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Radiomics and deep learning 
methods for the prediction 
of 2‑year overall survival in LUNG1 
dataset
Anna Braghetto 1,2,5*, Francesca Marturano 3,5, Marta Paiusco 3, Marco Baiesi 1,2 & 
Andrea Bettinelli 3,4

In this study, we tested and compared radiomics and deep learning‑based approaches on the public 
LUNG1 dataset, for the prediction of 2‑year overall survival (OS) in non‑small cell lung cancer 
patients. Radiomic features were extracted from the gross tumor volume using Pyradiomics, while 
deep features were extracted from bi‑dimensional tumor slices by convolutional autoencoder. Both 
radiomic and deep features were fed to 24 different pipelines formed by the combination of four 
feature selection/reduction methods and six classifiers. Direct classification through convolutional 
neural networks (CNNs) was also performed. Each approach was investigated with and without the 
inclusion of clinical parameters. The maximum area under the receiver operating characteristic on 
the test set improved from 0.59, obtained for the baseline clinical model, to 0.67 ± 0.03, 0.63 ± 0.03 
and 0.67 ± 0.02 for models based on radiomic features, deep features, and their combination, and to 
0.64 ± 0.04 for direct CNN classification. Despite the high number of pipelines and approaches tested, 
results were comparable and in line with previous works, hence confirming that it is challenging to 
extract further imaging‑based information from the LUNG1 dataset for the prediction of 2‑year OS.

Lung cancer is one of the most aggressive cancer types with a 5-year relative survival rate of only 19%1. The 
main causes of the disease are attributable to bad habits (e.g. smoking and drinking), adverse circumstances 
like exposure to noxious or radioactive materials (e.g. radon, asbestos), recurring lung inflammation, or lung 
scarring secondary to  tuberculosis2.

Lung cancer can be classified into two main categories: non-small cell lung cancer (NSCLC)2 and small cell 
lung  cancer3. NSCLC alone accounts for more than 85% of lung cancer cases and can be further subdivided into 
two types: non-squamous carcinoma (including adenocarcinoma, large-cell carcinoma, and other cell types) 
and squamous cell epidermoid carcinoma.

Accurate diagnosis and staging are fundamental components to optimize the therapy and achieve a good 
 prognosis4. In this context, biomedical imaging, such as magnetic resonance (MR), computed tomography (CT), 
or positron emission tomography (PET), plays a pivotal role, offering several non-invasive modalities for the 
high-resolution three-dimensional visualization and characterization of the lesion. The availability of high-quality 
digital images has determined significant improvements in cancer diagnosis and has opened new frontiers for 
the application of radiomics and artificial intelligence (AI) techniques.

In oncology, radiomics provides a noninvasive way to capture and quantitatively describe tumour character-
istics from radiological medical  imaging5. Radiomics consists in the high-throughput extraction and analysis 
of quantitative features from a region of interest (ROI) with the aim of building predictive models of clinical 
endpoints (e.g. histological outcomes, survival time, tumor stage, malignancy vs. benignity) that may assist 
physicians in clinical decision making. Handcrafted radiomic features have demonstrated encouraging  results6 
in cancer research and AI-based techniques, in particular deep learning (DL) approaches, have also proved to 
be valuable tools for the automatic learning of potentially relevant patterns from medical  images7,8, which could 
further improve the accuracy of radiomic models.
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A pioneering work in radiomics was performed by Aerts et al.9 who built a prognostic signature valid for 
both lung and head & neck cancers using the public LUNG1 dataset collected at the MAASTRO Clinic, The 
Netherlands. They extracted a total of 440 radiomic features quantifying tumor intensity, shape, and texture from 
CT images and developed a Cox proportional-hazard model to predict the survival time, obtaining a validation 
concordance index (C-index) of 0.65 and 0.69 for lung and head and neck cancers, respectively.

After the study, in the context of  FAIR10 (findable, accessible interoperable and reusable) data, LUNG1 dataset 
has been published on the data repository platform “The Cancer imaging archive”—TCIA11, hence paving the 
way for several studies that further explored the predictive power of this dataset.

To the best of our knowledge, ten studies used the public LUNG1 dataset to develop AI-based models: nine 
studies applied standard radiomic analysis for clinical outcome prediction (2 of which infer the 2-year  OS12,18, 
and 1 applies DL methods for survival outcome  prediction17), while one introduced DL for tumor segmentation 
and applied machine learning methods to test the Aerts’ radiomic signature for different GTV  delineations20. 
These works have been summarized in Table 1.

In this work, we investigate and compare a wide set of methodologies for the prediction of the 2-year OS in 
NSCLC considering patients from the public LUNG1  dataset11. Firstly, we evaluated the baseline model built 
with clinical data, then we implemented two main approaches to predict the 2-year OS, one feature-based and 
one CNN-based. In the feature-based approach, several machine-learning models and feature selection meth-
ods were fed either with hand-crafted radiomic features, with deep features (extracted through a convolutional 
autoencoder—CAE), or with the combination of the two feature sets. The CNN-based approach instead directly 
predicted the survival outcome from the image, without the need of a separate feature extraction step. All meth-
ods and approaches were also tested with the inclusion of clinical data.

The inclusion of DL methods into our analysis assessed whether they could introduce margins of improve-
ment in the prediction of the 2-year OS.

Materials and methods
Dataset
We resorted to the LUNG1 dataset, consisting of 422 patients with inoperable NSCLC treated at MAASTRO 
Clinic, The Netherlands, with radical radiotherapy or chemo-radiation. The LUNG1 dataset is publicly available 
for download, thus institutional review board approval was not required for this study. All methods concerning 
the acquisition and usage of this dataset were in accordance with relevant guidelines and regulations.

All patients underwent an FDG PET-CT scan for radiotherapy treatment planning. A spiral CT, with a 3 mm 
slice thickness, was performed covering the thoracic region. Gross tumor volume (GTV) segmentations were 
delineated by a radiation oncologist on fused FDG PET-CT images. Details on the protocol can be found in a 
previous  work9.

The public dataset comprehends, for each patient, seven clinical parameters (i.e., sex, age at diagnosis, TNM 
staging, AJCC staging, histology, survival time, and death status), a chest CT image, and a manual delineation of 
the GTV. After the exclusion of 11 patients, we considered a total of 411 patients for this study. Exclusion criteria 
were: patients lost to follow-up prior to 2 years (one case), error in the GTV file (two cases), missing segmentation 
(three cases), and misalignment of tumor segmentation (five cases). Figure 1 shows a representative CT slice of 
three LUNG1 patients with the superimposed delineation of the GTV.

Regarding the clinical information, we used survival time and death status event to derive survival labels, 
whereas we considered sex, age at diagnosis, TNM staging, AJCC staging and histology as the clinical features 
for the OS prediction.

Pipelines of analysis
For the analysis conducted in this study, we resorted to two different approaches. The first was a feature-based 
approach and considered clinical, radiomic, deep features and all combinations of the above.

Features were then post-processed with four feature selection/dimensionality reduction algorithms and fed 
to six binary classifiers, for a total of 24 different pipelines, to predict the probability that the patients survived 
more than two years from the diagnosis.

The second approach consisted in the direct classification of the patients with CNNs and considering both 
2D and 2.5D architectures.

Each approach considered features and/or images both alone and in combination with clinical parameters. 
In Fig. 2, the flow chart of the analysis is shown for the aforementioned approaches.

The performance of the 2-year OS prediction for each approach was measured through the area under the 
receiver operating characteristic curve (AUC) that relates the true positive rate to the false positive rate achieved 
by each classifier. The entire dataset was randomly divided five times into training and test sets (ratio 3:1), with 
each subdivision called shuffle split. For each shuffle split, 25% of the data was used as a test set, while the remain-
ing 75% was used for model training. On the training set, we performed an inner cross-validation procedure 
to tune the hyper-parameters of the corresponding model (e.g., the architecture of the neural network). Then, 
the performance of the model with optimized hyper-parameters was evaluated on the test set. The procedure 
was repeated for the five different outer splits of the initial dataset and the average AUCs obtained on the test 
set of each split were finally calculated. For the pipelines with the highest average test AUC we also reported the 
standard deviation over the five shuffle splits.
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Feature‑based approach
In the feature-based approach, the 2-year OS prediction was carried out using three different sets of features 
(clinical, radiomic and deep features) and all their combinations. Eventually 168 pipelines were tested for the 
feature-based approach (Fig. 2).

Table 1.  Summary of previous studies based on LUNG1 public dataset. ACC  accuracy, AUC  area under the 
receiver operating characteristic curve, C-index concordance index, CNN convolutional neural network, 
GLCM grey level co-occurrence matrix, GLRLM grey level run length matrix, GLSZM grey level size zone 
matrix, ICC intra-class correlation coefficient, ML machine learning, NGTDM neighboring grey tone 
difference matrix, OS overall survival, RQS radiomic quality score.

Work Aim Approach Lung dataset Methods Results Conclusions RQS (%)

Parmar et al.,  201512 Prediction of 2-year 
OS Radiomic features

• LUNG1 for training
• LUNG2 for valida-
tion

Different feature selec-
tion methods and ML 
classifiers

Highest average AUC 
for Wilcoxon test 
based feature selection 
method (AUC = 0.65) 
and a random forest 
classifier (AUC = 0.66)

The choice of clas-
sification method is 
the most dominant 
source of performance 
variation

31

Parmar et al.,  201513
Investigation of the 
clinical relevance of 
radiomic clusters

Radiomic features
• LUNG1 for training
• LUNG2 for valida-
tion

• Cluster analysis
• Cox Proportional 
Hazards model on 
cluster centroids

• All lung clusters 
were significantly 
associated to survival
• AUC = 0.64 for 
tumour histology 
and tumour stage 
prediction

Clustering and prog-
nostic characteristics 
of radiomic features 
are cancer-specific

22

Wu et al.,  201614
Classification of 
tumour histologic
subtypes

Radiomic features
• LUNG1 for training
• LUNG2 for valida-
tion

Different feature selec-
tion methods and ML 
classifiers

Naive Bayes classifier 
combined with ReliefF 
achieved the highest 
AUC of 0.72

Radiomic features 
show significant asso-
ciation with the lung 
tumour histology

28

Lambrecht et al., 
 201715

Classification of: 
T-stage, overall-stage, 
N-stage, M-stage, 
histology; Prediction 
of survival time

Radiomic features LUNG1 for training 
and validation

K-means clustering
Random Forest and 
Neural Networks

Neural networks 
achieved the highest 
ACC of 63.9%

Results are highly 
dependent on the 
choice of the clinical 
outcome to predict

33

Chaddad et al.,  201716

Prediction of the sur-
vival outcome for dif-
ferent cancer subtype 
and stage groups

Radiomic features LUNG1 for training 
and validation

Random Forest clas-
sifier

Highest AUC of 0.76 
for the TNM stage I 
group

Radiomic features 
can be used as indica-
tors of survival for 
large-cell carcinoma 
patients with primary 
tumour size and 
no lymph-node 
metastasis

39

Haarburger et al., 
 201817

Prediction of survival 
outcome

• Radiomic
& deep features + ML
• Direct CNN predic-
tion

LUNG1 for training 
and validation

• Cox Proportional 
Hazards model
• CNN Hazard model

• C-index of 0.623 
for model fitted with 
selected radiomic and 
CNN features
• C-index of 0.585 for 
CNN direct hazard 
prediction

Cox models with 
radiomics and deep 
features outperform 
CNNs with concat-
enated radiomics 
features

31

Shi et al.,  201918

Prediction of 2-year 
OS and survival 
outcome with Aerts 
radiomic signature

Radiomic features
• LUNG1 for training
• LUNG2 for valida-
tion

Multivariable logistic 
regression and Cox 
Proportional Hazards 
model

AUC of 0.61 and Har-
rell C-index of 0.58 on 
LUNG2 dataset

External validation of 
radiomic models can 
be done with decen-
tralized data without 
exchanging patients’ 
sensitive data

28

Welch et al.,  201919

Prediction of survival 
outcome depending 
on several factors 
using Aerts radiomic 
signature

Radiomic features • LUNG1 for training
• H&N1 for validation

Cox Proportional 
Hazards model

• C-index of 0.64 
on H&N1 external 
dataset
• Tumour volume 
was as prognostic 
as the radiomic 
signature in H&N1 
(C-index = 0.64)

The radiomic signa-
ture was a surrogate 
for tumour volume

28

Haarburger et al., 
 202020

Testing of the Aerts 
radiomic signature for 
different GTV deline-
ations

Radiomic features LUNG1 for training 
and validation

• ICC for feature 
stability
• Cox Proportional 
Hazards model

• 28.7% of all features 
had an ICC < 0.9
• C-indices of Cox 
models varied 
between 0.57 and 0.58

Features are subject to 
higher (GLRLM and 
GLSZM) and lower 
(shape, GLCM, and 
NGTDM) variance 
across delineations

25

Ubaldi et al.,  202121
Classification of 
tumor histology and 
overall stage (I or II)

Radiomic features

LUNG1 for training 
and validation on an 
private dataset and 
viceversa + Merging of 
the two datasets

Different feature selec-
tion methods and ML 
classifiers

• AUC = 0.72 for 
histology classification 
with merged datasets
• AUC = 0.84 when 
training on LUNG1 
and testing on another 
dataset

Histology classifica-
tion improved when 
considering subjects 
with overall stages I 
and II, hence reducing 
the heterogeneity of 
the sample

31
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Radiomic feature extraction
Radiomic features extraction was performed with the public Pyradiomics library (version 3.0.1)22 after isotropic 
interpolation to 1 × 1 × 1 mm, and resegmentation of the ROI binary mask in the range [−600, 400]. The radi-
omic feature set included shape, first order, and textural features (i.e., grey level co-occurrence matrix—GLCM, 
grey level run length matrix—GLRLM, grey level size zone matrix—GLSZM, grey level distance zone matrix—
GLDZM, and the neighboring grey tone difference matrix—NGTDM), which were computed on the entire tumor 
volume. To extract additional information from the ROI, four different filtering techniques were applied to the 
original images (i.e., wavelet, square root, gradient magnitude, and a Laplacian of Gaussian). In particular, for 
the original images, a fixed bin size discretization approach was used (bin width of 25 HU), whereas for filtered 
images a fixed bin number approach was employed (32 bins), as suggested by the Image Biomarker Standardiza-
tion Initiative (IBSI)23. Textural features were aggregated in three dimensions (3D:mrg was the method of choice 
for rotation-dependent textural features).

Eventually, for each lesion, considering both original and filtered images, we obtained a total of 1118 radiomic 
feature values for the characterization of the tumor phenotype. As a preliminary step, only features that were 
linearly independent from each other (i.e., Pearson correlation coefficient ≤ 0.95) were kept for subsequent analy-
sis. Additional details about radiomic feature extraction can be found in the supplementary material (Sect. 1.1).

Deep feature extraction
For deep feature calculation, we used a common architecture, the convolutional autoencoder, which compresses 
the information enclosed within the image into a set of latent  variables7,24,25. The common structure of a CAE 

Figure 1.  Representative slices of three LUNG1 patients with superimposed delineation of the GTV (viewing 
window: [−1000, 400] HU).

Figure 2.  Flow chart of the analysis for the two different classification approaches. In the figure, the number of 
tested models for each approach is also visible. A total of 168 different pipelines were tested for the feature-based 
approach (including clinical, radiomic and deep features only and their combination), while 4 architectures were 
tested for the CNN-based approach.
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is made of a stacked encoder and decoder: the encoder translates the input image into a set of latent variables 
that summarise the relevant information contained within the image; subsequently, the decoder reconstructs 
the original image from the latent variables.

For the analysis, we resorted to bi-dimensional architecture to reduce model complexity and the risk of 
overfitting. For each patient, we considered five bi-dimensional slices: the one with the largest cross-sectional 
area of the ROI and the four adjacent slices. Afterward, the dataset was augmented by applying eight affine 
transformations to the original images, i.e., four rotations (i.e., 5°, 10°, 15°, 20°) and four translations (± 5 voxel 
in the anteroposterior and lateral direction). This process increased the training set size from 1540 samples (5 
slices for each patient in the training set) to 13,860 images (45 slices per patient). Eventually, both original and 
augmented images were cropped around the ROI to obtain an image dimension of 64 × 64 voxels, which allowed 
both to reduce the computational cost for network training and to be consistent with the radiomic analysis which 
focuses on the segmented lesion only. This procedure guarantees a robust comparison between the two methods. 
For each slice, a total of 500 deep features were obtained with the considered method.

The whole analysis was implemented through the Python Keras library, considering a fixed architecture for 
the CAE. Details about the structure can be found in the supplementary material (Sect. 3.1).

Feature reduction/classification
To reduce the chance of overfitting, the number of features used for the classification task was reduced to 5, 10, 
20, or 40 by employing two classes of methods: (a) feature selection and (b) dimensionality reduction techniques. 
The first class selects the optimal set of features by looking at their quantitative description (e.g., their variance 
or importance within a model) to improve classification accuracy. Feature selection methods used in this work 
were ANOVA F-value and SelectFromModel (SFM) methods. The second class of methods eliminates redundancy 
among variables, for example by mapping the original features to a space of lower dimension. Dimensionality 
reduction methods were principal component analysis (PCA) and feature clustering. Additional details on feature 
selection/reduction methods can be found in supplementary material (Sect. 2.1).

Once features were selected (or reduced), the prediction of the 2-year OS was carried out with six different 
classifiers, i.e., support vector machines (SVM), bagging (BAG), random forests (RF), extreme gradient boost-
ing (XGB), feed-forward neural networks (NNET) and k-nearest neighbors (NN). Additional details about the 
classifiers are reported in supplementary material (Sect. 2.2).

By pairing each feature selection/reduction method with each classifier, we obtained 24 different pipelines. The 
hyper-parameters of each pipeline (i.e., number of features to be included in the model, kernel and regulariza-
tion term for SVM, number of trees for BAG, RF and XGB, NNET architecture, number of neighbors for NN) 
were tuned using a grid search approach implemented with a stratified 2-repeated threefold cross-validation 
(CV) procedure on the training data of each shuffle split. Once the model with the optimal hyper-parameters 
was selected in the training set with CV, it was applied to the test set. Eventually, results obtained for each shuffle 
split were averaged to derive the reported model performances.

CNN‑based approach
The last approach consisted in the application of CNNs to directly classify the bi-dimensional CT slices of the 
tumor mass. A CNN presents a feed-forward architecture able to learn relevant information enclosed within 
images to predict an outcome of interest. CNNs are made of an input layer (e.g., for the input image), an output 
layer and several hidden layers in between made of convolutional, pooling and fully-connected layers.

Two different CNN models were tested in this work, i.e., 2D-CNN applied to the original bi-dimensional slices 
of each image and 2.5D-CNN applied to 5-channel images (where each channel corresponded to one of the five 
bi-dimensional CT slices adjacent to the slice with the largest cross-sectional tumor area). Image pre-processing 
and data augmentation were performed in the same way as the deep features approach. For both models, training 
with the inclusion of clinical features was also considered. The whole analysis was implemented through Python 
Keras library and, for each CNN, hyper-parameters corresponding to the regularization terms (i.e., dropout rate 
and L1 and L2 weight decays), were tuned through a grid search approach in a stratified 2-repeated threefold 
cross-validation implemented in each shuffle split. Details about CNN architectures and grid search parameters 
can be found in supplementary material (Sect. 3.2).

Results
Results for feature‑based approach
Clinical features
For the models trained with clinical data, the average AUCs across the five shuffle splits are reported in Fig. 3. 
The average prediction results on the test set did not exceed 0.59, thus suggesting that clinical features do not 
carry enough information for the accurate prediction of the 2-year OS.

Radiomic features
Figure 4 shows the average AUCs for the radiomic feature-based approach. The results refer to the pipelines 
trained with the best hyper-parameters, without the inclusion of clinical data (results with clinical data are 
reported in Supplementary Fig. S4).

By comparing the results of the training and test set, significant differences in performance are visible for 
some classification pipelines. The SFM method in combination with the NNET shows the highest training AUC 
(> 0.80), but also the worst test AUC (∼0.60), both with and without including clinical data (supplementary 
Fig. S4). For this pipeline, SFM identified a number of forty radiomic features to be fed to the classifier on three 
shuffle splits out of five, thereby inserting too many variables in the model and reducing the ability of the NNET 
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to generalize on unseen data. The same issue was observed when SFM was combined with ensemble classification 
methods (i.e., BAG, RF, and XGB). Afresh, a high number of features was selected for these pipelines, exceeding 
20 for all splits. At the same time, SFM in combination with SVM and NN classifiers did not show any consider-
able gap between training and test set results attributable to overfitting (train/test AUC of 0.66/0.65 for SVM and 
0.65/0.62 for NN). This suggests that the performance of the SFM method was highly dependent on the classifier, 
thus not ensuring proper generalization across all pipelines.

In contrast, when the NNET was coupled with CLUSTER, training and test AUC became comparable (aver-
age AUC around 0.66 across all splits). In this case, in 4 out of 5 splits, only five radiomic features were selected, 
hence allowing more parsimonious and generalizable models. Nevertheless, as visible from Fig. 4, the NNET 
classifier presented the worst generalization ability, achieving the highest train-test performance gap for some 
pipelines. However, the highest performance over the test set was achieved by RF classifier in combination with 
the ANOVA feature selection method. In both the analyses with and without clinical data, the training AUC 
reached 0.72 ± 0.05, while the test AUC reached 0.67 ± 0.03. Therefore, this pipeline obtained the best compromise 
between performance and generalization ability.

Deep features
Figure 5 reports the average AUCs across the five shuffle splits for deep feature-based models, considering the 
optimal hyper-parameters for each pipeline, for the case in which clinical data were not considered in the feature 
set (results with the addition of clinical data are reported in Supplementary Fig. S5).

For the deep feature approach, the SVM classifier showed the poorest performances both on the training and 
test sets. The pipeline formed by NNET classifier and PCA presented the highest divergence between training and 

Figure 3.  Results for the clinical feature-based models. (Left panel) Average AUCs on the five training splits. 
(Right panel) Average AUCs on the test splits. SFM SelectFromModel, PCA principal component analysis, 
CLUSTER feature agglomeration through clustering, SVM support vector machines, BAG bagging, RF random 
forest, XGB extreme gradient boosting, NNET neural network, NN k-nearest neighbours.

Figure 4.  Results for the radiomic feature-based models without the use of clinical data. (Left panel) Average 
AUCs on the five training splits. (Right panel) Average AUCs on the test splits. SFM SelectFromModel, 
PCA principal component analysis, CLUSTER feature agglomeration through clustering, SVM support vector 
machines, BAG bagging, RF random forest, XGB extreme gradient boosting, NNET neural network, NN k-nearest 
neighbours.
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test sets (AUC of 0.87 and 0.57, respectively). The combination of ANOVA and NNET also showed a consider-
able generalization gap between training and test set, both with and without the inclusion of clinical parameters: 
the average training AUC was 0.79, while test AUC was 0.61. These results were in line with the radiomic case, 
where NNET was the model presenting lower stability and generalization.

The selector-classifier pipeline with the highest test performance was the one composed by the CLUSTER 
reducer and the XGB classifier, without including clinical data: in this case, the final train AUC was 0.70 ± 0.02, 
while test AUC was 0.63 ± 0.03.

Radiomic and deep features
Figure 6 reports the average AUCs across the five shuffle splits, considering the optimal hyper-parameters for 
each pipeline, for the case in which clinical data were not considered in the feature set (results including clinical 
data are reported in Supplementary Fig. S6).

When combining radiomic and deep features, the SFM feature selector showed the highest divergence 
between training and test set, especially when coupled with NNET (AUC of 0.95 and 0.56, respectively). These 
results were in line with radiomic and deep cases, where NNET also showed a poor generalization ability.

As for the case of models trained with radiomic and deep features alone, also in this case the inclusion of 
clinical information did not determine significant improvements in model performance. Globally, results were in 
line with the radiomic case: the best selector-classifier pipeline, which was the one composed by the CLUSTER 
reducer and the RF classifier, achieved a final train AUC of 0.70 ± 0.01 and a test AUC of 0.67 ± 0.02.

Figure 5.  Results for the deep feature-based models without clinical data. (Left panel) Average AUCs on the five 
training splits. (Right panel) Average AUCs on the test splits. SFM SelectFromModel, PCA principal component 
analysis, CLUSTER feature agglomeration through clustering, SVM support vector machines, BAG bagging, 
RF random forest, XGB extreme gradient boosting, NNET neural network, NN k-nearest neighbours.

Figure 6.  Results for the radiomic and deep feature-based models without including clinical data. (Left panel) 
Average AUCs on the five training splits. (Right panel) Average AUCs on the test splits. SFM SelectFromModel, 
PCA principal component analysis, CLUSTER feature agglomeration through clustering, SVM support vector 
machines, BAG bagging, RF random forest, XGB extreme gradient boosting, NNET neural network, NN k-nearest 
neighbours.
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Results for CNN‑based approach
The 2D-CNN model trained on original slices considering the best hyper-parameters presented good generali-
zation on the test set, achieving a training and test AUC of 0.63. The same model with the inclusion of clinical 
data, i.e., 2D CNN Cl, showed the highest test performance at the expense of a greater gap between training and 
test set: AUC equal to 0.69 ± 0.01 and 0.64 ± 0.04, respectively.

The lowest performance was that of the 2.5D-CNN. For this model, the training AUC was equal to 0.66 
and the test AUC was 0.61. When including clinical data, the same model achieved training and test AUC of 
0.64 and 0.61, respectively. Although this model was trained with higher regularization parameters (i.e., L1, L2 
weight decays and dropout) with respect to 2D-CNN to deal with a higher probability of overfitting, it could not 
handle the increase in architecture complexity and the decrease in the sample size, which resulted in reduced 
performances both in terms of prediction and generalization capability.

Discussion
In this work, we implemented and investigated two different approaches for the prediction of the 2-year OS in 
NSCLC patients from the public LUNG1 dataset, one was feature-based, while the other was CNN-based. For 
the former approach, at first we built a baseline model considering only clinical data. Secondly, the hand-crafted 
radiomic features extracted from the three-dimensional GTV ROI and the deep features computed by means of a 
CAE were fed to 24 different pipelines, obtained as a combination of four feature selection/reduction techniques 
and six classification methods to predict the 2-year OS. In the latter approach, the classification task was directly 
accomplished by feeding the images into a CNN and considering several architectures. Each approach was further 
tested by including clinical parameters either within the feature set or together with the image fed to the CNN, in 
order to assess whether any of the available clinical information could significantly improve model performance.

For all DL-based methods, we had the limitation of the intrinsic complexity of model training, which required 
a high computational power and large datasets with respect to radiomics. Therefore, to tackle this limit, we had 
to restrict the analysis to the implementation of 2D-CAEs and 2D-CNNs, hence reducing the study to a bi-
dimensional analysis of the ROI.

The overall analysis has determined some important conclusions. In general, the two approaches showed 
comparable performance in the prediction of the 2-year OS. Nevertheless, it is worth noticing that the radiomic 
feature-based approach was able to predict the 2-year OS with a higher test AUC (equal to 0.67 for RF classifier 
and ANOVA selector) and a lower discrepancy between training and test set performances, compared to DL 
approaches.

The poor performance of deep feature-based models could be ascribed to the fact that, unlike radiomics, for 
DL we implemented a bi-dimensional analysis of the lesion, which has determined a loss of spatial information. 
Indeed, the deep feature-based approach showed the greatest gap between training and test set performance, 
thereby warning of possible overfitting caused by a suboptimal selection/reduction of the initial deep feature set.

Models trained with merged radiomic and deep features showed better performance compared to deep fea-
tures alone, but similar to radiomic features. However, compared to the latter, there was a slight improvement 
for some pipelines (e.g., CLUSTER and RF) and a general performance decrease for others (e.g., SFM and SVM). 
These results suggest that radiomic features drove model training, hence carrying the most relevant predictive 
information for the 2-year OS with respect to deep features.

As for clinical data performance, models trained with clinical features alone showed test AUC values fairly 
close to chance. Instead, when clinical data were coupled with radiomic and/or deep features, the performance of 
the models remained almost unchanged. This finding seems to suggest that the considered clinical data—available 
with the LUNG1 dataset—do not significantly contribute to the 2-year OS prediction in NSCLC.

However, this does not exclude that different uses of patients’ clinical information (e.g., to perform other 
predictive objectives, to stratify patients into NSCLC subtypes and TNM  stages16) may yield promising predictive 
results. In future investigations it would also be interesting to test whether other clinical features or prognostic 
biomarkers (e.g., gene  features27) may improve survival prediction in NSCLC.

CNN-based classification was not able to exceed a maximum test AUC of 0.64. The reason for this limitation 
could be due to the high regularization that was mandatory to reduce the risk of overfitting. However, our results 
are in line with previous findings.

In conclusion, the wide range of methods and approaches investigated in this work produced further evidence 
that the image-based prediction of the 2-year OS on the LUNG1 dataset is a challenging task, with limited mar-
gins of improvements. Nevertheless, the LUNG1 dataset continues to play a pivotal role: possibly, better models 
could be achieved when focusing on a different outcome, e.g.,  stage21, histochemical  type14. Moreover, more 
accurate models for 2-year OS prediction could be built on other datasets, and could still rely on LUNG1 for their 
external  validation21,26. This is the advantage of publicly sharing large datasets with the research  community10.

In future works, it will be interesting to investigate the use of DL approaches for synthetic data augmentation, 
to apply different DL learning techniques (e.g., contrastive learning), to perform a whole-lung analysis, hence 
including information from the tissue surrounding the  GTV28, or to employ three-dimensional DL models, in 
order to assess whether these methods could achieve better performances, thereby confirming the use of these 
techniques as a promising non-invasive adjunctive for tissue characterization and prediction of cancer diagnosis 
and prognosis.

Data availability
The dataset analyzed during the current study is available in the TCIA  repository11 (https:// wiki. cance rimag ingar 
chive. net/ displ ay/ Public/ NSCLC- Radio mics).

https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics
https://wiki.cancerimagingarchive.net/display/Public/NSCLC-Radiomics
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