e][1,3]oxazine (Table  2, entry 3, 4c).  White solid, m.p. 
103–104 °C; FT-IR (ATR) ῡ (cm−1): 3307, 1622, 1593, 1491, 1369, 1224, 810; 1H NMR (Acetone-d6, 400 MHz)/δ 
ppm: 7.84 (t, 2H, 3J = 8.2 Hz, Ar–H), 7.71 (d, 1H, 3J = 8.2 Hz, Ar–H), 7.53 (t, 1H, 3J = 8.2 Hz, Ar–H), 7.38 (t, 1H, 
3J = 8.0 Hz, Ar–H), 7.24–7.29 (m, 4H, Ar–H), 7.02 (d, 1H, 3J = 8.2 Hz, Ar–H), 5.51 (s, 2H, O–CH2–N), 5.03 (s, 
2H, –Ar–CH2–N); (See SI, Fig. S6, S7).
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3‑(4‑Methoxyphenyl)‑2,4‑dihydro‑1H‑naphtho[1,2‑e][1,3]oxazine (Table  2, entry 4, 4d).  Brown solid, m.p. 
78–79 °C; FT-IR (ATR) ῡ (cm−1): 1623, 1596, 1508, 1467, 1229, 1156, 1032, 943, 805; 1H NMR (Acetone-d6, 
400 MHz)/δ ppm: 7.80–7.82 (m, 2H, Ar–H), 7.70 (d, 1H, 3J = 8.2 Hz, Ar–H), 7.51 (m, 1H, Ar–H), 7.36 (m, 1H, 
Ar–H), 7.13 (d, 2H, 3J = 8.2 Hz, Ar–H), 7.00 (d, 1H, 3J = 8.2 Hz, Ar–H), 6.80 (d, 2H, 3 J = 8.2 Hz, Ar–H), 5.42 (s, 
2H, O–CH2–N), 4.93 (s, 2H, –Ar–CH2–N), 3.68 (s, 3H, O–CH3); (See SI, Fig. S8, S9).

3‑(4‑Methyl phenyl)‑2,4‑dihydro‑1H‑naphtho[1,2‑e][1,3]oxazine (Table  2, entry 5, 4e).  Cream solid, m.p. 
84–85 °C; FT-IR (ATR) ῡ (cm−1): 1625, 1599, 1513, 1227, 936, 807; 1H NMR (Acetone-d6, 400 MHz)/δ ppm: 7.82 
(t, 2H, 3J = 8.2 Hz, Ar–H), 7.69 (d, 1H, 3J = 8.2 Hz, Ar–H), 7.51 (t, 1H, 3J = 8.0 Hz, Ar–H), 7.36 (t, 1H, 3J = 8.0 Hz, 
Ar–H), 6.99–7.04 (m, 3H, Ar–H), 7.09–7.11 (m, 2H, Ar–H), 5.52 (s, 2H, O–CH2–N), 5.02 (s, 2H, –Ar–CH2–N), 
2.24 (s, 3H, CH3–Ar); (See SI, Fig. S10, S11).

3‑Cyclohexyl‑2,4‑dihydro‑1H‑naphtho[1,2‑e][1,3]oxazine (Table  2, entry 6, 4f.).  Brown solid, m.p. 254  °C; 
FT-IR (ATR) ῡ (cm-1): 2927, 2852, 1624, 1599, 1433, 1263, 1058, 862; 1H NMR (DMSO-d6, 500 MHz)/δ ppm: 
7.66–7.81 (m, 3H, Ar–H), 7.48 (m, 1H, Ar–H), 7.35 (m, 1H, Ar–H), 6.98 (m, 1H, Ar–H), 4.99 (s, 2H, O–CH2–
N), 4.33 (s, 2H, –Ar–CH2–N), 2.70 (m, 1H, CH–N), 1.08–1.86 (m, 10H, 5CH2); (See SI, Fig. S12, S13).

3‑Butyl‑2,4‑dihydro‑1H‑naphtho[1,2‑e][1,3]oxazine (Table 2, entry 7, 4 g).  White solid, m.p. 170 °C; FT-IR 
(ATR) ῡ (cm-1): 2955, 2861, 1624, 1598, 1468, 1226, 1057; 1H NMR (DMSO-d6, 500 MHz)/δ ppm: 7.81 (m, 1H, 
Ar–H), 7.69 (m, 2H, Ar–H), 7.47 (m, 1H, Ar–H), 7.35 (m, 1H, Ar–H), 7.00 (m, 1H, Ar–H), 4.88 (s, 2H, O–
CH2–N), 4.25 (s, 2H, –Ar–CH2–N), 2.69 (m, 2H, –CH2–N), 1.53 (m, 2H, CH2), 1.31 (m, 2H, CH2), 0.87 (m, 3H, 
CH3); 13C NMR (DMSO-d6, 100 MHz)/δ ppm: 13.80, 19.80, 29.64, 46.94, 50.84, 81.81, 112.08, 118.25, 121.31, 
123.26, 126.45, 127.57, 128.32, 128.37, 131.54, 151.51 (See SI, Fig. S14-S16).

3‑Hexyl‑2,4‑dihydro‑1H‑naphtho[1,2‑e][1,3]oxazine (Table 2, entry 8, 4 h).  Cream solid, m.p. 182–183 °C; 
FT-IR (ATR) ῡ (cm−1): 2927, 2855, 1625, 1598, 1468, 1226, 1058; 1H NMR (DMSO-d6, 500 MHz)/δ ppm: 7.80 
(m, 1H, Ar–H), 7.68 (m, 2H, Ar–H), 7.47 (m, 1H, Ar–H), 7.34 (m, 1H, Ar–H), 7.00 (m, 1H, Ar–H), 4.87 (s, 2H, 
O–CH2–N), 4.25 (s, 2H, –Ar–CH2–N), 2.68 (m, 2H, –CH2–N), 1.53 (m, 2H, CH2), 1.25 (m, 6H, 3CH2), 0.84 (m, 
3H, CH3); 13C NMR (DMSO-d6, 125 MHz)/δ ppm: 14.77, 22.98, 27.23, 28.38, 32.02, 47.87, 52.09, 82.71, 112.97, 
119.14, 122.18, 124.13, 127.32, 128.46, 129.21, 129.28, 132.44, 152.42 (See SI, Fig. S17-S19).

3‑(5‑Chloro‑2‑methyl phenyl)‑2,4‑dihydro‑1H‑naphtho[1,2‑e][1,3]oxazine (Table 2, entry 9, 4i).  White solid, 
m.p. 151–152 °C; FT-IR (ATR) ῡ (cm−1): 2918, 1623, 1591, 1470, 1266, 1058; 1H NMR (DMSO-d6, 400 MHz)/δ 
ppm: 7.87 (m, 1H, Ar–H), 7.79 (m, 2H, Ar–H), 7.52 (m, 1H, Ar–H), 7.41(m, 1H, Ar–H), 7.12 (m, 3H, Ar–H), 
7.07 (m, 1H, Ar–H), 5.28 (s, 2H, O–CH2–N), 4.76 (s, 2H, –Ar–CH2–N), 2.5 (m, 2H, –CH2–N), 2.40 (m, 2H, 
CH2); (See SI, Fig. S20-S21).

3‑(4‑Ethyl phenyl)‑2,4‑dihydro‑1H‑naphtho[1,2‑e][1,3]oxazine (Table  2, entry 10, 4j).  Brown solid, m.p. 
48–49 °C; FT-IR (ATR) ῡ (cm−1): 2959, 1597, 1511, 1436, 1224, 1060; 1H NMR (Acetone-d6, 400 MHz)/δ ppm: 
7.80–7.85 (m, 2H, Ar–H), 7.69–7.71 (m, 1H, Ar–H), 7.50–7.55 (m, 1H, Ar–H), 7.35–7.40 (m, 1H, Ar–H), 6.99–
7.14 (m, 5H, Ar–H), 5.49 (s, 2H, O–CH2–N), 5.00 (s, 2H, –Ar–CH2–N), 2.49–2.54 (m, 2H, –CH2–CH3), 1.15 (t, 
3H, 3J = 7 Hz, –CH2–CH3); (See SI, Fig. S22-S23).

3‑(2‑Chlorobenzyl)‑2,4‑dihydro‑1H‑naphtho[1,2‑e][1,3]oxazine (Table  2, entry 11, 4  k).  Brown solid, m.p. 
72–73 °C; FT-IR (ATR) ῡ (cm−1): 1621, 1596, 1429, 1227, 1057; 1H NMR (DMSO-d6, 500 MHz)/δ ppm: 7.07–
7.82 (m, 10H, Ar–H), 4.95 (s, 2H, O–CH2–N), 4.27 (s, 2H, –Ar–CH2–N), 4.00 (s, 2H, –Ar–CH2–N); 13C NMR 
(DMSO-d6, 100 MHz)/δ ppm: 46.82, 52.56, 81.94, 111.73, 118.33, 121.26, 123.42, 126.46, 127.23, 127.85, 128.39, 
128.50, 128.90, 129.35, 130.61, 131.54, 133.23, 135.81, 151.41 (See SI, Fig. S24-S26).

3‑Benzyl‑2,4‑dihydro‑1H‑naphtho[1,2‑e][1,3]oxazine (Table 2, entry 12, 4l).  White solid, m.p. 143–144 °C; 
FT-IR (ATR) ῡ (cm-1): 2943, 1623, 1596, 1462, 1219, 1057, 738; 1H NMR (DMSO-d6, 500 MHz)/δ ppm: 7.05–
7.71 (m, 11H, Ar–H), 4.89 (s, 2H, O–CH2–N), 4.22 (s, 2H, –Ar–CH2–N), 3.89 (s, 2H, –Ar–CH2–N); 13C NMR 
(DMSO-d6, 100 MHz)/δ ppm: 46.55, 55.17, 81.55, 111.67, 118.32, 121.15, 123.37, 126.57, 127.19, 127.76, 128.34, 
128.39, 128.49, 128.59, 131.53, 138.33, 151.41 (See SI, Fig. S28-S30).

3‑(2‑Bromobenzyl)‑2,4‑dihydro‑1H‑naphtho[1,2‑e][1,3]oxazine (Table  2, entry 13, 4m).  Brown solid, m.p. 
120–122 °C; FT-IR (ATR) ῡ (cm−1): 2880,1623, 1597, 1507, 1476, 1229,1070; 1H NMR (DMSO-d6, 400 MHz)/δ 
ppm: 7.91 (t, 2H, 3J = 9.2 Hz, Ar–H), 7.72 (d, 1H, 3J = 9.2 Hz, Ar–H), 7.59(t, 1H, 3 J = 8.4 Hz, Ar–H), 7.42 (m, 3H, 
Ar–H), 7.24(d, 2H, 3J = 9.2 Hz, Ar–H), 7.03(d, 1H, 3J = 9.2 Hz, Ar–H), 5.36 (s, 2H, O–CH2–N), 4.86 (s, 2H, –Ar–
CH2–N); (See SI, Fig. S31, S32).

Results and discussion
In this research, we have prepared FNAOSiPAMP/CuII catalyst via a simple procedure that shown in Fig. 1. After 
identify the properties of catalyst by FT-IR, FESEM, TEM, EDS, ICP, MAPPING, VSM, TGA and XRD, we have 
introduced an efficient and eco-friendly protocol for the synthesis of naphtho[1,2-e][1,3]oxazine derivatives in 
the presence of FNAOSiPAMP/CuII catalyst.
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Characterization of FNAOSiPAMP/CuII

FT‑IR analysis.  Figure 2 shows the FT-IR spectra of nano-almond shell (a), Fe3O4 (b), Fe3O4@nano-almond-
shell (c), Fe3O4@nano-almondshell@OSi(CH2)3Cl (d), FNAOSiPAMP (e) and FNAOSiPAMP/CuII (f). The 
bands at 3400 cm−1 in all spectra (a–f) and 2924 cm−1 in (a, c, d, e and f) spectra, are attributed to O–H and C–H 
stretching vibration. The band at 1629 cm−1 in all spectra (a–f) shows bending vibration of O–H band. The band 
at 1455 cm−1 in (a, c, d, e and f) spectra shows CH2 bending vibration. The band at 1116 cm−1 in (d, e, f) spectra 
and 1056 cm−1 in (a, c, d, e and f) spectra shows stretching vibration od Si–O and C–O bands, respectively. The 
broad band nearly 600 cm−1 in (b–f) spectra shows Fe/O group. The broad band at 3200 cm-1 in (f) spectrum is 
attributed to N–H stretching vibration which is bonded to CuII.
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Figure 1.   Graphical representation of FNAOSiPAMP/CuII synthesis.

Figure 2.   FT-IR spectra of (a) almondshell, (b) Fe3O4 , (c) Fe3O4@nano-almondshell, (d) Fe3O4@nano-
almondshell@OSi(CH2)3Cl, (e) FNAOSiPAMP, (f) FNAOSiPAMP/CuII.
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A comparison between FTIR of fresh and used catalyst shows no any leaching of catalyst under reaction 
condition (Fig. 3.).

XRD analysis.  Figure  4 shows the XRD patterns of Fe3O4 and FNAOSiPAMP/CuII, in 10°–80°. In XRD 
spectrum of FNAOSiPAMP/CuII, in addition of Fe3O4 signals (2θ = 30°, 35°, 43°, 53°, 57°and 63°), 2θ = 21° shown 
the existence of almondshell.

FESEM and TEM imaging.  Figure 5 represents the result of field emission scanning electron microscopy 
(FESEM) and transmission electron microscopy (TEM) of FNAOSiPAMP/CuII to investigate its particle size 
and surface morphology. This images indicates that FNAOSiPAMP/CuII nanoparticles have average size below 
30 nm. The presence of spherical particles with nano dimensions in the catalyst increases the contact surface 
between the catalyst and the raw materials and increases the speed of the reaction.

VSM analysis.  Vibrating sample magnetometer (VSM) was used for the study magnetic property of catalyst 
at 300 °K (Fig. 6). This experiment approves the superparamagnetic property of catalyst which can be efficiently 
separated from reaction medium with an external magnet.

EDX and ICP analysis.  Energy-dispersive X-ray spectroscopy EDS (EDX) analysis was applied for the iden-
tification of elements in FNAOSiPAMP/CuII (Fig. 7). The EDX data confirmed the existence of C, N, O, Fe, ele-

Figure 3.   FT-IR spectrum of (A) fresh FNAOSiPAMP/CuII, (B) used FNAOSiPAMP/CuII.

Figure 4.   XRD patterns of, (a) FNAOSiPAMP/CuII, (b) Fe3O4.
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ments in the catalyst. For approve no any leaching of catalyst under reaction condition, the EDX of fresh and 
used catalyst were shown in Fig. 7.

To finding the weight percentages of Cu and Fe in catalyst structure we have used ICP-MS. According to 
obtained data, the weight percentages of Cu and Fe are 3% and 15%, respectively.

Figure 5.   (a) FESEM and (b) TEM image of FNAOSiPAMP/CuII.

Figure 6.   Magnetization loops of FNAOSiPAMP/CuII.

Figure 7.   EDX patterns of (a) fresh FNAOSiPAMP/CuII, (b) used FNAOSiPAMP/CuII.
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TG analysis.  TG analysis was performed to study thermal stability of the FNAOSiPAMP/CuII in 30°–300° 
(Fig. 8). The first endothermic weight loss (3–4%, at 50°–100°) was attributed to removal of catalyst humidity. 
Subsequently, the decomposition of almondshell, caused the second weight loss (15%) at 200°–300°.

Mapping analysis.  The elemental mapping of FNAOSiPAMP/CuII was shown in Fig. 9 which confirmed 
homogeneous distribution of N, O, C, Fe, Si and Cu in catalyst.

Study of FNAOSiPAMP/CuII catalytic activity in the synthesis of naphtho[1,2‑e][1,3]oxa-
zines.  Following the successful characterization, the catalytic activity of FNAOSiPAMP/CuII was investigated 
by synthesizing biological active naphtho[1,2-e][1,3]oxazines. To optimize the reaction conditions, the one-pot 
multicomponent reaction of formaldehyde, aniline and β-naphthol was studied in various conditions (Table 1). 
In conclusion, the best condition of this reaction was obtained using 0.04 g of FNAOSiPAMP/CuII, solvent-free 
and room temperature conditions (Table 1, entry 10).

According to above modified condition, we have synthesized various derivatives of naphtho[1,2-e][1,3]oxa-
zine using different amines, β-naphthol and formaldehyde with good to excellent yields in short reaction times 
(Table 2).

According to ICP data, the amount of CuII in catalyst is 3%. We have used 0.04 g of catalyst for 1 mmol of 
substrate (benzaldehyde). Thus 0.04 g of catalyst is containing of 1.2 × 10–3 g of CuII and equal to 1.88 × 10–5 mol 
of CuII. Thus, TON and TOF of catalyst are equal to 52.6 and 2.10638 min−1, respectively.

The reusability of the magnetic nano-catalyst was examined in model reaction for four times. The result 
showed no considerable decrease of catalytic activity (Fig. 10). Meanwhile, no decomposition of catalyst in the 
reaction medium was confirmed by study of the reused catalyst FT-IR spectrum.

Figure 11 shows the our proposed mechanism for synthesis of naphtho[1,2-e][1,3]oxazines in the presence 
of FNAOSiPAMP/CuII. CuII activates the carbonyl group in formaldehyde and then Mannich type condensation 
of the amine (1) and the formaldehyde (2) gives imine (3). In the next step, the β-naphthol attackes to the imine 
(3) to form intermediate (4) which condenses with the second molecule of formaldehyde to form intermediate 
(5). Then, by an intramolecular cyclization, the naphtho[1,2-e][1,3]oxazine is synthesized.

Conclusions
In summary, this work introduces that FNAOSiPAMP/CuII as an effective novel catalyst promote a versatile, 
simple and environmentally benign protocol for the synthesis of naphtho[1,2-e][1,3]oxazines. This novel eco-
friendly procedure for synthesis of naphtho[1,2-e][1,3]oxazine has many advantages such as simplicity, easy 
workup, reusability of catalyst, high yields and solvent-free reaction conditions of which turn it into a suitable 
alternative for the naphtho[1,2-e][1,3]oxazines synthesis.

Figure 8.   Thermal gravimetric analysis pattern of FNAOSiPAMP/CuII.
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Figure 9.   Elemental mapping images of FNAOSiPAMP/CuII.



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:17713  | https://doi.org/10.1038/s41598-022-22712-0

www.nature.com/scientificreports/

Table 1.   The reaction of formaldehyde, β-naphthol and aniline in the presence of FNAOSiPAMP/CuII under 
various conditions. The molar ratio of formaldehyde (2 mmol), β-naphthol (1 mmol) and aniline (1 mmol) is 
equal to 2:1:1. a Isolated yields. b Electrical mortar-heater.

OH
Various Condition

H

O

H
2

NH2

O

CH2
N

H2C

Entry Solvent Conditions (C) Catalyst (g) Time (min) Yielda (%)

1 H2O r.t 0.04 1440 80

2 – 40 0.04 60 65

3 – Mixer mill 0.04 75 –

4 H2O 60 0.04 90 43

5 EtOH r.t 0.04 300 24

6 EtOH 60 0.04 60 21

7 EtOH 75 0.04 120 27

8 – r.tb 0.03 45 15

9 – r.tb 0.02 50 –

10 – r.tb 0.04 25 99

Table 2.   Synthesis of naphtho[1,2-e][1,3]oxazines derivatives 4a-m by using various aniline derivatives, 
formaldehyde and β-naphthol in the presence of FNAOSiPAMP/CuII. The amount ratio of amine 1°, 
formaldehyde and β-naphthol is equal to 1:2:1. a Isolated yields.

OH

H

O

H

2
NH2

O

CH2
N

H2C
S.F., R.T.

electrical motor heater

FNAOSiPAMP/CuII

0.04 g

(1) (2) (3)

(4)

Ar(R)

Ar(R)

Entry Ar (R) Product Time (min) Yielda (%) TON (TOF) (min−1) M.P. (°C)

1 C6H5- 4a 25 99 52.6 (2.10638) 45–47

2 4-Br-C6H4 – 4b 10 91 48.4 (4.84042) 118–119

3 4-Cl-C6H4– 4c 25 87 46.2 (1.85106) 103–104

4 4-OMe-C6H4– 4d 30 75 39.8 (1.32978) 78–79

5 4-Me- C6H4– 4e 35 89 47.3 (1.35258) 84–85

6 (Cyclohexyl–) 4f 15 90 47.8 (3.19148) 254

7 (n-Butyl–) 4g 20 85 45.2 (2.26063) 170

8 (n-Hexyl–) 4h 25 95 50.5 (2.02127) 182–183

9 5-Cl-2-Me-C6H3– 4i 40 92 48.9 (1.22340) 151–152

10 4-Et–C6H4– 4j 30 91 48.4 (1.61347) 48–49

11 (2-Cl–C6H4–CH2–) 4k 60 90 47.8 (0.79782) 72–73

12 (C6H5–CH2–) 4l 50 95 50.5 (1.01063) 143–144

13 2-Br-C6H4– 4m 30 95 50.5 (1.68439) 120–122
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