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Liquid lithium as divertor 
material to mitigate severe 
damage of nearby components 
during plasma transients
V. Sizyuk* & A. Hassanein

The successful operation of thermonuclear fusion reactors such as ITER, DEMO, and future commercial 
plants is mainly determined by the optimum choice of materials for various components. The objective 
of this work is to accurately and comprehensively simulate the entire device in 3D to predict pros 
and cons of various materials, e.g., liquid lithium in comparison to tungsten and carbon to predict 
future ITER-like and DEMO divertor performances. We used our comprehensive HEIGHTS simulation 
package to investigate ITER-like components response during transient events in exact 3D geometry. 
Starting from the lost hot core plasma particles through SOL, deposition on the divertor surface, 
and the generation of secondary plasma of divertor materials. Our simulations predicted significant 
reduction in the heat loading and damage to the divertor nearby and internal components in the case 
when lithium is used on the divertor plates. While if tungsten or carbon are used on the divertor plate, 
significant melting areas and vaporization spots can occur (less for carbon) on the reflector, dome, and 
stainless steel tubes, and even parts of the first walls can melt due to the high radiation power of the 
secondary divertor plasma. Lithium photon radiation deposition into the divertor and nearby surfaces 
was decreased by two orders of magnitude compared to tungsten and by one order of magnitude 
compared to carbon. This analysis showed that using liquid lithium for ITER-like surfaces and future 
DEMO can lead to significant enhancement in components lifetime.

The successful development of thermonuclear fusion reactors such as ITER or next generation DEMO devices 
is mainly determined by the optimum choice of materials for the various components and systems. The material 
selections should promote long lifetime of the components (especially divertor) including tolerance to the high 
heat loads during plasma transient events, provide efficient thermonuclear reaction and energy transformation, 
retain minimum tritium concentration in components, promote material compatibility issues, safety and other 
requirements. Currently, ITER is the main international project aiming to demonstrate the capability of the 
tokamak concept for future energy production. ITER device is a much larger than any existing current tokam-
aks and will have much higher heat fluxes to the divertor components during plasma instabilities. The expected 
surface heat loads during plasma material interaction (PMI) is one of the main limitations in the development of 
successful fusion devices. The plasma facing components (PFCs) will be damaged and eroded in the ITER device 
not only during abnormal operation (e.g., disruption) but also at normal operation, i.e., edge-localized modes 
(ELMs)1. Using full tungsten divertor as in the current ITER design could cause significant damage to all interior 
components not initially visible to the disrupting plasma including baffles, reflector plates, dome, and even the 
beryllium first wall. To repair all of these components will require significant downtime in reactor operation for 
extended periods. The full tungsten design of ITER divertor during plasma instabilities will result in development 
of dense high-Z secondary tungsten plasma with very high radiation power to various interior components.

One proposed way to decrease interior components heat loading is to partially cover or insert strip of low-Z 
materials around the strike points (SP) of the tungsten divertor. Small carbon inserts at the SP, for example, can 
eliminate or significantly reduce tungsten content in the secondary plasma, i.e., carbon generated plasma, reduc-
ing core plasma tungsten contamination and greatly decrease the damage of the divertor nearby surfaces and 
first walls due to the much reduced radiation power2. A small strip of carbon insert (only less than 10% of the all 
carbon divertor plate design option, which has its own additional problems) will prevent the damage of all these 
interior components that are very hard to repair and will prevent the potential for significant amount of high-Z 
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contamination to the core plasma during transient events which can then cause full disruption or affects the 
successful operation in the current ITER design. The carbon generated plasma absorbs energy mainly into the 
thermal part in comparison to the high-Z tungsten. Carbon has a simple atomic structure compared to tungsten. 
As a result, tungsten ions consume much of the transient plasma energy through ionization while in carbon is 
by increasing their ions velocity. The advantage of using carbon is that the thermal cooling is slow process. The 
final energy deposition will be delayed in time and localized within carbon particles which is transferred to far 
locations with very low intensity that do not cause significant damage. In the tungsten case, cooling process 
is the recombination of W ions and strong photons emission. This process is much faster and the final energy 
deposition is not localized within tungsten ions due to the reradiated photons moving in all directions regardless 
of the magnetic field structure. Because the tungsten ions are heavier than the carbon ions, the collisional and 
scatterings processes are more "effective" in the tungsten case, i.e., more of the incident hydrogen ions and their 
energy change direction and are reflected to walls and internal components and do not penetrate deeply into 
the secondary dense plasma cloud. As result, the final energy deposition is redistributed to interior component 
surfaces causing intense local hot spots.

However, using carbon as PFC has also several disadvantages including higher erosion, tritium retention issue, 
dust in chamber, severe neutron damage, etc. There are methods previously proposed to remove tritium from 
carbon and CFC, e.g., heating in between discharges using laser beams, etc. In fact, transient events themselves 
like ELMs and disruptions on the small strip of carbon will actually help to remove tritium due to the high 
temperatures during these events. Most of the interior design, e.g., dome, baffles, reflector plates, and most of 
the divertor plate are still made of tungsten. The thin carbon insert is a compromise between the full tungsten 
divertor and divertor with entire carbon plate, which is not currently favored. Both options have advantages 
and disadvantages. The installation of a very small and easily replaceable low-Z carbon insert on the tungsten 
plate can significantly protect all nearby surfaces and first wall from serious damage and can extend the lifetime 
of divertor components2.

The next generation DEMO fusion power plant is planned to be a device between ITER and a commercial 
fusion power plant3. This DEMO should demonstrate stable long term operation with net electricity production 
of few hundred MWs. The divertor and other plasma-facing surfaces will be exposed to much higher energy 
fluxes in comparison to ITER. The DEMO project is proposed to use liquid lithium as PFC instead tungsten, 
operate at no-ELM regimes, and avoid or mitigate disruptions. Liquid lithium is capable to solve not only PFCs 
erosion problem but also be effective heat transporter, tritium breeding material, and enhance performance of 
the core plasma. These incontestable advantages of liquid lithium allowed to consider it as construction material 
at a certain stage of ITER project4. The lithium self-cooling blanket is the main concept for the DEMO that was 
planned to be tested during ITER project5.

The objective of this work is to accurately and comprehensively simulate the advantages of the liquid lithium 
material in ITER-like design and conditions and to compare with tungsten and carbon to assess the DEMO 
performance. We simulated the response of ITER components during plasma transient events starting from 
the escaping hot core plasma particles all the way down to the generation of secondary divertor plasma and the 
interaction with various surrounding PFCs.

Integrated model components.  We have enhanced our HEIGHTS full 3D integrated simulation package 
for lithium calculations including detail photon radiation transport (RT) and focused the present study to inves-
tigate the heat loads and damage to various PFCs surfaces during the transient events of ELMs and disruptions6. 
As in our previous studies, we assumed 1 ms duration of these events for the current ITER design7–9. Figure 1 
schematically shows the three-dimensional computation domain and the coordinate system used. The adaptive 

Figure 1.   3D schematic illustration of ITER components and coordinate system. The images were prepared 
using CorelDRAW Graphics Suite 11.
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mesh refinement (AMR) is used for accurate description of the exact original 3D ITER design geometry from 
sub-micron to meters long10.

The quad-three AMR has 5 layers with minimal MHD cell size ~ 5 mm. The escaped hot plasma core par-
ticles gyrate in the toroidal direction starting from the last closed flux surface (LCFS) up to the impact into 
PFCs surfaces. The most probable impact area at the beginning of transient event is the SP on divertor plates 
where the lithium trays are installed (Fig. 1, green). On the first stage of our simulation, the evolutions of the 
escaped particles are used for calculation of the actual energy deposition into the tokamak surfaces and the 
divertor vapor/plasma evolution and propagation in SOL. We developed gyrokinetic Monte Carlo models for 
the description of core plasma energy transport6,11. Within the frames of our models, the particles gyration is 
calculating in full 3D (not in so called guiding center approximation12) to accurately taking into account the 
angular changes during the scattering processes. We included into the scattering models eight main physical 
processes (in the SOL and below the surface): ion-nuclear interactions, ion–electron interaction, electron-nuclear 
interaction, electron–electron interaction, Bremsstrahlung process, Compton processes, photo-absorption, and 
Auger recombination6. Figure 2 shows sample of the simulated trajectory for the escaped deuterium ion in the 
SOL, (see Supplementary Video S1 for the simulated dynamics of the escaped from the core region electron and 
hydrogen ions). The gyrokinetic model describes the rarefied hot core plasma, while the MHD model simulates 
evolution of the dense secondary plasma initiated after divertor vaporization. The secondary plasma (Li in this 
case) is several orders denser than the rare core plasma and the MHD treatment is justified for the dense plasma13. 
Our simulations predicted density of secondary plasma up to ~ 1017 cm−3 in comparison to ~ 1013 cm−3 for the 
hydrogen plasma. The gyrokinetic model dynamically recalculates the core plasma flux and energy deposition 
every several MHD time steps and to every area/component inside the tokamak chamber. The escaped core 
particles energy (1) deposits into and heat the evolving dense secondary plasma which (2) moves the frozen 
magnetic field lines that (3) determine the escaped incoming plasma particles trajectories. More details of this 
self-consistent full 3D scheme can be found in Ref.2.

In spite of the lithium being a low-Z material and has much simpler atomic structure than tungsten for exam-
ple, we did not ignore any of the details of the atomic physics and photon radiation transport (RT) calculations 
in the lithium secondary plasma. The RT calculations were performed taking into account more than ~ 2800 
spectral groups in the range from 0.05 to 105 eV (full spectrum). The details of the RT physics and models in 
HEIGHTS are presented in Refs.2,14. The plasma heat conduction and magnetic diffusion models15, the bulk 
material heat conduction and vaporization models16 complete the HEIGHTS self-consistent integrated models.

Simulation results.  In our numerical study, we assumed for the 1 ms disruption the release of full pedestal 
energy QDIS = 126 MJ and for the 1 ms giant ELM only 10% of pedestal energy (QELM = 12.5 MJ)2. The pedestal 
plasma temperature was taken Tped = 3.5 keV. Based on the transient event total energy, we expressed the final 
energy distribution balance to all major PFCs in percentages for ITER ELM and disruption (Fig. 3). The escaped 
particle energy deposited into the Li plasma is marked red, the outer divertor plate green, the inner divertor 
plate blue, all other surfaces yellow. The analysis of the energy redistribution in the lithium case is compared 
with tungsten and carbon cases2.

As we reported earlier2, the low-Z carbon plasma has much lower photon radiation power due to its atomic 
structure; opposite to the high-Z tungsten plasma. Part of the total ELM energy (12.6 MJ) deposited into the 
carbon plasma increased up to 10.2 MJ compared to 8.6 MJ for tungsten. In addition, carbon plasma only reradi-
ated 0.62 MJ in photon energy compared to 6.47 MJ for tungsten plasma. Photon radiation is highly difficult to 
mitigate and its transfer time is very short in comparison to the transport of the thermal plasma energy and is 

Figure 2.   HEIGHTS simulated trajectory of the core escaped deuterium ion in ITER SOL. (See Supplementary 
Video S1).
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not affected by the magnetic field structure. The present simulations of Li as potential divertor material showed 
further decrease in photon radiation power compared to carbon.

We summarized the results of the energy distribution for W, C, and Li divertor in ITER design in Table 1. As 
shown, the total energy deposition into Li secondary plasma is similar to carbon plasma case but the direct core 
plasma deposition into the divertor plates is much smaller (about three times lower) in the Li case. This can be 
explained by the easily vaporized Li material with fast formation of plasma cloud and divertor plates shielding. 
As we predicted above, the Li secondary plasma is much less radiative even in comparison with the low-Z carbon 
plasma. During the ELM, the tungsten plasma reradiates 51.34% of energy, the carbon plasma 4.92% of energy, 
and the lithium plasma only 0.36%. The expected photon radiation deposition and damages of surfaces are very 
small in the Li case. The radiation energy deposition back to the divertor plates is ~ 0.01–0.05% of the total impact 
energy. The core plasma energy is mainly converted into thermal energy of the secondary plasma in the Li case. 
The thermal energy transport is much slower compared to the fast transport of the radiation energy where the 
transport velocity is determined by the speed of light. Our simulations showed that the poloidal velocity of the 
secondary plasma is in the order of several hundred meters per second. As a result, the heat load on the divertor 
components is spread in time that allows for such heating mitigation.

The Table 1 reflects the total integrated values in time. However, the transient events in tokamaks have com-
plex self-consistent character with probabilistic distribution in time and space. We should highlight here two 
main damage sources: the scattered core plasma particles and the photon radiation from the dynamically evolv-
ing secondary plasma propagating through the SOL. The time integrated radiation energy shows minimum risk 
for damage to PFC surfaces. The plotted radiation field in the divertor space (Fig. 4a) shows the two orders of 
magnitude smaller photon radiation flux in the Li case compared to the W and C secondary plasma (see Fig. 6 
of Ref.2,). All three cases are plotted at the time moment of 0.5 ms during the 1.0 ms ELM.

As in our previous simulations, we followed the same numeration of component surfaces where #1, #9 are 
Baffles; #2, #8 are Divertor Plates; #3, #7 are Reflectors; #4, #6 are Dome Tubes; and #5 is Dome2. In addition to 
the damage from Li photon radiation, the escaped plasma core and scattered particles from the evolving Li sec-
ondary plasma also cause surfaces damage. Figure 4b presents the particle flux plotted as vectors in logarithmic 
scale to clearly show the location and direction of the disruption impact. The particle flux is very high at the 
0.5 ms of the 1.0 ms disruption above the Baffle surface.

In our previous calculations, we found a critical damage spot on the #5 Dome surface for the full tungsten 
divertor during the disruption2. This unexpected spot will also be melted during the ELM event. Using a small 
carbon insert at the SP solves this problem for the ELM but during the disruption the Dome spot will still be 
melted. The use of the lithium trays or structure solves completely the overheating problem on the Dome sur-
face (see Fig. 5). The green curve (Li case) shows the Dome surface temperatures during an ELM to be less than 
800 K and less than 3000 K during a disruption event. The second overheating area we predicted for ITER-like 
design was the #3 Reflector. The Li secondary plasma cloud also greatly decreases the heat load on this surface. 

Figure 3.   HEIGHTS predictions of the final energy balance in ITER transient events with lithium: 1.0 ms ELM 
(a); and 1.0 ms disruption (b). The images were prepared using OriginPro V2020.

Table 1.   Final energy balance in ITER transient events with W, C and Li strike points.

Deposited with escaped particles Reradiated with photons

into sec. plasma into outer plate into inner plate from sec. plasma into outer plate into inner plate

ELM/DIS, % ELM/DIS, % ELM/DIS, % ELM/DIS, % ELM/DIS, % ELM/DIS, %

W 68.2/85.1 11.11/1.29 7.62/1.02 51.34/44.27 3.81/1.39 1.90/1.18

C 81.0/92.2 6.27/1.33 3.73/0.79 4.92/4.95 0.19/0.13 0.13/0.08

Li 81.7/88.2 2.94/0.41 1.85/0.25 0.36/1.26 0.02/0.05 0.01/0.02
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Figure 4.   Snapshot of calculated fluxes of Li secondary plasma at t = 0.5 ms: (a) photon radiation flux during 
1.0 ms ELM (a); core plasma particles flux (vectors to scale) during 1.0 ms disruption on background of Li 
plasma atomic density (b). The images were prepared using OriginPro V2020.

Figure 5.   HEIGHTS simulation of PFC transient response: #5 Dome maximum surface temperature during 
1.0 ms ELM (a, b) 1.0 ms disruption (b), see Fig. 4a for surfaces location. The images were prepared using 
OriginPro V2020.

Figure 6.   HEIGHTS simulation of PFC transient response: #3 Reflector maximum surface temperature 
during 1.0 ms ELM (a), 1.0 ms disruption (b), see Fig. 4a for surfaces location. The images were prepared using 
OriginPro V2020.
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Figure 6 shows the great reduction in the Reflector surface temperature for the lithium case (green curve) dur-
ing the disruption event.

The predicted unexpected erosion locations during the disruption is on the outer #9 Baffle. Figure 7 shows 
the erosion shape of the Baffle surface after the 1.0 ms disruption. As shown in this plot, the maximum erosion 
depth for the full tungsten divertor case (red curve) can reach up to ~ 1 μm. The use of low-Z materials reduces 
erosion of up to ten times lower in crater depth at the end of the 1.0 ms disruption. We expect that the imple-
mentation of a full lithium coating of the DEMO divertor components will also mitigate this problem. The Li 
plasma density is insufficient above the Baffle surface (Fig. 8). (See Supplementary Video S2 for the HEIGHTS 
simulated dynamics of the Li secondary plasma initiation and expansion from the SP location along the divertor 
component surfaces). The #9 Baffle erosion is a result of insufficient secondary plasma shielding, i.e. insufficient 
Li cloud formation and expansion along the Baffle surface. The presence of the other lithium DEMO surfaces 
should boost the developed Li plasma shielding, mitigate erosion, and enhance component lifetime.

Summary and conclusion
The main energy flux coming from the core plasma in magnetically confined fusion reactors into the diver-
tor space is concentrated in a relatively narrow area around the separatrix, the border between the closed and 
open magnetic field line areas17. The success of the tokamak reactors is mainly determined by the best choice 
of materials for various components of the device. In the divertor space, a secondary plasma cloud originated 
from the divertor surface material is developed due to the hot hydrogen plasma interaction and deposition in 
divertor materials during plasma instabilities. Traditional materials such as tungsten, beryllium, or carbon ini-
tially appear to solve plasma-material interaction problems for ITER-like projects, albeit including procedure 

Figure 7.   HEIGHTS simulation of the erosion depth of #9 Baffle surface during 1.0 ms disruption, see Fig. 4a 
for surfaces location. The images were prepared using OriginPro V2020.

Figure 8.   HEIGHTS calculated Li secondary plasma density in divertor space after the 1.0 ms disruption. (See 
Supplementary Video S2).
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of divertor replacement after thousands of pulses. Each of these well-tested materials in the existing tokamaks 
has serious disadvantages along with certain advantages. As a result, several problems arise such as radiation 
cooling due to high-Z plasma impurity, high heat deposition, large erosion, fuel retention, accumulation of dust, 
etc. For plasma transient events as for the DEMO project where much higher divertor heat flux is expected, new 
material and design solutions are required. An obvious step towards reducing the high-Z core plasma cooling, 
mitigating erosion, reduce fuel retention, etc. is to change the material of the divertor plates to a low-Z replen-
ishable material such as lithium, where several corresponding studies are currently being studied in NSTX-U, 
DIII-D, and EAST tokamaks18–20.

The objective of this work was to study in comprehensive integrated simulation the advantages of liquid 
lithium response during plasma transient events in ITER-like design and for future DEMO project performances 
using the original full exact 3D ITER design and parameters. For this purpose, we have enhanced our HEIGHTS 
full 3D integrated simulation package for lithium calculations including detail photon radiation transport and 
focused the present study to investigate heat loads and damages to various PFCs surfaces during the plasma 
transient events of ELMs and disruptions.

Our simulations predicted significant reduction in the heat loading and damage to the divertor nearby and 
internal components in the case when lithium is used on the divertor plates. When tungsten or carbon are used 
on the divertor plate, significant melting and vaporization spots (less for carbon than tungsten) can occur on the 
reflector, dome, and stainless steel tubes, and even parts of the first walls can melt due to the high radiation power 
of the secondary divertor plasma. Lithium photon radiation deposition into the divertor and nearby surfaces was 
significantly decreased by two orders of magnitude compared to tungsten and one order of magnitude compared 
to carbon. This analysis showed that using liquid lithium for ITER-like surfaces and future DEMO can lead to 
significant enhancement in components lifetime.

Methods
Methods details, including statements of data availability and any associated accession codes and references, are 
also available at https://​doi.​org/​10.​1038/​s41598-​021-​81510-2 and https://​doi.​org/​10.​1038/​s41598-​022-​08837-2. 
We upgraded our HEIGHTS radiation transport (RT) calculation in lithium plasma with a detailed considera-
tion of energy transfer in strong lines along with the continuum spectra. To allow simulation of RT having many 
strong lines, we optimized the initial opacity tables and separated the full plasma spectrum into spectral groups 
where optical coefficients are relatively invariable. Using such technique, the opacity tables were reduced by an 
order of magnitude for complex elements as tungsten and by two orders of magnitude for the lighter elements 
such as carbon and lithium. Figure 9 shows an example of optimization of lithium opacities for 25 eV temperature 
and 1017 cm-3 ionic concentration. Because the plasma spectrum depends critically on the temperature, the col-
lected spectral groups are created for the large set of temperatures. The spectrum fine structure with separation 
of strong lines in the area of photon energy ~ 10 keV is shown in Fig. 9b.

Data availability
The data that support the findings of this study are stored on Purdue Servers and on Argonne National Labora-
tory Bebop cluster and are available from the corresponding authors upon reasonable request.

Received: 14 July 2022; Accepted: 4 October 2022

Figure 9.   Optimized opacities of lithium plasma for RT calculations: full spectrum a, and fine structure b. The 
images were prepared using OriginPro V2020.

https://doi.org/10.1038/s41598-021-81510-2
https://doi.org/10.1038/s41598-022-08837-2
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