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Two‑stage variable‑fidelity 
modeling of antennas with domain 
confinement
Anna Pietrenko‑Dabrowska1,2*, Slawomir Koziel1,2 & Lukasz Golunski1

Surrogate modeling has become the method of choice in solving an increasing number of antenna 
design tasks, especially those involving expensive full‑wave electromagnetic (EM) simulations. 
Notwithstanding, the curse of dimensionality considerably affects conventional metamodeling 
methods, and their capability to efficiently handle nonlinear antenna characteristics over broad ranges 
of the system parameters is limited. Performance‑driven (or constrained) modeling frameworks 
may be employed to mitigate these issues by considering a construction of surrogates from the 
standpoint of the antenna performance figures rather than directly geometry parameters. This 
permits a significant reduction of the model setup cost without restricting its design utility. This paper 
proposes a novel modeling framework, which capitalizes on the domain confinement concepts and 
also incorporates variable‑fidelity EM simulations, both at the surrogate domain definition stage, and 
when rendering the final surrogate. The latter employs co‑kriging as a method of blending simulation 
data of different fidelities. The presented approach has been validated using three microstrip 
antennas, and demonstrated to yield reliable models at remarkably low CPU costs, as compared to 
both conventional and performance‑driven modeling procedures.

Design of contemporary antenna structures is to a large degree based on full-wave electromagnetic (EM) simula-
tion  models1–4, which are used for the development of antenna  topology5, parametric  studies6, as well as geometry 
 adjustment7,8. The need for EM analysis arises from the fact that alternative representations (e.g. parameterized 
equivalent networks) are either non-reliable or non-existent. Moreover, EM simulations reliably account for 
mutual coupling, the effects of housing, connectors, etc. Furthermore, antenna structures become increasingly 
sophisticated to realize the assumed functionalities (multi-band and MIMO operation, circular polarization, 
etc.)9–13. To enable these, a variety of topological alterations are incorporated (stubs, defected grounds structures 
and so on)14–17, all of which have to be properly dimensioned. EM analysis is CPU intensive, which impedes exe-
cution of EM-driven procedures that entail repetitive simulations, such as  optimization18, statistical  analysis19,20, 
design  centering21,22, let alone  global23 or multi-objective  search24, especially for complex  devices25–27.

Accelerating EM-based procedures is a matter of practical necessity. Numerous techniques have been devel-
oped for that purpose. In the realm of local optimization, we have adjoint  sensitivities28, mesh  deformation29, 
selective gradient  updates30,31, or the employment of customized EM  solvers32. In a broader context, surrogate-
assisted approaches has been growing in popularity, both concerning physics-based models  (space33 or manifold 
 mapping34, shape-preserving response  prediction35, or adaptive response  scaling36), and data-driven ones, e.g. 
 kriging37, artificial neural networks (ANN)38, radial-basis functions (RBF)39, support vector regression (SVR)40, 
Gaussian process regression (GPR)41, or polynomial chaos  expansion42. The latter are frequently used in global 
and multi-criterial  optimization43–45. Among other noteworthy methods feature-based optimization (FBO)46–48 
and cognition-based  design49, in which the design task is re-mapped into the space of adequately pinpointed 
attributes (points) of the system outputs, the latter being in weakly nonlinear relationship with the geometry 
parameters.

Needless to say, replacing EM analysis by fast surrogates is invaluable as an acceleration tool. Approxima-
tion models  (kriging50,  RBF51,  PCE52,  SVR53, ANNs and numerable variants thereof, e.g. convolutional neural 
networks (CNN)54 or deep neural networks (DNN)55) are particularly popular due to their  accessibility56,57. 
However, data-driven modeling methodologies are largely influenced by the curse of dimensionality and at the 
same time, have limited capability to represent highly nonlinear antenna characteristics. Available mitigation 
tools, e.g. least-angle regression (LAR)58, high-dimensional model representation (HDMR)59, are not suitable 
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for general-purpose antenna modeling. Meanwhile, variable-resolution methods have been demonstrated to 
be beneficial in this context (co-kriging60, two-level  GPR61), also in combination with sequential  sampling62–65.

Recent performance-driven (or constrained)  modeling66 proposes a different manner of alleviating the prob-
lems of standard techniques by limiting the metamodel domain to a small district that contains increased-quality 
designs (w.r.t. the assumed figures of interest, e.g. operating frequencies). Domain confinement remarkably lowers 
computational expenditures of acquiring the training data without restricting the design utility of the  model67. 
Constrained modeling comes in several variations that incorporate, among others, dimensionality reduction 
and variable-fidelity EM  models68–71. The fundamental problem of the aforementioned techniques is an inflated 
initial cost associated with identification of the database designs, otherwise necessary to set up the domain of the 
 surrogate68. To some extent, this issue can be mitigated by involving sensitivity  information72.  In73, an alternate 
way to performance-driven modeling has been introduced, which abandons the use of reference designs in favor 
of random trial points. Information extracted therefrom is used to define the domain with the use of an auxiliary 
inverse regression model. The method  of73 has been shown to retain the benefits of constrained modeling which 
reduces the initial cost by almost seventy percent in some cases.

In this paper, we propose a novel antenna modeling approach, which employs the performance-driven para-
digm, and advances over the reference-design-free approach presented  in73 by exploiting variable-resolution 
EM simulations. More specifically, generation of the trial points, necessary to identify the inverse regression 
model, is executed at the level of a coarse-discretization EM simulations. Furthermore, the majority of the 
training data points acquired to build the final metamodel are obtained at the same level, and supplemented by 
a small amount of high-fidelity samples. The data of both resolution levels is then blended using co-kriging74. 
Numerical validation performed using three antenna structures demonstrates that our framework allows to 
achieve additional computational savings of up to 64 percent over the technique  of73, and as high as 82 percent 
over the nested kriging  framework68 with regard to the model setup costs. This speedup is obtained without 
degrading the predictive power of the surrogate. Moreover, it ensures a remarkable accuracy improvement over 
conventional modeling methods.

Two‑level variable‑fidelity modeling within restricted domain. This section formulates the mod-
eling methodology proposed in the paper. First, the concept of performance-driven modeling is recalled, along 
with an outline of the trial point acquisition (section “Performance-driven modeling basics”). In sections two-
stage modeling: trial points and inverse regression model and surrogate domain definition, inverse regression 
model and surrogate domain definition are delineated, respectively. Section final surrogate. variable-resolution 
models and co-kriging discusses a construction of the final model using co-kriging, whereas section modeling 
procedure summary summarizes the complete procedure.

Performance‑driven modeling basics. Here, we recall the basics of constrained (or performance-
driven) modeling. The main concept is to construct the surrogate in a small portion of the parameter space, 
which encloses the designs being nearly optimum with regard to the target objective vectors. The computational 
benefits are due to a small volume of such a subset and a smaller sizes of training data sets that are needed to 
construct model of a satisfactory predictive  power75.

Table 1 outlines the notation used by constrained modeling  frameworks68. The figures of interest may include 
antenna operating frequencies (but also the bandwidths or permittivity of a dielectric substrate). The central idea 
here pertains to the objective space F that determines the validity zone of the metamodel. Another important 
entity is the model domain. Its establishment involves the concept of design optimality, that is measured using a 
merit function U(x, f)69. The solution x*, which is optimal with respect to a performance vector f ∈ F, is given as

The optimum design manifold, consisting of designs (1) obtained for all f ∈ F, constitutes an N-dimensional 
object in X, given as

The domain of the surrogate model is determined as a neighborhood of UF(F)69. In a majority of performance-
driven frameworks, its definition exploits database designs x(j) = [x1

(j) … xn
(j)]T, j = 1, …, p, optimal with respect 

(1)x
∗ = UF(f) = argmin

x
U(x, f).

(2)UF(F) = {UF(f) : f ∈ F}.

Table 1.  Notation used in performance-driven modeling.

Description Notation

Antenna parameter vector x = [x1 … xn]T

Conventional parameter space X = [l, u]

Lower bounds on the parameters l = [l1 …, ln]T

Upper bounds on the parameters u = [u1 …, un]T

Figures of interest fk, k = 1, …, N

Objective space F: fk.min ≤ fk
(j) ≤ fk.max, k = 1, …, N

Objective vector f = [f1 … fN]T
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to (1) for objective vectors f(j) = [f1
(j) … fN

(j)], distributed in F. More specifically, the couples {f(j),x(j)}, j = 1, …, p, 
serve as a training points to build the first-layer model sI(f) : F → X 68 that approximates UF(F), see Fig. 1. The 
metamodel domain itself constitutes an orthogonal extension of the first-level  surrogate69.

Acquisition of the database designs is a bottleneck of performance-driven modeling procedures because it 
requires a large number (a few hundreds to over a thousand) of antenna  simulations73. These extra expenses 
contribute to the overall model setup cost. As mentioned earlier, the number of trial points can be reduced by 
exploiting the sensitivity  information72, whereas their identification costs may be diminished by warm-start 
optimization algorithms (e.g.76).

The recent constrained modeling  framework73 introduced an alternative method for defining the model 
domain, which utilizes random trial points in place of the reference designs. The details of this method will be 
recalled in section two-stage modeling: trial points and inverse regression model, as it is one of the constituent 
parts of the introduced modeling procedure proposed.

Two‑stage modeling: trial points and inverse regression model. First, we will define the surrogate 
model domain. Toward this end, we need to roughly assess the optimum design manifold UF(F) of Eq. (2). We 
follow the methodology  of73, where the required information is extracted from a set of random trial points, 
allocated in the design space X.

We denote by xr
(j) = [xr.1

(k) … xr.n
(k)]T, j = 1, 2, … a series of random trial points yielded according to a uniform 

probability distribution and by fr(j) = [fr.1
(j) … fr.N

(j)]T the performance figure vectors derived from the antenna 
response rendered by the full-wave model at xr

(j). The performance figures are the same as the elements of the 
objective space F, e.g. the antenna resonant frequencies. The trial point is accepted if the extracted fr(j) resides in 
F and rejected otherwise (i.e. if the entries of fr(j) are located outside the lower and upper limits fk.min and fk.max, 
cf. Table 1, or if fr(j) cannot be identified due to distorted antenna responses). Figure 2 gives a graphical illustra-
tion of the trial point selection for an exemplary dual-band antenna. The process of generating the trial points 
continues until the assumed number Nr (e.g. 50) has been identified. For each accepted point xr

(j), an additional 
vector pr

(j) = [pr.1
(j) … pr.M

(j)]T is extracted from antenna responses. The said vector pr
(j) contains the information 

pertaining to antenna performance. In our example, these may refer to the reflection coefficient levels at the 
resonant frequencies, in which case M = N.

Using the set {xr
(j),fr(j),pr

(j)}j = 1,…,Nr, an inverse regression metamodel sr: F → X is constructed, serving as a rough 
assessment of the manifold UF(F). The analytical form of the model is taken as (cf.73)

The rationale for adopting the specific analytical form of the inverse surrogate as in Eq. (3) is that it is suffi-
cient to adequately reflect typically weakly-nonlinear relationships between the antenna geometry and operating 
parameters. Moreover, exponential terms feature only few parameters, and are flexible in the sense that they allow 
for modeling various curvatures, e.g. inverse proportionality occurring for certain parameters.

The coefficients of the inverse surrogate are found as the solutions of the following tasks.

(3)sr(f) = sr

�

[f1 ... fN ]
T
�

=





sr.1(f)

· · ·

sr.n(f)



 =















a1.0 + a1.1 exp

�

�N

k=1
a1.k+1fk

�

· · ·

an.0 + an.1 exp

�

�N

k=1
an.k+1fk

�















.

Figure 1.  Basics of confined  modeling68: (a) the objectives’ space F, (b) design space X (black circles mark 
the trial points, grey surface indicates the manifold of optimum designs UF(F)). The image of the first-layer 
metamodel sI(F) yields a rough assessment of the manifold, so it needs to be outstretched to encompass entire 
UF(F).
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The weigh factors wk are computed as 

where W = max{k = 1,…,Nr, j = 1,…,N: pj
(k)}. Here, we assume that pj

(k) > 0, and better designs are associated with 
lower values of pj

(k). The factors wk are introduced to promote high-quality trial points so as to increase their 
contribution to the inverse model, which is because these vectors are located in a closer proximity of UF(F). 
Figure 3 shows graphically the concepts of the model sr in accordance with the example of Fig. 2. Observe that 
the design space needs to be selected with a proper consideration with respect to the anticipated design quality 
therein, i.e. the ranges of the antenna geometry parameters have to be established reasonably. Otherwise, the 
number of trial points necessary to gather the assumed number of the observables of decent quality may be too 
excessive and thus, the computational benefits of the introduced technique may be compromised. In this work, 
we assume that the design space has been selected using at least a rudimentary problem-specific knowledge.

Surrogate domain definition. As discussed earlier, the set sr(F) approximates the manifold UF(F). The 
metamodel domain should contain a possibly large part of UF(F) so as to account for the designs being opti-
mum (or close to optimum) with respect to all f ∈ F.  In73, this is achieved by orthogonally extending sr(F) in all 
directions orthogonal to this set. Let us define a orthonormal basis of vectors normal to sr(F) at f as {vn

(k)(f)}, 

(4)
[

aj.0 aj.1 ... aj.N+1

]

= arg min
[b0 b1 ... bK+1]

Nr
∑

k=1

wk

[

sr.j

(

f
(k)
r

)

− x
(k)
r.j

]2
, j= 1, . . . ,n.

(5)wk =
[

W −max{p1(x
(j)), ..., pN (x

(j))}
]2
, k= 1, . . . ,Nr ,

Figure 2.  Procedure of the random trial point rendition for an exemplary dual-band antenna (the objective and 
parameter space are two- and three-dimensional, respectively). The random designs whose resonant frequencies 
reside within the required confines of the objective space are retained, the remaining ones are discarded. The 
inverse regression model sr(⋅) is built using the ultimate trial point set {xr

(j)}j = 1,…,Nr.

Figure 3.  Inverse regression model sr constructed based on the pre-selected trial points xr
(j) along with their 

respective objectives fr(j). The model elements sr.j are are shown as grey surfaces for the parameters x1 (left), x2 
(middle), and x3 (right), respectively.
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k = 1,…,n–N. Let also T = [T1 … Tn]T denote a vector of non-negative extension factors. Further, let us compute 
the coefficients of the extension

Using (6), the metamodel domain XS is given as

The meaning of this definition is that XS comprises of all designs given by (7), generated for every possible 
combination of the objective vectors from the space F and λk ∈ [−1, 1], k = 1,…,n–N. Observe that the domain 
l a t e r a l  b o u n d s  a r e  t h e  m a n i f o l d s  S+ =

{

x ∈ X : x = sr(f)+
∑n−N

k=1 αk(f)v
(k)
n (f)

}

 a n d 
S− =

{

x ∈ X : x = sr(f)−
∑n−N

k=1 αk(f)v
(k)
n (f)

}

.
The extension factors Tj are established individually for all parameters using the trial points {xr

(j)} and the 
following procedure. We denote the kth parameter’s lower and upper bounds as lk and uk, respectively. Given 
the pair {xr

(j), fr(j)}, we define Pk(xr
(j)) ∈ [lk uk] × F as the vector for which the distance between [xr.k

(j) (fr(j))T]T and 
[sr.k(f) fT]T, f ∈ F, i.e.

is minimal; with the orthogonal projection of [xr.k
(j) (fr(j))T]T onto the representation of sr.k in [lk uk] × F denoted 

as Pk(xr
(j)). Consequently

refers to the minimal distance between the said image and [xr.k
(j) (fr(j))T]T (note that dr.k may be viewed as the 

distance between the entries of the trial vector and the gray surfaces of Fig. 3). Based on these considerations, 
we define the extension factors Tk as

Thus, Tk constitutes a half of the averaged distance from the trial point entry to the corresponding image of 
sr.k. The value of the factor 0.5 is chosen because many trial points are of poor quality and using (full) average dis-
tance would lead to excessively large domain containing too many designs that are far from the optimum  ones73.

Final surrogate. variable‑resolution models and co‑kriging. One of the important mechanisms 
employed in this work to lower the cost of surrogate model construction are variable-resolution EM models. In 
most cases, the modeling process is executed at a single level of fidelity, except situations where the lower-reso-
lution model is corrected with the use of a handful of high-fidelity samples (e.g. space  mapping77, co-kriging74). 
In this work, we employ low-fidelity models to accelerate the process of defining the surrogate model domain, as 
well as to downsize the training data acquisition cost.

Variable‑resolution EM models. The fundamental benefit of using low-fidelity models, which typically means 
coarse-discretization EM simulations in the case of  antennas78, is that the associated simulation time may be 
considerably shortened, as compared to the high-fidelity version. The latter is normally established to ensure 
sufficiently accurate rendition of antenna characteristics. The speedup obtained due to low-fidelity analysis is 
obtained at the expense of the accuracy loss (cf. Fig. 4), which may or may not be problematic, depending on the 
particular context. For example, in space mapping optimization, the low-fidelity model should to be corrected 
to make it a reliable prediction tool, at least in the vicinity of the current iteration  point79. When the low-fidelity 
model is used to, e.g. parameter space pre-screening, it can usually be used  uncorrected80.

In this work, the low-fidelity or coarse model, denoted as Rc(x), will be used for two purposes: (i) genera-
tion of the trial points and metamodel definition as delineated in section two-stage modeling: trial points and 
inverse regression model, and (ii) accelerating the acquisition of the training data by complementing sparsely-
sampled high-fidelity model responses (denoted as Rf(x)) with densely-sampled low-fidelity ones. In the case of 
(ii), co-kriging74 is used to combine simulation data of different fidelities. As for (i), because the trial points are 
only employed to provide an inaccurate approximation of the manifold comprising optimum designs, there is 
no need to correct a low-fidelity model at this phase of the modeling process, which is advantageous from the 
standpoint of simplicity of implementation.

Final surrogate construction using co‑kriging. The final surrogate sCO(x) is generated in the domain XS using 
co-kriging60. The training data set contains NBf high-fidelity pairs {xBf

(k),Rf(xBf
(k))}k = 1, …, NBf, where xBf

(k) ∈ XS, 
and NBc low-fidelity pairs {xBc

(k),Rc(xBc
(k))}k = 1, …, NBc, xBc

(k) ∈ XS. We also use notation XBf = {xBf
(k)}k = 1,…,NBf, and 

XBc = {xBc
(k)}k = 1,…,NBc.

(6)α(f) = [α1(f) ... αn−N (f)]
T =

[

|Tv(1)n (f)| ... |Tv(n−N)
n (f)|

]T
.

(7)XS =















x = sr(f)+

n−N
�

k=1

�kαk(f)v
(k)
n (f) : f ∈ F,

−1 ≤ �k ≤ 1, k = 1, ..., n− N















.

(8)Pk(x
(j)
r ) = argmin

f∈F
||[x

(j)
r.k (f

(j)
r )T]T − [sr(f) f

T]T||,

(9)dr.k(x
(j)
r ) = ||[x

(j)
r.k (f

(j)
r )T]T − [sr(P(x

(j)
r )) P(x

(j)
r )T]T||,

(10)Tk =
1

2Nr

Nr
∑

j=1

dr.k(x
(j)
r ).
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Let us begin by a recollection of the kriging interpolation, followed by formulation of co-kriging. The kriging 
surrogate sKR(x) is given as

with M being a NBf × t model matrix of XBf, whereas F denotes a row vector of the design x comprising t elements 
(t denotes the number of regression function  factors60); and γ refer to coefficients of the regression function

We also have r(x) = (ψ(x, x
(1)
Bf ), ...,ψ(x, x

(NBf )

Bf )) , constitutes an NBf—element row vector whose entries are 
the correlations between XBf and x, whereas Ψ = [Ψi,j] denotes a correlation matrix, where Ψi,j = ψ(xBf

(i),xBf
(j)). An 

exemplary widely used correlation function may be

where θk, k = 1, …, n, are the hyperparameters to be found during model identification, which is achieved through 
Maximum Likelihood Estimation (MLE)60 as

where σ̂ 2 = (Rf (XBf )− Fα)T�−1(Rf (XBf )− Fα)/NBf , with |Ψ| being the determinant of Ψ. In practice, a 
correlation function of Gaussian type (P equal to 2) is often employed, as well as M = 1 and F = [1 …  1]T.

Co-kriging blends together two models: (i) a kriging surrogate sKRc set up with the low-fidelity samples (XBc, 
Rc(XBc)) and (ii) the model sKRf built using the residuals (XBf, r), with r = Rf(XBf) − ρ⋅Rc(XBf). In the latter, ρ is a 
portion of the maximum likelihood estimate of the sKRf surrogate. Rc(XBf) is roughly equal to sKRc(XBf). The cor-
relation function of the two models is described by Eq. (13).

The co-kriging model sCO(x) is given by

where

with M = [ρMc Md], moreover matrices (Fc, σc, Ψc, Mc) and (Fd, σd, Ψd, Md) are derived, in turn, from sKRc and sKRf
60.

Design of experiments. A separate note should be made about the domain sampling procedure. Performing 
the design of experiments in a direct manner is inconvenient, as a geometry of the set XS is relatively complex. 
Instead, we use the procedure explained in Fig. 5, which involves a surjective transformation between the unit 
cube [0,  1]n and the constrained domain. According to this procedure, the samples xB

(k) = h2(h1(z(k))) ∈ XS are 
uniformly distributed w.r.t. the objective space F, but not w.r.t. XS. The normalized samples {z(k)}, k = 1, …, NB, 
are distributed using Latin Hypercube Sampling,  LHS81). Observe that the proposed modeling technique belong 
to a wider class of performance-driven (or constrained) modeling techniques, in which the surrogate is con-
structed within a region of the design space confined from the point of view of the design objectives. In contrast 
to the conventional modeling techniques, in performance-driven modeling, the surrogate domain constitutes 
a thin set within the classical deign space delimited by the lower and upper bounds on the design variables. As 

(11)sKR(x) = Mγ + r(x) ·�−1 · (Rf (XBf )− Fγ ),

(12)γ = (XT
Bf�

−1XBf )
−1XBf�

−1
Rf (XBf ).

(13)ψ(x, x
′

) = exp
(

∑n

k=1
−θk|x

k − x
′k|P

)

,

(14)(θ1, ..., θn) = argmin−(NBf /2) ln(σ̂
2)− 0.5 ln(|�|),

(15)sCO(x) = Mγ + r(x) ·�−1 · (r − Fγ ),

(16)r(x) = [ρ · σ 2
c · rc(x), ρ

2 · σ 2
c · rc(x,XBf )+ σ 2

d · rd(x)]

(17)� =

[

σ 2
c �c(XBc ,XBc) ρ σ 2

c �c(XBc ,XBf )

ρ σ 2
c �c(XBf ,XBc) ρ2σ 2

c �c(XBf ,XBf )+ σ 2
d�d

]

,

Figure 4.  Variable-fidelity models: (a) an exemplary dual-band antenna, (b) antenna reflection responses 
evaluated with the low-fidelity EM model (- - -) and the high-fidelity one (—). Here, the high-fidelity model 
simulation time is about 80 s, whereas the time of the coarse model is only 25 s.
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demonstrated  in82, performing sequential sampling in a constrained domain does not bring any advantages over 
one-shot data sampling in terms of improving the model predictive power. This can be explained by a particular 
geometry of the constrained domain of the performance-driven surrogate, which encompasses nearly-optimum 
designs, the latter forming a manifold of a lower dimension than that of the original parameters space.

The function h2(h1()) also facilitates solving design tasks that involve the surrogate model, such as optimi-
zation. More specifically, the optimization process may be carried out over the unity cube [0,  1]n, where the 
design variables (i.e. geometry parameters of the antenna at hand) are transformed into the model domain 
for metamodel evaluation. Additionally, sr(f) can be used as an initial design of a high quality for any assumed 
performance figure vector f ∈ F.

It is expected that the incorporation of variable-fidelity models into the domain-confined surrogate, as 
described in this section, will lead to an additional computational savings over the method  of73 with regard to 
the total costs of the model setup. This is because majority of the costs (related to the acquisition of both the trial 
and training points) will be reduced by the factor equal to the EM simulation time ratio between the models of 
low- and high-fidelity.

Modeling procedure summary. Here, we summarize the proposed modeling procedure, the components 
of which were described in sections performance-driven modeling basics through final surrogate. variable-res-
olution models and co-kriging. It should be noted that there is only one control parameter, the number of trial 
points Nr, which is normally set to 50. The number of training data points (NBf of high-fidelity, and NBc of low-
fidelity) depends on the required model accuracy. The modeling workflow has been provided in Fig. 6. Further-
more, Fig. 7 shows the flowchart of the process. 

Figure 5.  Conceptual illustration of the training data sampling process: (i) samples distributed according to 
Latin Hypercube Sampling (LHS)81 (top), (ii) mapping onto the Cartesian product of the performance figure 
space F and [−1,1]n–N using function h1 (middle), (iii) black circles mark data samples projected onto the 
confined domain XS using function h2 (bottom); gray circles indicate the samples distributed over the image of 
design space F prior to orthogonal extension.
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Figure 6.  The workflow of the proposed antenna modeling procedure with variable-resolution EM simulations.

Figure 7.  Operational flow of the presented two-layer modeling technique with domain confinement and 
variable-resolution EM simulations.
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Results
The modeling procedure introduced in section two-level variable-fidelity modeling within restricted domain 
has been validated in this section with the use of three exemplary microstrip antennas. The results obtained 
for various training data set sizes are compared to a number of benchmark methods including traditional (i.e. 
unconstrained) metamodels (kriging and RBF), along with the performance-driven frameworks (nested  kriging68, 
and the reference-design-free  approach73). The major figures of interest include the surrogates’ predictive power, 
its dependence on the cardinality of the training dataset, as well as the computational cost of the model setup.

Verification antennas. The antenna structures used for verification have been shown in Figs. 8, 9 and 10. 
These include a ring-slot  antenna83, a dual-band  dipole84, and a quasi-Yagi antenna with a parabolic  reflector85, 
which henceforth are referred to as Antenna I, II and III, respectively. Figures 8, 9 and 10 also contain the rel-
evant data, among others, designable parameters, operating parameters, and the details on the parameter and 
objective spaces. Furthermore, Fig. 11 shows the families of reflection responses corresponding to various model 
fidelities for all the benchmark antenna structures. Observe that all the benchmark antennas have been already 
validated, first, in their respective source  papers83–85, and also in our previous work, e.g.68,86). Therefore, the 
experimental validation has not been provided, as being immaterial to the scope of the paper.

Validation experiments setup. Antennas I, II and III have been modelled utilizing the technique pro-
posed in this paper, as well as a number of benchmark methods, as listed in Table 2. The benchmark surrogates 
have been built using the training sets comprising 50, 100, 200, 400 and 800 data samples. The proposed models 
were obtained using several combinations of the coarse and fine datasets, in particular, NBf = 50 and NBc ∈ {50, 
100, 200, 400, 800}, as well as NBf = 100 and NBc ∈ {50, 100, 200, 400, 800}. The cost of model construction is cal-
culated in terms of the equivalent number of high-fidelity simulations, which considers the simulation time ratio 
of Rf versus Rc. Also, the cost includes all additional expenses, e.g. those associated with the reference database 
designs acquisition for the nested kriging  framework68, or generating the trial points for the method  of73, and 
the introduced technique.

A relative RMS error has been used as a measure of the model accuracy. It has been computed as 
||Rs(x)–Rf(x)||/||Rf(x)||, where Rs and Rf are the surrogate and EM-simulated antenna characteristics, respectively. 
The average errors are reported, which are obtained for one hundred independent testing points.

Discussion
The results can be found in Tables 3, 4 and 5, for Antenna I, II and III, respectively. Furthermore, Figs. 12, 13 
and 14 illustrate the antenna responses at selected test locations, evaluated using the proposed model and EM 
simulation. The analysis of the data in the tables leads to the following observations:

Figure 8.  Antenna I: ring-slot microstrip antenna: (a) antenna geometry, (b) antenna parameters.
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Figure 9.  Antenna II: dual-band uniplanar dipole antenna: (a) antenna geometry, (b) antenna parameters.

Figure 10.  Antenna III: qasi-Yagi antenna with parabolic reflector: (a) antenna geometry, (b) antenna 
parameters.
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Figure 11.  Grid convergence plots for: (a) Antenna I, (b) Antenna II, and (c) Antenna III for different numbers 
of mesh cells corresponding to various model fidelities from the lowest employed fidelity up to the highest one.

Table 2.  Benchmark modeling methods.

Modeling approach Domain Setup

Kriging interpolation Conventional (parameter space X) Gaussian correlation function, second-order polynomial used as a trend function

Radial basis functions (RBF) Conventional (parameter space X) Gaussian correlation function, scaling coefficient determined through cross-validation

Nested  kriging81 Confined domain XS

Thickness parameter T = 0.05 (Antennas I through III), 10 reference designs used in all cases, the numbers 
of EM simulations required for their identification:
• Antenna I (acquisition cost 864 EM simulations)
• Antenna II (acquisition cost 930 EM simulations)
• Antenna III (acquisition cost 1899 EM simulations)

Reference-design-free  modelling65 Confined domain XS

Thickness parameter T = 0.05 (Antennas I through III), the following numbers of EM simulation used to 
identify Nr = 50 accepted observables:
• 106 (Antenna I)
• 230 (Antenna II)
• 192 (Antenna III)
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• The accuracy of the presented model outperforms that of the conventional (i.e. unconstrained) models. In 
particular, for Antennas I and III, the unconstrained surrogates are unable to yield the surrogates of usable 
accuracy: the modeling error is still beyond 25% even for the training sets of the largest sizes.

• The predictive power of the introduced surrogate is also better than for the nested kriging  metamodel68 set 
up using smaller training data sets, which is due to the inclusion of the random trial points into the training 
dataset. For larger values of NB, the models exhibit similar accuracy. This is also the case for the reference-
design-free method, the accuracy of which is comparable to the proposed model due to sharing the rules for 
model domain definition. Yet, for the smaller training sets, the proposed model is more accurate, which is 
because the overall number of samples (low- and high-fidelity together) is larger than for the method  of73. 
Perhaps the most important advantage of the proposed methodology is an excellent computational efficiency. 
Executing majority of the operations with the use of low-fidelity model leads to considerable savings, as 
reported in Tables 3, 4 and 5. For example, the cost reduction over conventional surrogates is as high as 55, 
54 and 60 percent for Antennas I, II and III, respectively, assuming NB = 800 and NBf = 50.

• The savings over the nested kriging model are even higher due to the extra expenses entailed by the reference 
design acquisition  in68. We have 78, 79 and 88 percent savings for Antennas I through III, respectively, also 
for NB = 800 and NBf = 50. The savings over the reference-design-free  methods73 are 61, 64 and 68 percent, for 
Antenna I, II and III, respectively, again assuming NB = 800 and NBf = 50. It should be reiterated that the cost 
reduction with respect to the benchmark performance-driven methods does not deteriorate the modeling 
accuracy.

Conclusion
This work presented a novel framework for surrogate modeling of antenna structures. Our approach exploits 
a constrained modeling paradigm with the surrogate model domain established using random trial points and 
the operating parameter data extracted therefrom. Furthermore, variable-resolution EM models are used at 
the domain definition stage and the surrogate construction phase. The latter combines sparsely acquired data 
samples of high-fidelity with densely collected low-fidelity training points. The final surrogate is rendered using 
co-kriging. Extensive numerical experiments confirm that the proposed method outperforms conventional 
methods. Furthermore, the predictive power of the presented surrogate is comparable or slightly better than 
for the benchmark performance-driven models. In terms of the computational efficiency, our modeling frame-
work by far outperforms all the techniques employed in the numerical studies, both the conventional and the 

Table 3.  Antenna I: modeling results and benchmarking. a The cost includes acquisition of the reference 
designs, which is 864 EM high-fidelity simulations of the antenna when using feature-based  optimization67 as 
listed in the table. Conventional (minimax) optimization required high-fidelity 1012 simulations. b The cost 
refers to high-fidelity simulations. c The cost includes generation of random trial points, here, 106 high-fidelity 
simulations in total to yield Nr = 50 accepted samples. d The cost includes generation of random trial points at 
low-fidelity level, here, 120 simulations in total to yield Nr = 50 accepted samples. e In the case of the proposed 
model, the numbers 50 through 800 refer to low-fidelity EM simulations.

Modeling method

Number of training  samplese

50 100 200 400 800

Kriging

Modeling error 56.9% 50.8% 35.8% 31.5% 25.6%

Model setup  costb 50 100 200 400 800

Modeling error 61.0% 53.2% 37.9% 34.1% 27.2%

RBF

Model setup  costb 50 100 200 400 800

Modeling error 19.4% 12.9% 7.7% 5.1% 3.7%

Nested kriging68

Model setup  costa 914 964 1064 1264 1664

Modeling error 13.4% 9.9% 6.9% 5.4% 4.4%

No-reference-design modeling73

Model setup  costc 156 206 306 506 906

Modeling error 13.1% 8.5% 6.7% 5.1% 4.3%

Two-stage variable-resolution surrogate (this work)

NBf = 50

Model setup  costd 106.7 123.3 156.7 223.3 356.7

Modeling error 8.2% 7.7% 5.3% 4.2% 3.5%

NBf = 100

Model setup  costd 156.7 173.3 206.7 273.3 406.7
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Table 4.  Antenna II: modeling results and benchmarking. a The cost includes acquisition of the reference 
designs, which is 930 EM high-fidelity simulations of the antenna when using feature-based  optimization67 as 
listed in the table. Conventional (minimax) optimization required 1201 high-fidelity simulations. b The cost 
refers to high-fidelity simulations. c The cost includes generation of random observables, here, 230 high-fidelity 
simulations in total to yield Nr = 50 accepted samples. d The cost includes generation of random trial points at 
low-fidelity level, here, 215 simulations in total to yield Nr = 50 accepted samples. e In the case of the proposed 
model, the numbers 50 through 800 refer to low-fidelity EM simulations.

Modeling method

Number of training  samplese

50 100 200 400 800

Kriging

Modeling error 21.7% 17.3% 12.6% 9.3% 7.2%

Model setup  costb 50 100 200 400 800

Modeling error 24.9% 19.8% 14.3% 10.5% 8.7%

RBF

Model setup  costb 50 100 200 400 800

Modeling error 9.9% 6.4% 4.4% 3.8% 3.4%

Nested kriging68

Model setup  costa 980 1030 1130 1330 1730

Modeling error 7.3% 5.1% 3.8% 3.1% 2.5%

No-reference-design modeling73

Model setup  costc 280 330 430 630 1,030

Modeling error 5.4% 3.1% 2.5% 2.1% 1.7%

Two-stage variable-resolution surrogate (this work)

NBf = 50

Model setup  costd 132.8 148.4 179.7 242.2 367.2

Modeling error 3.5% 3.0% 2.3% 1.8% 1.6%

NBf = 100

Model setup  costd 182.8 198.4 229.7 292.2 417.2

Table 5.  Antenna III: modeling results and benchmarking. a The cost includes acquisition of the reference 
designs, which is 1899 EM high-fidelity simulations of the antenna. b The cost refers to high-fidelity 
simulations. c The cost includes generation of random trial points, here, 192 high-fidelity simulations in total to 
yield Nr = 50 accepted samples. d The cost includes generation of random trial points at low-fidelity level, here, 
207 simulations in total to yield Nr = 50 accepted samples. e In the case of the proposed model, the numbers 50 
through 800 refer to low-fidelity EM simulations.

Modeling method

Number of training  samplese

50 100 200 400 800

Kriging

Modeling error 61.4% 50.7% 39.8% 32.8% 31.8%

Model setup  costb 50 100 200 400 800

RBF

Modeling error 65.3% 51.8% 43.2% 37.1% 33.6%

Model setup  costb 50 100 200 400 800

Nested kriging68

Modeling error 17.9% 13.3% 7.5% 5.4% 4.5%

Model setup  costa 1949 1999 2099 2299 2699

No-reference-design modeling73

Modeling error 10.8% 8.4% 7.1% 5.9% 5.0%

Model setup  costc 242 292 392 592 992

Two-stage variable-resolution surrogate (this work)

NBf = 50

Modeling error 8.7% 7.2% 6.7% 6.5% 6.0%

Model setup  costd 118.5 131.9 158.5 211.9 318.5

NBf = 100

Modeling error 6.8% 6.1% 5.4% 5.3% 5.2%

Model setup  costd 168.5 181.9 208.5 261.9 368.5
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Figure 12.  Antenna I: reflection responses at the representative test designs: full-wave model (—), and the 
presented two-level variable-fidelity surrogate (o) with NBf = 50 and NBc = 800.

Figure 13.  Antenna II: reflection responses at the representative test designs: full-wave model (—), and the 
presented two-level variable-fidelity surrogate (o) with NBf = 50 and NBc = 800.

Figure 14.  Antenna III: reflection responses at the representative test designs: full-wave model (—), and the 
presented two-level variable-fidelity surrogate (o) with NBf = 50 and NBc = 800.
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performance-driven ones. The computational savings over the traditional models are as high as 56 percent on 
the average, whereas they are 82 and 64 percent over the nested kriging modeling technique and the database-
design-free method, respectively. The procedure presented in this work can be considered a viable alternative to 
state-of-the-art modeling routines, especially for more demanding conditions that include multi-dimensional 
spaces with broad geometry and material parameters’ ranges, the same pertains to the operating conditions.

Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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