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Detecting and mitigating 
simultaneous waves of COVID‑19 
infections
Sebastian Souyris1*, Shuai Hao2, Subhonmesh Bose3, Albert Charles III England4, 
Anton Ivanov2, Ujjal Kumar Mukherjee2,5 & Sridhar Seshadri2,5

The sudden spread of COVID-19 infections in a region can catch its healthcare system by surprise. 
Can one anticipate such a spread and allow healthcare administrators to prepare for a surge a priori? 
We posit that the answer lies in distinguishing between two types of waves in epidemic dynamics. 
The first kind resembles a spatio-temporal diffusion pattern. Its gradual spread allows administrators 
to marshal resources to combat the epidemic. The second kind is caused by super-spreader events, 
which provide shocks to the disease propagation dynamics. Such shocks simultaneously affect a large 
geographical region and leave little time for the healthcare system to respond. We use time-series 
analysis and epidemiological model estimation to detect and react to such simultaneous waves using 
COVID-19 data from the time when the B.1.617.2 (Delta) variant of the SARS-CoV-2 virus dominated 
the spread. We first analyze India’s second wave from April to May 2021 that overwhelmed the 
Indian healthcare system. Then, we analyze data of COVID-19 infections in the United States (US) 
and countries with a high and low Indian diaspora. We identify the Kumbh Mela festival as the likely 
super-spreader event, the exogenous shock, behind India’s second wave. We show that a multi-area 
compartmental epidemiological model does not fit such shock-induced disease dynamics well, in 
contrast to its performance with diffusion-type spread. The insufficient fit to infection data can be 
detected in the early stages of a shock-wave propagation and can be used as an early warning sign, 
providing valuable time for a planned healthcare response. Our analysis of COVID-19 infections in 
the US reveals that simultaneous waves due to super-spreader events in one country (India) can lead 
to simultaneous waves in other places. The US wave in the summer of 2021 does not fit a diffusion 
pattern either. We postulate that international travels from India may have caused this wave. To 
support that hypothesis, we demonstrate that countries with a high Indian diaspora exhibit infection 
growth soon after India’s second wave, compared to countries with a low Indian diaspora. Based on 
our data analysis, we provide concrete policy recommendations at various stages of a simultaneous 
wave, including how to avoid it, how to detect it quickly after a potential super-spreader event occurs, 
and how to proactively contain its spread.

As of August 10, 2022, COVID-19 has claimed more than 6.4 million lives worldwide (https://​covid​19.​who.​int/). 
The spread and the impact of the disease since early 2020 have not been uniform over time. Data on infection 
spread across the globe exhibit wave-like patterns; the cases often grow rapidly for a period of time before mitigat-
ing measures arrest the growth and reverse that trend. A closer look at these waves reveals that not all waves have 
similar spatio-temporal signatures. In some, the temporal pattern of the waves among the various states within a 
country rise, but not simultaneously. As will be evident from our plots, India’s first wave of COVID-19 infections 
in 2020 fits this pattern, where infection progressively propagated from one state to another. As a result, the peaks 
of the waves in different parts of a nation occurred at different times. The demand for healthcare resources during 
such a diffusion-style infection spread gets distributed over time. A carefully crafted policy can enable resource-
sharing to manage healthcare needs. The picture is very different in waves that rise simultaneously in every state 
within a nation. A case in point is India’s second wave in the summer of 2021. Fueled by the highly transmissible 
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B.1.617.2 Delta variant of the SARS-CoV-2 virus, the infection load grew almost simultaneously across multiple 
states in India1,2. The concurrency of the growth across the states overwhelmed the national healthcare system. 
Shortage of hospital beds, staff, ventilators, etc., became a reality everywhere throughout the whole nation. The 
Delta variant was identified as a variant of concern by the World Health Organization on May 11, 2021. It is 1.64 
times more transmissible than the B.1.1.7 (Alpha) variant, or 2.3–3.2 times more transmissible than the wild-
type SARS-CoV-2 virus. Hospitalization rates have been 1.5–1.8 times higher than that after infection with the 
Alpha variant and 2.3–2.8 times higher after infection with the wild-type virus3.

The infection pattern in the United States (US) tells a similar story. As our plots will reveal, the first and 
the second waves in the US in 2020 and early 2021 had diffusion-type growth patterns. On the other hand, the 
third wave later in the summer of 2021 had a simultaneous uptick across all states. This growth in the US led 
to significant policy shifts regarding mask mandates, travel restrictions, etc. The effect was less dire than that in 
India. The Delta variant reached America’s shores after peaking in India, and the US had already vaccinated a 
significant portion of its adult population by then. The healthcare system was decidedly better prepared. Never-
theless, it faced difficulties in various states, especially those where the vaccination rates were low at that point.

Our contributions.  Given the very different natures of the two types of waves in epidemic spreads, in this 
paper, we ask three questions. First, how do these simultaneous waves originate? Second, can one identify sig-
natures of these waves early enough to issue warning signs to proactively plan for them? Third, what measures 
can one take to avoid such waves and what policies one can adopt when the peaks from simultaneous waves are 
imminent? We systematically answer these questions using statistical data analysis with COVID-19 data from 
India, US and other countries. Concretely, the contributions of this paper are three-fold.

•	 We identify two important origin stories for simultaneous waves. First, they emerge due to super-spreader 
events, where large crowds congregate from multiple regions in a shared location and subsequently return 
to their respective locations. The infection spreads among the attendees; then, almost simultaneously, it 
reaches those diverse geographical regions when these attendees return home. We provide evidence that the 
Kumbh Mela festival in India in 2021 was such a super-spreader event on a national scale. Second, significant 
international travel from a country that is experiencing a surge in cases from a highly contagious variant can 
also lead to simultaneous waves in another nation. Indeed, our data analysis reveals that the Delta variant-
induced uptick in COVID-19 cases in the US can be linked to international travel from India, bringing the 
infection to multiple states within the country, simultaneously.

•	 We propose two methods to detect early signs of simultaneous waves. The first among these utilizes an estima-
tion procedure with a susceptible-infected-removed (SIR) multi-area epidemiological model. As we will show, 
this model estimation procedure fits the data of infection growth well when the waves are not simultaneous 
across the nation. Trying the same in the early days with simultaneous waves results in a poor fit to data. This 
lack of fit can be viewed as a statistical control tool: a significant prediction error of the number of new cases 
is a signature of simultaneous waves. Second, we show that even a simple count that tracks the number of 
new cases per location during the early days of the simultaneous growth is a good indicator of simultaneous 
waves.

•	 Using our analysis of COVID-19 data from India, the US, and other countries, we propose four concrete 
policy recommendations to counter simultaneous waves. Namely, they are: (1) identify variants of concerns 
through genomic testing of new cases, possibly through international coalitions, that may be on the rise in 
any part of the world2,4,5; (2) limit and manage potential super-spreaders events; (3) detect an imminent 
simultaneous rise in cases across a nation early enough using one of our simple tests to prepare for it, e.g., by 
restricting internal mobility, enforcing masks usage, allocating healthcare resources, etc.; (4) monitor and 
possibly restrict travel from countries with rising infections levels and implement stringent testing protocols 
at airports to limit the influx of new infections.

The Delta variant has been overtaken by the Omicron variant, a more transmissible but less virulent mutation 
of the SARS-CoV-2 virus6. It is also quite possible that COVID-19 will not be the last pandemic in this increas-
ingly connected world. Hence, our study of the origins of simultaneous waves provides valuable insights into 
the mechanics of epidemics that do not exhibit classic diffusion-type growth patterns. Our recommendations 
are actionable; they should allow policy-makers to counter such waves effectively during various stages of a 
simultaneous wave. However, our recommendations are based on publicly available data that was not collected 
via systematic experimental design. As a result, our conclusions are only as good as the quality of the data itself. 
In addition, our conclusions are purely associative in nature. We do not claim causal relationships between the 
plausible wave origins and the wave patterns. Establishing such a relationship requires a more sophisticated 
analysis, controlling for a range of confounding covariates, which we relegate to future endeavors.

The super‑spreader behind India’s second wave in 2021
COVID-19 in India was on the decline between December 2020 and February 2021. A rapid spike in infections 
appeared in late March 2021. The swiftness of the onslaught left millions suffering from significant shortages in 
emergency medical supplies and hospital capacities. The death toll from COVID-19 in India on May 25, 2021, 
became the highest for any nation in a single day. This surge in cases is the second wave of COVID-19–the 
first wave in mid-2020 had largely dissipated by then. The second wave differs from the first wave in two ways. 
First, the increase in infections during the second wave coincides with the growth of the Delta variant that 
was first identified in the state of Maharashtra in late 2020. Second, the growth of new infections in the second 
wave is sharp and almost simultaneous over most parts of India. The first wave, on the other hand, resembles a 
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spatio-temporal diffusion. Consider the daily number of COVID-19 infections in various states in Fig. 1a, drawn 
using district-wise COVID-19 positivity results from https://​www.​covid​19ind​ia.​org/. We sub-select 394 districts 
among the 675 districts in India with complete data of daily new positive cases from 05/01/2020 to 05/08/2021; 
see our data repository. Then, we aggregate the data from the districts to compute state-wise infection levels 
in Fig. 1a. Notice that the state of Maharashtra shows a steady growth of infections since January 2021, where 
the Delta variant was first detected in late 2020. In all other states, the second wave does not appear till April 
2021, when the infections abruptly rise everywhere. We consider 05/01/2020 to 10/31/2020 and 03/01/2021 
to 05/08/2021 as the date ranges for the first and the second waves, respectively. The waves’ start dates are 
approximated. There is no official institution that states the start date of a wave, as, for example, the World Health 
Organization declared the COVID-19 outbreak to be a pandemic on 03/11/2020. Different sources cite slightly 
different dates around the waves’ start dates that we name. With these date ranges, the number of districts with 
≥ 5 cumulative number of COVID-19 infections since the starts of the two waves in Fig. 1b also underscores the 
concurrence in infection growth across the country.

To further illustrate the simultaneity of the second wave, consider the time elapsed Tp% since the start dates 
of the two waves to reach p% of their levels on 09/15/2020 and 05/08/2021, respectively. The box plot of Tp% for 
p = 10, 20, 30, 40, 50 in Fig. 2 clearly show a larger spread among Tp% ’s in the first wave (Fig. 2a) compared to 
that in the second wave (Fig. 2b).

Origins of the COVID‑19 waves in India via time‑series analysis.  Several tools can be used to con-
duct forensic analysis of the patterns of spread. Here, we leverage cross-correlation analysis of time-series data 
for the same. Specifically, cross-covariance of time-series data can shed light on the causal effect of one time-
series on another. We use cross-covariance among the time series of COVID-19 infections across 394 districts to 
identify this causal effect, ignoring the impacts of possible inadequate testing and erroneous reporting.

Consider the sequence of new daily COVID-19 infections in district i on day t as ρi
t , where t is measured as 

days since the start dates of each wave. Then, the cross-covariance function over T time-periods is described by

Figure 1.   Plot (a) shows the number of daily new COVID-19 cases for all the states of India, smoothed via 14 
days rolling average. Plot (b) illustrates the number of districts with more than five cumulative new COVID-19 
cases since the start dates of the two waves—first wave since 05/01/2020 and second wave since 03/01/2021.

Figure 2.   Box plot in (a) portrays Tp% across 394 Indian districts during the first wave (starting in 05/01/2020). 
The box plot in (b) portrays the same for the second wave (starting in 03/01/2021).

https://www.covid19india.org/
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where κ denotes the time-shift of one time-series with respect to the other in calculating the covariance. Here, 
〈ρi〉 and 〈ρj〉 compute the empirical means of the T-length time series ρi and ρj , respectively. The value of κ⋆(i, j) 
at which the covariance is maximized between the daily new infections in district i and that in district j denotes 
the number of days by which the infection pattern in district j roughly lags the pattern in district i. We vary κ in 
[−30, 30] with T = 92 days for the emergence of the first wave and T = 69 days for the second wave to compute 
κ⋆(i, j) . A time-lag between the patterns of district i and district j does not imply that infected people from district 
i came in direct contact with people in district j to drive the spread of COVID-19. However, consistent positive 
values of κ⋆(i, j) ’s for multiple j’s suggests that district i is an epicenter of the infection spread.

Figure 3 portrays a bubble plot of 
∑N

j=1 κ⋆(i, j) over those locations i for which this sum is positive. A larger 
bubble indicates higher likelihood of a location being a source of the infection spread. Figure 3 reveals important 
differences between the likely epicenters of the two waves. The first wave developed around large cities (possibly 
from contact with infected people engaged in foreign travel). The second wave largely originates from Maha-
rashtra and, to a smaller extent, the Ganges belt. Figure 4 affirms that the infection spread from higher to lower 
populated districts during the first wave. Populations of the districts affected through time is much “flatter” 
during the second wave, suggesting the role of super-spreader events in affecting the nation almost uniformly. 
Maharashtra as a likely epicenter for the second wave, corroborates our theory about the circulation of the 
Delta variant, aligned with the findings from genomic sequencing of COVID-positive patients. The remaining 
epicenters in the Ganges belt point towards the Kumbh Mela festival as the super-spreader event7–9. Several cases 
of COVID-19 infection during the second wave could be contact traced back to the Kumbh Mela gathering10.

Multi‑area SIR model for India’s infection dynamics.  This section proposes a more proactive way to 
detect super-spreaders, using a susceptible-infected-removed (SIR) multi-area compartmental model. We pro-

(1)C (i, j; κ) :=
1

T

T
∑

t=1

(

ρi
t − �ρi�

)

(

ρ
j
t+κ − �ρj�

)

,

Figure 3.   Bubble map plots of κ⋆ for Indian districts that have κ⋆ > 0 for the first wave in (a) and the second 
wave in (b). The size of the bubble indicates the magnitude of κ⋆ . The dotted areas identify Maharashtra and the 
Ganges belt.

Figure 4.   Variation of average population of Indian districts with cumulative number of ≥ 5 infections since 
the start of the waves as in Fig. 1b. Start dates of the two waves are 05/01/2020 and 03/01/2021.
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vide additional evidence for our hypothesis that super-spreader events played a dominant role in India’s second 
wave. To do so, we consider an epidemiological diffusion model, estimate its parameters from the district-wise 
test results, and demonstrate lack of fit during the second wave. To this end, consider the SIR compartmental 
model, described by

Here, Si(t) denotes the fraction of the population in district i that is susceptible to the infection on day t. Similarly, 
Ii(t) and Ri(t) are the fractions of the infected population and the removed (recovered or deceased) population 
in district i on day t, respectively. Again, we consider N = 394 districts. Per11, we choose γ =

(

14 days
)−1 as the 

combined constant rate of recovery and death from COVID-19. Parameter β i
int captures the rate at which the 

infected population within district i contributes to new infections within that district on day t. A key innovation 
in our approach is to lump external sources into one, because, the estimation becomes very hard and noisy 
otherwise. In our model, β i

ext lumps the impact of infections outside of district i towards new infections in district 
i on day t. The population-weighted external infections seen from district i is computed as Iiext(t) :=

∑

j:(j,i)∈G Ij(t)Pj
∑

j:(j,i)∈G Pj
 , 

where Pj is the population of district j, per the 2011 Census.
We allow neighbors of district i according to a graph G on N nodes as the only places whose infection levels 

directly impact district i’s infections in one day. We construct G to encode the intuition that geographically distant 
districts do not directly contribute to each other’s infection spread within one day, unless through long-distance 
travels such as those on airplanes. To construct G , we first add an edge between districts i and j, if the distance 
between the centroids of these districts di,j is below 1594.5 km. We compute di,j using the great circle distance 
formula12 applied to the latitudes and longitudes of the centroids from the Kaggle data hub13. Then, we add edges 
between any two districts that contain airports and have at least one direct flight between them. For the flight 
network, we use the origin-destination airport pairs from14. The resultant graph G then has 4599 edges, much 
less than that in a fully-connected graph over 394 nodes.

We use two sets of data–the cumulative fraction of COVID-19 cases Qi on t = 1 in district i and the fraction 
of new COVID-positive cases �i(t) in district i on days t = 1, . . . ,T . Specifically, Q’s yield

that are then propagated using � ’s via

We now describe our procedure to estimate the β parameters from the time-series of Si , Ii ,Ri over 
05/01/2020–05/08/2021. Since we expect mobilities, and in turn the β’s, to change gradually, we assume 
that β i

int,β
i
ext remain constant over 2-week periods. Denote them as β[1], . . . ,β[26] , where β[τ ] stands for 

βint(t),βext(t) across all districts from t = 14τ − 13 to t = 14τ − 1 days. Then, we minimize ϕ to estimate 
β[1], . . . ,β[26] , where

The first summand in (5) equals the regression error in explaining the emergence of daily new infections using β
’s. The second and the third summands in (5) penalize deviations of β ’s across consecutive 2-week periods. This 
penalty encodes the intuition that β ’s should vary gradually over time. The last summand in the definition of 
(5) adds a regularization that reduces the tendency of the estimator to explain the emergence of new infections 
solely using external infections. For the estimation process, we use � = ρ = 10−3.

The quantile plots of βint ’s in Fig. 5a and βext ’s in Fig. 5b across the districts over time reveal the two waves 
of COVID-19 infections. The jump in βext during the second wave appears particularly pronounced, compared 
to that during the first wave. Despite an explicit penalty on large βext’s, the estimation favors βext ’s to explain the 
emergence of new infections, without a similarly sharp increase in βint’s. The quantiles of the regression errors 
over time in Fig. 5c during the second wave are also much higher than those during the first wave.

One can view regression estimation of the SIR model as an exercise to decompose the disease dynamics into 
a systematic component and a shock component. The systematic component captures the predictable dynam-
ics of the disease, while the shock captures the impact of un-modeled components that the predictors fail to 
explain. The regression errors and the size of βext encode this shock. Evidently, the suddenness and the extent of 
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the shock in India’s second wave is much larger than that in the first wave. Therefore, these errors and βext can 
serve as indicators of the presence of a large shock to the normal infection diffusion process. Super-spreaders on 
a national scale have the potential to substantially alter the infection dynamics sufficiently to generate an aber-
ration in regression estimates. This aberration (seen through βext and regression errors) can then be viewed as a 
signature of a super-spreader event in data.

In Fig. 5d, we plot the quantiles of average mobility across districts over time. To gauge the district-wise 
mobility of the Indian population, we use data from the Google COVID-19 Community Mobility Reports15 that 
catalogs variations in the population’s activities such as visitations to parks, grocery and pharmacy, retail and 
recreation, transit stations, and workplaces. Specifically, the data reports the level of these activities compared to 
the baselines computed as the median values over 01/03/2020–02/06/2020, measured from anonymized cellphone 
data. We calculate the mobility levels as the average of the above activity levels in the five reported categories for 
our plots. Note that during the second wave, βint and βext increase even though mobility decreases. If the model 
were a good fit during the second wave, one expects βint to correlate positively with mobility because βint captures 
the effect of the virulence of the virus and the average frequency of contacts that a susceptible person has with the 
infected population. The estimated βint parameters do not fit that trend with mobility, adding further evidence to 
the inadequacy of the model to capture the second wave. We remark that one can do a more formal change-point 
detection analysis; see16 for an interesting use of likelihood ratio-based test to detect epidemic waves. Running a 
similar analysis on our data corroborates the conclusions drawn from βint’s. Details of our analysis are available 
at https://​github.​com/​Ujjal-​Mukhe​rjee/​India-​Second-​Wave----​Change-​Point-/​tree/​main

In summary, super-spreader-driven infection spread is characterized by the simultaneity of surge across 
locations (as in the cross correlation-based analysis) and the relatively high shock component of the diffusion 
model (as in the SIR analysis). Both pieces of evidence support the hypothesis that India’s second wave between 
April and June 2021 was driven by a super-spreader event. The Kumbh Mela defines the foremost candidate due 
to its concurrency with the start of the second wave and how well our “origin” locations match with the extent 
of participation in this event from the various states.

Figure 5.   Plots (a) and (b) capture the quantiles of βint ’s and βext ’s across Indian districts over 2-week time 
windows from 05/01/2020 to 05/08/2021. Plot (c) displays the regression errors in explaining the emergence of 
daily new infections with the estimated β’s. Plot (d) shows the quantiles of mobility variations across districts.

https://github.com/Ujjal-Mukherjee/India-Second-Wave----Change-Point-/tree/main
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COVID‑19 waves in the US: detecting wave propagation of super‑spreaders
We now shift gears and focus on the analysis of COVID-19 data from the US. Until 08/15/2021, the US experi-
enced three waves. The key object of our interest is the third wave. Similar to that of India’s second wave, US’s 
third wave also shows a simultaneous growth in infections across the nation (see Fig. 6d), that does not appear 
similar to classic diffusion patterns. The infection growth during the first and second waves, on the other hand, 
are not that simultaneous across the states, as Fig. 6b,c reveal. Moreover, the infection growth during the third 
wave is faster than in the first two waves, as Fig. 6a uncovers. Here, we compare the seven-days rolling average 
of new cases per 100,000 people during the first 45 days of the first wave (03/15/2020–04/29/2020), the second 
wave (09/15/2020–10/30/2020), and the third wave (07/01/2021–2021/08/15). The speed of infection growth 
can perhaps be attributed to the higher transmissibility of the Delta variant20, but the simultaneity of that growth 
across the states cannot be likewise attributed. Unlike the Indian experience, there was no obvious super-spreader 
event in the US during this wave. In what follows, we build a hypothesis about the origin of this simultaneous 
infection growth and provide evidence for that hypothesis with data. Needless to say, the multi-area SIR model 
will not fit this data. On top of this, we believe that once a super-spreader event happens it transmits like a super-
spreader due to travel to other countries. We test that hypothesis in this section.

The third wave of COVID-19 in the US has been driven by the rise of the Delta variant20. This variant origi-
nated in India and migrated to other countries. As the number of daily infections clocked upwards of 300K with 
∼ 4K daily deaths in May 2021 in India, many countries announced India-specific travel restrictions, US being 
one among these countries. Such announced restrictions often spur quick migrations of people who seek to avoid 
travel delays from said restrictions. We posit that such travels from India during this period led to the simulta-
neous rise in Delta variant-based COVID-19 infections in the US. Even if only a minor fraction of the travelers 
from India on the airplanes to the US were infected, such travelers could have infected others on board, who 
in turn, carried these infections to their final destinations upon reaching the US through the entry-points. Air 
travel within the US had also picked up during summer 2021, at least for fully vaccinated travelers (see Fig. 6f). 
Up until July 2021, it was largely believed that vaccines prevented the incidence of COVID-19 infections. The 
studies21,22 provided a turning point; it demonstrated that breakthrough infection rates with the Delta variant 
were not as low as was previously anticipated. These factors may have contributed to lack of precautionary 

Figure 6.   Plot (a) shows the seven days rolling average new cases per 100 thousand people during the first 45 
days of the US first wave (03/15/2020–4/19/2020), the US second wave (09/15/2020–10/30/2020), and the US 
third wave (07/01/2021–2021/08/15). Plots (b), (c), and (d) show the seven days rolling average new cases per 
hundred thousand people during the first 45 days of the first, second, and third waves respectively by state. (e) 
New cases per 100,000 people versus percent of people who are fully vaccinated (have second dose of a two-
dose vaccine or one dose of a single-dose vaccine) based on the state where recipient lives on 4th day of the 
third wave (08/15/2021). Plot (f) displays the Transportation Security Administration (TSA) checkpoint travel 
numbers for years 2019, 2020, and 2021 on the same weekday. Source cases data17, vaccines data18, TSA traveler 
throughput data19.
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measures adopted among passengers in US airports who came in contact with travelers from India, spreading 
the infection even further. Some states suffered more than the others (see Fig. 6d). During this wave, vaccination 
efforts were already in full swing across the US. Indeed, the rise in infections is anti-correlated with the vaccina-
tion rates in the various states (see Fig. 6e).

To back our hypothesis about migration from India being the root cause for the third wave in the US, we 
compare the infection growth across countries with various levels of Indian diaspora. One expects a country with 
a higher Indian diaspora and lower international travel restrictions to exhibit the impacts of Delta variant-based 
COVID-19 infections than those with a lower Indian diaspora and stricter rules on international travel. This is 
only true towards the beginning of the onset of Delta variant-induced infections. Indeed after the initial waves, 
the Delta variant reached multiple countries, irrespective of their levels of Indian diaspora. Using data from 
the Government of India’s Ministry of External Affairs23 of Indian people living overseas, we create two lists of 
countries, H with high Indian diaspora and L with low Indian diaspora, as follows. For all countries with a total 
population north of 10 million people, we compute the ratio of the Indian diaspora to the country’s population, 
namely diaspora ratio. Then, we split the countries according to the quantiles 10%, 20%, . . . , 90% of the diaspora 
ratio. List H contains all countries in that list above the 90% quantile (8 countries; 4888.754 Indian people per 
100,000 nationals on average). List L contains all the countries at or bellow the 10% quantile (9 countries; 0.979 
Indian people per 100,000 nationals on average). Specifically, we choose H = {Australia, Canada, Malaysia, 
Myanmar, Nepal, Netherlands, South Africa, Sri Lanka, UK, US} and L = {Argentina, Brazil, China, Czech 
Republic, Iran, Japan, Mexico, Poland, Romania, Turkey} . Our lists are as follows. H = {Australia, Canada, UK, 
Sri Lanka, Myanmar, Malaysia, Nepal, South Africa} and L = {Bolivia, Guatemala, Morocco, Niger, Pakistan, 
Somalia, Syria, Chad, Venezuela} . In Fig. 7a, we plot the trajectory of the ratio of new COVID-19 cases to the 
country’s population for the countries in H . In Fig. 7b, we plot the same for the countries in L . We obtain the 
infection data for various countries from24. Note that the countries in H exhibit a surge of COVID-19 cases after 
the peak in India’s second wave on 07/05/2021. For countries in H , the new cases median per 100,000 people 
before the peak (03/01/2021–05/07/2021) is 1.73 and after the peak (05/07/2021–08/15/2021) is 9.6. Likewise, 
the population weighted average before and after the peak are 4.47 and 14.5 respectively. On the other hand, 
the countries in L experience a decline of cases after India’s second wave peak. For the countries in L , the new 
cases median per 100,000 people before the peak is 1.11, and after the peak is 1.07. In addition, the population 
weighted average before and after the peak are 1.88 and 2.41 respectively, an increase that is negligible. The dif-
ference in the variation of the median new cases illustrate that countries with higher Indian diaspora indeed 
suffered more from the initial rise of the Delta variant. For example, the UK (3,173 Indian people per 100,000 
nationals), South Africa (2731 Indian people per 100,000 nationals), and the Myanmar (370,965 Indian people 
per 100,000 nationals), all countries with high Indian diaspora, have a surge after India’s second wave peak. On 
the contrary, countries with low Indian diaspora, such as Venezuela (0.46 Indian people per 100,000 nationals), 

Figure 7.   Plot (a) shows new cases of COVID-19 infections in 10 countries with high Indian diaspora in H . 
Plot (b) shows selected 10 countries with low Indian diaspora in L.
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Pakistan (close to 0 Indian people per 100,000 nationals), and Niger (1.24 Indian people per 100,000 nationals) 
exhibit a decline in the number of new cases, immediately after India’s second wave peak. Thus, the data backs the 
hypothesis that countries with high Indian diaspora experience initial infection growth after India’s second wave.

Instead of using a diaspora ratio at or above the 90% quantile to define H , if we use the 75% quantile, the 
difference in infection rates before and after the Indian infection peak becomes insignificant. Moving downward 
on the diaspora ratio to define the cutoff for inclusion in H , the difference in infection rates before and after 
the Indian peak becomes negligible. Reducing the cutoff on diaspora ratio for inclusion in H thus makes the 
diaspora effect disappear. Thus, the effect of Indian diaspora diminishes quickly with reduction in the diaspora 
ratio. This is not surprising, given that a sudden shock to the COVID-19 positivity rate in a country can only be 
driven by travel from India when that travel rate is high enough, which in turn, is only expected when the Indian 
diaspora ratio is sufficiently high. We posit that the countries in the 90% upper quantile and above experienced 
significant shock from the spread of the Delta variant. However, the diaspora in countries below that quantile 
was not high enough to witness a similar effect from the influx of the Delta variant due to travels from India.

The variation of infection within countries in H is not fully explained by the level of Indian diaspora alone. 
Rather, the extent of control on international travel provides a good explanation for said variation. Different 
countries implemented different rules to monitor and restrict international travel. For the countries in H , we 
portray the level of COVID-19-related international travel control, per the database in25. Specifically, the interna-
tional travel controls are classified between 0 and 4; 0 indicates no restrictions, 1 implies that they screen arrivals, 
2 means that they quarantine arrivals from some or all regions, 3 refers to a travel ban being implemented for 
passengers from some regions, and 4 equates to a total border closure. Figure SM1 in Supplementary Material 
companion indicates that Australia, Canada and Myanmar implemented the strongest travel restrictions among 
the countries in H . Interestingly, these are exactly the countries with the lowest levels of new infections, immedi-
ately following India’s second wave. Said differently, a tight control on international travels have proven successful 
to partially curb infection growth, even among countries that were more at risk to suffer from the Delta variant.

Facing a possible surge in infections from the influx of variants from other countries, a nation can adaptively 
choose to decide when to impose border restrictions. One can use a metric such as the number of districts or 
counties with ≥ 5 cumulative number of COVID-19 infections from a particular date onward as in Fig. 1b to 
indicate a sharp rise in simultaneous infection across multiple districts/counties. Upon facing such a rise, tighter 
control measures for international travel are warranted to throttle further growth. Plus, restrictions on internal 
mobility may be necessary to arrest the growth that is already underway.

Policy design to tackle simultaneous infection waves
This section is dedicated to outlining policy recommendations that naturally follow our data analysis in the 
previous sections. The recommendations follow a chronological order. We advocate various measures along 
the timeline of a simultaneous wave. We begin by presenting mechanisms that can quickly identify a variant of 
concern and prevent it from causing a national healthcare crisis.

We emphasize that all our policy recommendations are based on analysis performed on publicly available data, 
the quality over which we have no control. There can be systematic biases in the data that vary with location and 
time. See26,27 for examples of the effect of reporting delays and possible ways (via a technique called nowcasting) 
to mitigate its impacts on subsequent data analysis. Also, see28 for alleged under-reporting of COVID-19 cases 
in various countries. While we do not directly control for such effects and relegate more careful analysis to future 
work, our associative studies illustrate the need to accommodate the different wave patterns of epidemic spreads 
and make appropriate policy decisions.

Perform genomic testing.  Figure 1a illustrates that COVID-19 infections began rising in Maharashtra 
in early 2021–a trend that was not apparent in other states. Such a growth, which is not corroborated by data 
from other states, could have served as a warning sign, especially when juxtaposed with the information that a 
random mutation (B.1.617) of the virus was discovered there in late 2020. Akin to other viruses, SARS-CoV-2 
will likely continue to mutate. Whenever a region shows heightened growth in infections compared to neigh-
boring regions, one must carefully consider the possibility of a new mutation. Detection of said mutation relies 
on adequate testing (both symptomatic and asymptomatic), followed by genomic sequencing, as suggested by9. 
India had only identified 13,000 genetic sequences (0.5/1000 cases) compared to the United States (US), which 
had identified 400,000 sequences (12/1000 cases) around 05/05/202129. Considering that sequencing rates in the 
US had been deemed sub-optimal (see30), India’s sequencing rate appears significantly low; see8,31 for details. 
Because different nations have varied abilities to test and sequence, a global initiative must be undertaken to 
quickly detect such variants and proactively engage in risk mitigation strategies. Otherwise unchecked, such 
variants are bound to percolate to other regions. The Delta variant indeed became the driver of new COVID-19 
infections worldwide in 2021, delaying the efforts to reopen the economies across the globe. Limited sequencing 
capabilities, albeit increasing fast, in various countries continue to pose challenges in effectively assessing the 
risks of circulating mutant variants.

Avoid or manage super‑spreaders.  Our data analysis suggests that the baths at Kumbh Mela was the 
likely super-spreader event that was responsible for spreading the Delta variant across India. The obvious step to 
mitigate infection spread during a pandemic is to stop such potential super-spreader events proactively. Espe-
cially in a country with low vaccination rates. India has vaccinated ∼47% of the population with at least one dose 
by 10/01/2021. The same rates prior to the Kumbh Mela festival, however, were much lower at ∼4.7%. Super-
spreader events can lead to a national healthcare crisis when combined with the rise of a new variant. A particu-
larly successful example of an international gathering that did not have such dire consequences is the 2021 Tokyo 
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Olympics. Japan witnessed a sharp rise in infection growth following the Olympics. However, its impact as an 
international super-spreader event appears limited. The key difference between the Olympics and Kumbh Mela 
is the rate, accuracy, and auditing of testing protocols. While Olympic staff and athletes were required to adhere 
to a stringent testing regimen, India’s problems were compounded by possibly fake coronavirus tests32 that were 
administered prior to the baths at the Kumbh.

Detect a simultaneous wave early.  Once a super-spreader event happens, its impact on infection load 
becomes unavoidable and imminent. However, an early warning system to detect such a rise in infections can 
prove helpful to plan forward in order to tackle the healthcare challenges. We now explore the development 
of such an early warning system using our estimation procedure on India’s second wave data. Recall that we 
estimated βint and βext for multiple regions by minimizing ϕ defined in (5). Note that in Fig. 8, βext grows rap-
idly around April 21, despite the explicit penalty on βext ’s in the third summand of ϕ . In other words, a sharp 
rise in βext serves as an indication that the epidemiological diffusion model does not explain the data; rather, it 
is a signature of a super-spreader event. How much evolution of a wave is necessary to discover such a signa-
ture rise in βext ? To that end, we minimize ϕ using data up to various end-dates and compare the quantiles of 
βext ’s computed over the time window from 01/16/2021 to 03/13/2021. We choose the progressively earlier end-
dates of 05/08/2021, 04/24/2021, 04/10/2021, 03/27/2021, 03/13/2021, and 02/27/2021 and plot said quantiles 
in Fig. 8a–f. The quantiles over the defined time-window are similar in all plots, revealing that the parameter 
estimation procedure is quite robust to the choice of end-dates. For end-dates later than 03/13/2021, the quan-
tiles of βext evaluated on that date rise sharply compared to the quantities earlier in the time-window. In other 
words, the wave could have been detected as early as 03/13/2021 using our estimation procedure (not so much 
on 02/27/2021, however). Given India’s healthcare challenges during April and May 2021, an early warning on 
March 13 could have allowed policymakers to prepare better and potentially avoid resource shortages.

Monitor international travel at entry ports.  India’s second wave started to slow down in the second 
half of May, thanks to the significant decrease in mobility caused by the partial to total lock-downs. Most Indian 
states locked down in early May, while some, including Delhi and Maharashtra, implemented it earlier in April. 
Lock-downs have substantial economic impacts, and typically, they adversely affect vulnerable socio-economic 
classes. However, temporary targeted and planned lock-downs may be the only viable solution available to arrest 
the rapid growth of the infection, given the rising death toll and the shortage of medical supplies to care for 
the infected. Moreover, a simultaneous rise in infections across the nation, measured by the speed of the grow-
ing number of districts with ≥ 5 infections (as in Fig. 1b), can serve as a signal to impose early restrictions on 
mobility. Left unchecked, a meteoric rise in infections across a nation puts enormous burdens on the national 
healthcare system. Early lock-downs, planned using scenario models, can prevent such a rise and avoid severe 
resource shortages.

Similar to the role of lock-downs in intra-country infection growth, international travel controls are vital to 
mitigate the circulation of problematic mutations across a nation, especially from those countries with a rising 
level of variant-induced infections. Our analysis showed that limiting the influx of infections from international 
travel had successfully avoided a large wave in countries such as Australia, Myanmar, and Canada. Per our 
analysis, countries with high levels of Indian diaspora were indeed at higher risks for infection due to the Delta 
variant. However, stringent international border closures helped the above three countries to circumvent a Delta 
wave. We fully recognize that international travel closures have socio-political connotations and impose heavy 
economic burdens. Rather than imposing blanket travel bans, a more targeted approach such as testing every 
arriving passenger at entry ports and imposing a temporary isolation before test results arrive, can prove useful. 

Figure 8.   Plots (a)–(f) capture the quantiles of βext ’s across Indian districts over two-week time windows 
from 01/16/2021 to 03/13/2021. Regression of Plots (a)–(f) uses data until 05/08/2021, 04/24/2021, 04/10/2021, 
03/27/2021, 03/13/2021, and 02/27/2021, respectively.
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Such a careful approach towards international travel is paramount to combat an epidemic in an increasingly 
interconnected world.

Vaccinate in bulk.  As of May 24, 2021, 11.2% of India’s population had received at least one dose of the 
vaccine, and 3.1% were been fully vaccinated, using a combination of the University of Oxford-AstraZeneca 
vaccine (manufactured as Covishield by the Serum Institute of India) and Covaxin (manufactured by Bharat 
Biotech). Early warning signs of an abnormal infection growth in one area can be used to perform targeted vac-
cinations to prevent the rise of and suffering from a transmissible and/or virulent variant. Given the timeline 
of vaccine production and dissemination in India and elsewhere, it is unlikely that vaccination could have been 
used preemptively to mitigate India’s second wave. However, vaccination has emerged as a very effective tool to 
combat COVID-19. Figure 6e shows that vaccination rate was anti-correlated with COVID19 infection rates 
across the states in the US on 08/15/2021. Given the effectiveness of the vaccines in at least curbing the severity of 
infections from the rising variants (including Omicron), we believe that vaccination remains the only long-term 
solution to counter this pandemic.

Conclusions
Some waves of COVID-19 infections have grown simultaneously across a nation, overwhelming its national 
healthcare system. India’s second wave of COVID-19 in 2021 is a prime example of such a simultaneous wave 
across the country. Our data analysis from 394 districts in India suggested that a super-spreader event had ampli-
fied the rise of the highly transmissible Delta variant. Kumbh Mela was argued as the likely candidate event that 
caused the spread.

A multi-area SIR epidemic model was developed whose estimation process was shown to be able to pick up 
the shock due to a super-spreader, shortly after the event had happened. Therefore, this estimation procedure has 
the potential to serve as an indicator of a future imminent simultaneous wave. While we believe our techniques 
and conclusions will hold generally to study simultaneous waves, our results are primarily derived using the 
infection data from India. Such observational data has limitations and the conclusions need further validation.

Oddly enough, data from the third wave in the US in the summer of 2021 also exhibited simultaneous rise 
across the different states. Our data analysis supported the hypothesis that international travels from India might 
have been the root cause behind this rise. Specifically, countries with higher Indian diaspora showed surges in 
COVID-19 infections, immediately following India’s peak–a trend opposite to that in countries with low Indian 
diaspora. Strict border protocols appear to have mitigated such surges. Absent such controls or close monitoring, 
a simultaneous wave due to a super-spreader in one country can seed simultaneous waves in other countries.

Based on our analysis, we suggested four specific policy recommendations during the whole lifetime of a 
simultaneous wave. First, one must check for the anomalous rise of infections in one region to quickly identify 
potent variants of concern. Second, any large congregation must either be avoided or strict testing protocols 
should be followed in such events to prevent a said event from becoming a super-spreader. Third, one must look 
for early signs of a simultaneous wave, following any large congregation, through statistical tests to prepare early 
for an imminent impact. Fourth, international travel should be carefully monitored during the rise of a variant 
in any part of the world. While these recommendations are specific to combat simultaneous waves of infections, 
vaccination in bulk holds the key to restore pre-pandemic life. These recommendations are timely, given the rise 
of newer variants such as the Omicron and the IHU.

Ethics approval.  This approval does not apply as we did not work with patient data.

Data and code availability
All datasets and the code for the analysis are available in https://​github.​com/​heart-​analy​tics/​COVID​19-​India.
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