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Effects of decadal climate 
variability on spatiotemporal 
distribution of Indo‑Pacific 
yellowfin tuna population
Yan‑Lun Wu1, Kuo‑Wei Lan1,2*, Karen Evans3, Yi‑Jay Chang4 & Jui‑Wen Chan5

Spatial variations in tuna population and abundance are strongly linked to large-scale climate 
fluctuations, such as the Pacific decadal oscillation (PDO) and Atlantic multidecadal oscillation (AMO). 
However, the mechanisms underlying the association of climate indices with yellowfin tuna (YFT) 
abundance and habitat preference remain unclear. We analysed long-term longline fishery data for 
YFT and oceanic climate variability index data for 1971–2018. The standardized catch per unit effort 
(CPUE) of Indo-Pacific Ocean YFT was higher during negative AMO and positive PDO phases. In 
tropical Pacific Ocean, the trend of YFT habitat preference exhibited seesaw patterns because of the 
distinct environmental factors influenced by the PDO phase. The PDO changed the environmental 
parameters throughout the tropical Indian Ocean such that the habitat preference of YFT remained 
consistent throughout. However, the variations in habitat suitability did not correspond to the 
distribution or standardized CPUE of YFT throughout the Pacific Ocean during AMO events. Moreover, 
the changes in habitat suitability had a positive periodicity of 8–16 years with AMO in the Indian 
Ocean, but revealed opposite trends with the distribution or standardized CPUE of YFT. Our results 
provide sufficient information to distinguish the variations between PDO phase changing and YFT 
standardized CPUE/ habitat preference. Furthermore, the AMO phase shift period 60–100 years longer 
than that of the PDO (20–30 years), and models employing time series of fishery and environmental 
data must be extended the time period of our study to make the AMO match the fishery data more 
complete.

Climate change has caused shifts in species distributions in marine systems1. Spatiotemporal distribution models 
of top predators have been widely used to understand tuna population variation in environments changing as a 
result of climatic factors2,3. Tuna species are sensitive to the physical effects of climate variation on the marine 
environment, for example, changes to ocean temperature, and winds. Climate change has affected tuna fisheries 
by altering water temperatures4 and influencing marine productivity, marine organism distribution, and food 
web structures5,6. Changes in interannual and decadal climate patterns may explain the variations in the dis-
tribution and abundance of tuna. Interannual climate indices are mainly limited to use in analyses of adjacent 
basins, whereas multidecadal climate indices have wide-reaching teleconnections that affect large areas spanning 
multiple basins7–11.

Multidecadal climate indices have been more useful than interannual climate indices for understanding the 
processes underlying the bottom-up control of the pelagic ecosystem and the various life stages of top predators, 
including tuna species7,8,10,12. The Pacific decadal oscillation (PDO) index is the most prominent index of decadal 
variability in the North Pacific Ocean, and the PDO is considered a factor contributing to the surface warming 
hiatus that occurred in the late twentieth century because of fluctuations in the global mean temperature13. In 
the western and central Pacific Ocean, the PDO plays a bottom-up role in regulating bigeye tuna recruitment 
and abundance7,12. The Atlantic multidecadal oscillation (AMO) index, an index of linearly detrended North 
Atlantic Ocean temperatures, indicated a dominant influence of bluefin and yellowfin (Thunnus albacores; YFT) 
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tuna abundance in ocean basins7,8. The North Pacific gyre oscillation (NPGO) is driven by region- and basin-
scale variations in wind-driven upwelling and horizontal advection14; it has markedly influenced the top predator 
abundance and density-dependent competition in the Pacific Ocean7,15.

Yellowfin tuna (YFT) constitute a major target in the industrialized fisheries of the Indo-Pacific Ocean and 
are predominantly caught using purse seines and longline fishing16,17. In the 1960s, longline fisheries accounted 
for nearly 50% of fish caught globally18. Although purse seines have been the most prevalent type of gear used to 
target YFT since the 1970s, YFT can still be targeted through deep or shallow longline fishing19. These methods 
allow YFT to be caught in high quantities, making them the second most fished tuna species. Moreover, the 
endothermic nature of YFT allows them to migrate extensively as a top marine predator inhabiting tropical and 
subtropical pelagic water around the world’s three ocean basins18. YFT spend most of their time either within the 
surface mixed layer or at the top of the thermocline, where phytoplankton production is highly and epipelagic 
prey are concentrated9,10,18.

Several studies have demonstrated that multidecadal climate variabilities (i.e., AMO, PDO, and NPGO) play a 
pivotal role in global YFT population dynamics, including recruitment and distribution7–15,20–22. Numerous stud-
ies have also revealed strong links to climatic phenomena within a single basin, but few studies have focused on 
transoceanic phenomena. YFT catches in the Indo-Pacific Ocean account for over 50% of the total catches from 
longline fishing7. However, the influences of anthropogenic factors (e.g., fishery capture activity, over fishing) 
cannot be ignored because species populations change with the oceanic environment. Planque et al.23 reviewed 
how fishery exploitation can alter the structure of fish populations and thereby affect those populations’ ability to 
respond to climate variability and change. Fishery exploitation may alter the associations between climate indices 
and fish populations. However, marine scientists tend to suggest that either (1) “natural” climate variability or 
(2) the exploitation of fisheries is primarily responsible for fish population declines and the associated changes 
to ecosystem. However, in most cases, the effects of both climate and exploitation are probably substantial23,24.

According Wu et al.7, multidecadal climate indices influence the global YFT population. Decadal climate 
indices indicate a 0–5-year lag for the YFT population. However, whether the population exhibits variation 
during phase changes remains unclear. Therefore, in the present study, we investigated the influence of decadal 
climate patterns on the distribution and habitat preference of YFT in the Indo-Pacific Ocean by using long-
term (1971–2018) longline fishery data. The objective of this study was to analyse the effects of the interactions 
between YFT and decadal climate variabilities and explore the process underlying the high phenotypic plasticity 
that mitigate the effects of climate change on top marine predators as YFT (Fig. S1).

Result
Large‑scale climate indices and Indo‑Pacific Ocean yellowfin tuna.  The standardized CPUE data 
for YFT from 1971 to 2018 were reorganized on the basis of different climatic events, including those of the 
AMO, PDO, and NPGO (Fig. 1). During the negative AMO phases, the median standardized CPUE for each 
basin was higher than it was during the positive phases, and all basins showed significant variation during the 
AMO phase change (p < 0.001; Fig. 1a). In the positive PDO phases, the median standardized CPUE was higher 
than in the negative phases (Fig. 1b); the highest CPUE values in the western Pacific Ocean and the Indian 
Ocean are 10.9, 31.4 and 23.4% higher respectively than their mean values. The aforementioned basins varied 
significantly during the PDO phase change; however, the eastern Pacific Ocean exhibited only slight differences. 
Only the Pacific Ocean exhibited any significant differences (p < 0.001) under positive or negative NPGO events 
(Fig. 1c).

The spatial distribution of CPUE data during 1971–2018 reveals that the CPUE was high (> 5.0 individu-
als/1000 hooks) in the western and central Pacific Ocean and Arabian Sea and off the eastern coast of Africa 
(Fig. 2a). The CPUE anomalies were positive during positive PDO events and negative AMO events (Fig. 2b, e). 
By contrast, the CPUE anomalies were negative during negative PDO events and positive AMO events (Fig. 2c, 
d). However, no clear trend in CPUE anomalies was observed during NPGO events (Fig. 2f, g). In accordance 
with the aforementioned information, we analysed the relationships between the habitat preference of YFT and 
the PDO and AMO.

Environmental parameter changes during decadal climate index phase changes.  To determine 
how marine environments vary during climate index phase changes, we plotted the spatial distributions of four 
environmental parameters (sea surface temperature [SST], sea surface height [SSH], sea surface salinity [SSS], 
mixed layer depth [MLD]) during climate event (Figs. S2–S5). During the positive PDO phases, SST was lower 
in the subtropical and western tropical Pacific Ocean and in the western Indian Ocean (Fig. S2a), whereas higher 
values extended from the eastern to the central Pacific Ocean. The SST data indicated opposite distribution 
patterns during the negative PDO phases (Fig. S2b). SSH and SSS changed dramatically in the central and west-
ern Pacific Oceans during the phase change period (Figs. S3–S4), but no obvious differences were detected in 
the MLD (Fig. S5). During positive AMO events, the SST and SSH were increased, and the MLD was greater 
throughout the entire Indo-Pacific Ocean; however, these variables exhibited the opposite patterns during the 
negative phases (Figs. S2, S3, and S5).

Importance of environmental influence and habitat suitability of Indo‑Pacific YFT.  The four 
environmental parameters, SST, SSH, SSS, and MLD (in terms of continuous partial lease-squares regression 
[PLSR] results and variable influence on projection [VIP] scores), were also used to identify general environ-
mental variations during the decadal climate events. The PLSR results suggest that SST is the most crucial envi-
ronmental factor for YFT CPUE (VIP score = 0.72; Table 1), which may have closely followed the SST variation 
with climate conditions. SSH was the second most important environmental parameter (VIP score = 0.38) to the 
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standardized CPUE of YFT. The third and the fourth most influential parameters were MLD (VIP score = 0.33) 
and SSS (VIP score = 0.27), respectively (Table 1). However, in the PLSR results, the VIP scores of categorical 
predictors were lower than 0.2; thus, the VIP score of each environmental parameter was used for weighting to 
construct the Indo-Pacific Ocean YFT habitat preference model.

The suitable index (SI) analysis of the four environmental parameters indicated the preferred SST range of 
YFT to be 28.2–30.2 °C (SI > 0.75), with the highest proportion of 29.3 °C (Fig. S6a). The preferred SSH for Indo-
Pacific YFT varied from 0.37 to 0.68 m (SI > 0.75), with the peak at 0.53 m (Fig. S6b). The preferred SSS range was 
34.3–35.3 psu (SI > 0.75), with the medium at approximately to 35.1 psu (Fig. S6c). The preferred MLD values 
ranged from 22 to 45 m (SI > 0.75), peaking at 33.3 m (Fig. S6d). The weighted his in a geometric mean model 
(GMM) was high in the western and central Pacific and northern Indian Oceans over 1971–2018 period (Fig. 3a).

Spatiotemporal variations of YFT habitat suitability during PDO and AMO phase 
changes.  During the positive PDO phases, the YFT habitat suitability increased in the central tropical 
Pacific Ocean (5°N–12.5°S, 170°E–140°W) but decreased in the temperate part of the southern Pacific Ocean 
(12.5°S–27.5°S, 170°E–140°W) and the northern Indian Ocean (Figs. 3b and S7c). By contrast, the habitat suit-
ability decreased throughout the Indo-Pacific Ocean during the negative PDO phases (Fig.  3c). The habitat 
suitability decreased throughout the Indo-Pacific Ocean during the negative AMO phase (Figs. 3e and S7e). 
Conversely, the habitat suitability increased during the positive AMO phases (Figs. 3d and S7d), especially in 
the northern Indian Ocean and tropical Pacific Ocean, where decreased CPUE was observed (Figs. 1a and 2d).

Over 80% areas exhibited high variations of HSI spatial distribution in terms of tropical Indo-Pacific 
(30°N–30°S) YFT habitat preference modelling (Fig. 3). The temporal variations in habitat preference anomalies 
within the tropical Indian Ocean increased throughout the time period, and exhibit similar pattern with AMO 
(Fig. 4a). In the tropical Pacific Ocean, the annual values of habitat suitability exhibited an increasing trend 
from 1976 to 1996, 2011–2015 and decreased trends in 1995–2010 that evolved in a similar manner as the PDO 
index (Fig. 4b). Moreover, the cross-wavelet analysis between the HSI of the Pacific Ocean and PDO revealed 
positive or negative correlation during the study period (Fig. 5a). However, no clear associations between the 
AMO index and habitat suitability were observed in tropical Pacific Ocean during the study period (Fig. 5b). The 
interannual time series habitat suitability also revealed a positive correlation with the PDO index in the tropical 
Indian Ocean, with 4–6-year and 8–16-year periodicity (Fig. 5c). Furthermore, the wavelet analysis revealed that 
the habitat suitability was positively or negatively related to the AMO index, with 8–16-year periodicity during 
1971–2018 in tropical Indian Ocean (Fig. 5d).

Figure 1.   Box plot of each ocean basins’ CPUE values. (a) During AMO events. (b) During PDO events. (c) 
During positive and negative NPGO events. Values displayed in the figure represent the median increase (red) 
and decrease (blue) percentages as compared with the 1971–2018 median.
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Discussion
The present study provides valuable data demonstrating the effects of decadal climate variability on the spatiotem-
poral distribution of YFT. Numerous studies have also noted the influence of decadal climate variability on global 
tuna species abundance7,8,22,26,27. Decadal climate index phases changes can influence the marine environment 
and thus the standardized CPUE, spatial distribution, and habitat preference of YFT in the Indo-Pacific Ocean. 
Several studies have indicated that SST is the most crucial parameter influencing YFT abundance globally4,28,29. 
Arrizabalaga et al.29 showed SST explained 32.23% of the global variance in the habitat preference of commercial 
tuna species and suggested a preferred SST for YFT of up to 30 °C—the SI analysis in our study indicated a pre-
ferred SST of 28.2–30.2 °C. This result is consistent with the VIP score obtained through PLSR analysis (Table 2).

The results for SSH suggest its lower importance to HSI model accuracy that of SST30. Liu et al.31 reported that 
changes in thermocline depth were associated with SSH. An increase in SSH leads to an increase in MLD and 

Figure 2.   Yellowfin tuna spatial distributions. Distributions of yellowfin tuna CPUE anomalies from (a) 
1971–2018 and positive (b) PDO, (d) AMO, and (f) NPGO phase years. Distributions from negative (c) PDO, 
(e) AMO, and (g) NPGO phase years. Figure created with Interactive Data Visualization Solution (IDL v 8.7) 
software. Software Resource: https://​www.​l3har​risge​ospat​ial.​com/​Softw​are-​Techn​ology/​IDL.

Table 1.   PLSR results for importance of environmental variables to YFT CPUE.

Variable importance in projection of standardized CPUE

Variable Category value VIP Importance

sst – 0.718 1

ssh – 0.378 2

mld – 0.328 3

sss – 0.267 4

year 1971–2018 0.15–0.009 5–19, 22, 25, 31–34, 36–64

month 1–12 0.134 ~ 0.002 10, 12, 20–21, 23–24, 26–30, 35

https://www.l3harrisgeospatial.com/Software-Technology/IDL
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therefore a deeper thermocline. Because YFT prefer to live in shallower thermocline or in layers shallower than 
the thermocline, the depth of the thermocline determines the depth that YFT schools inhabit, making SSH and 
MLD the second and third most critical factors, respectively, in YFT fisheries30. Although SSS did not achieve 
as high of a VIP score as the other environmental parameters, it is often used to model the global habitat prefer-
ences of commercially bred tuna species under the conditions of general ocean warming4,29. In summary, the 

Figure 3.   HSI spatial distributions anomalies. Distribution from (a) 1971–2018; (b) during positive PDO phase 
minus whole study period (1971–2018); (c) during negative PDO phase minus whole study period (1971–2018); 
(d) during positive AMO phase minus whole study period (1971–2018); (e) during negative AMO phase 
minus whole study period (1971–2018). Figure created with Interactive Data Visualization Solution (IDL v 8.7) 
software. Software Resource: https://​www.​l3har​risge​ospat​ial.​com/​Softw​are-​Techn​ology/​IDL.

Figure 4.   Average HSI anomalies of yellowfin tuna during AMO and PDO phase changes in designated areas.

https://www.l3harrisgeospatial.com/Software-Technology/IDL
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Figure 5.   Cross-wavelet analyses of coherence between yellowfin tuna habitat suitability. (a) The HSI for 
yellowfin tuna in the Pacific Ocean compared with the PDO index. (b) The HSI for yellowfin tuna in the Pacific 
Ocean compared with AMO index. (c) The HSI for yellowfin tuna in the Indian Ocean compared with PDO 
index. (d) The HSI or yellowfin tuna in the Indian Ocean compare with AMO index. The solid black contours 
enclose regions of > 95% confidence, and the black lines indicate where the edge effects become salient. Red 
indicates high variability, and blue indicates low variability. Arrows indicate the phase relationships, with 
in-phase arrows pointing to the right and out-of-phase arrows pointing to the left.

Table 2.   Sources and specifications of global standardized CPUE, and climate index data.

Item Period Resolution Data source Interpretation

Standardized CPUE

Eastern Pacific 
Ocean

1971–2018 5°*5°

Inter American Tropical Tuna- Com-
mission (IATTC)
(https://​www.​iattc.​org/)

The fleet which included fishing 
date, fishing ground, effort, and 
catches(number)

Western 
Pacific Ocean

Western and Central Pacific Fisheries 
Commission (WCPFC)
(https://​www.​wcpfc.​int/​home)

Eastern Indian 
Ocean Indian Ocean Tuna Commission 

(IOTC)
(https://​www.​iotc.​org/)Western 

Indian Ocean

Climate indices AMO 1971–2018 https://​www.​esrl.​noaa.​gov/​psd/​data/​
corre​lation/​amon.​sm.​data

Atlantic Ocean regional multi-dec-
adal scale variation

PDO https://​www.​ncdc.​noaa.​gov/​telec​
onnec​tions/​pdo/

Broad-scale decadal scale variation in 
Pacific Ocean

NPGO http://​www.​o3d.​org/​npgo/​npgo.​php Broad-scale decadal scale variation in 
Pacific Ocean

https://www.iattc.org/
https://www.wcpfc.int/home
https://www.iotc.org/
https://www.esrl.noaa.gov/psd/data/correlation/amon.sm.data
https://www.esrl.noaa.gov/psd/data/correlation/amon.sm.data
https://www.ncdc.noaa.gov/teleconnections/pdo/
https://www.ncdc.noaa.gov/teleconnections/pdo/
http://www.o3d.org/npgo/npgo.php
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environmental parameters investigated in this study affect the habitat preference of YFT by altering their daily 
vertical migration, feeding and spawning grounds, and recruitment locations30,32–37.

Previous studies have indicated that global YFT abundance is closely associated with decadal climate indices. 
Although studies have shown that interannual climate variabilities (e.g., El Niño–Southern Oscillation [ENSO]) 
exhibit strong correlation with spatial distributions and habitat preference of YFT in the Indo-Pacific Ocean29,38, 
some have focused on only the short-term fishing dynamics in a single ocean basin7. Another study reported 
that interannual climate indices (ENSO, Indian Ocean Dipole [IOD]) are mainly limited to use in analyses of 
adjacent basins9, whereas multidecadal climate indices have wide-reaching teleconnections that affect large areas 
spanning multiple basins. In this study, time series data indicated that the standardised CPUE and distribution 
were positively correlated with habitat suitability and influenced by the PDO in the Indo-Pacific Ocean. Specifi-
cally, the tropical Pacific Ocean was located at the edges of the warm and cool tongues39, and YFT habitat suit-
ability exhibited a seesaw pattern affected by the long-term local fluctuations caused by PDO events. This result 
suggests that the PDO influences the standardized CPUE and distribution of YFT. Previous studies have also 
reported that the PDO causes global SST variation40 and influences the recruitment and abundance of YFT7,22,41. 
During the positive phases of the PDO, the Aleutian Low pressure system deepens and shifts southwards, and 
SSTs decrease in the central and western Pacific, cooling the winds and increasing the levels of nutrients and 
biological production more than negative PDO events42.

The PDO may be a major factor affecting the physical processes and subsequent responses of zooplankton 
community structures43. Olson et al.44 and Lan et al.12 have revealed major decadal dietary shifts among tuna 
species over a broad region of the Pacific Ocean, suggesting that the PDO affects the pelagic ecosystem by act-
ing as a regulator of bottom-up control. The PDO significantly influences marine environments not only in 
the Pacific Ocean but also in the Indian Ocean by changing SSTs and the strength of the monsoon45,46. During 
positive PDO events, the subsurface (100–320 m) temperatures and thermocline depths throughout the Indian 
Ocean are lower and greater respectively47. Such changes may explain the findings that the CPUE and habitat 
suitability of YFT were increased in the Indian Ocean. Several studies have noted that tuna species abundance 
in the Indian Ocean is significantly affected by variations in SST, MLD, and net primary productivity, which are 
influenced by climate variability10.

The AMO index is a general measure of climate variability in the Atlantic Ocean on decadal and longer time 
scales. AMO-induced changes in Atlantic SSTs have regional effects on the SST in the northern hemisphere, 
Artic Sea ice, and fishery production in the northern Atlantic Ocean48. Through the teleconnection of the oceanic 
physical environment (e.g., strength of atmospheric vertical wind), the western tropical Pacific Ocean and Indian 
Ocean SST have been noted to be significantly influenced by the AMO49,50. Wu et al.7 reported that the AMO 
influenced the abundance of YFT in not only the Atlantic Ocean but also the global ocean, with a periodicity of 
8–16 years. In addition, the fishing vessel dynamics and habitat suitability in the Atlantic Ocean are affected by 
AMO events8,41. In the present study, the standardized YFT CPUE was observed to be higher during negative 
AMO phases Indo-Pacific Ocean; however, the changes in habitat suitability under AMO phase changing did not 
correspond to the distribution or standardized CPUE of YFT Pacific Ocean (Fig. 4b). Although the changes in 
habitat suitability had a positive periodicity of 8–16 years with AMO in the Indian Ocean (Fig. 5d), but revealed 
opposite trends with the distribution or standardized CPUE of YFT (Figs. 1a, 2d, e). It could not clarified the 
influence of the AMO on the marine environment or ecosystem through our present analysis. The AMO phase 
shift period 60–100 years longer than that of the PDO (20–30 years), and models employing time series of fishery 
and environmental data must be extended to consider diverse gear types and fishing strategies to simulate animal 
responses to spatially heterogeneous biotic and abiotic conditions during AMO phases8.

Furthermore, studies have suggested that great care must be taken to distinguish the low-frequency changes 
associated with natural oceanic oscillations from anthropogenic changes25. We suggest two major reasons to 
distinguish the significant negative correlation between the AMO index and long-term longline yellowfin tuna 
fishery data. First, the increase in longline fishing efforts caused the overexploitation observed throughout the 
Indo-Pacific Ocean51. For example, the number of yellowfin tuna caught using purse seines (targeting immature 
yellowfin tuna) has increased since the 1980s. The increased use of purse seines may have reduced immature tuna 
abundance and even caused recruitment decline22,52. The continual decreases in longline fishery tuna species 
catches since 1980s coincide with the AMO phase shift that occurred in the 1990s and 2000s, resulting in the 
significant and strong correlations discovered in the time series analysis. Second, ocean warming has already 
affected global fisheries, including the populations of tropical and temperate tuna species4,28. The increasing SST 
levels caused by ocean warming since the 1980s coincide with the AMO phase shift that occurred in the 1990s 
and 2000s, yielding high correlation with tuna abundance in the time series analysis.

Conclusion and remarks
Multidecadal climate variabilities affect the distributions of tuna species, and the standardized CPUE and habi-
tat preferences of YFT are significantly influenced by PDO phase changes in the Indo-Pacific Ocean. The PDO 
changed the environmental parameters of the whole Indo-Pacific Ocean such that the habitat preference of 
yellowfin tuna was consistent throughout. In the present study, the standardized YFT CPUE was observed to 
be higher during negative AMO phases Indo-Pacific Ocean; however, the changes in habitat suitability did not 
correspond to the distribution or standardized CPUE of YFT (Fig. 6). Although heterogeneous biotic and abiotic 
conditions would affect under our changing PDO phase hypothesis, PDO had several times phase changing dur-
ing our study periods. This provides us sufficient information to distinguish the variations between PDO phase 
changing and YFT standardized CPUE/ habitat preference. In conclude, the time period of our study might be 
the mostly barriers to realize the mechanism between AMO, biotic and abiotic conditions, and YFT abundance.
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To be worth the mentioned that over-exploitation, variation of recruitment and ocean warming would both 
effect the YFT under our PDO and AMO phases changing hypothesis. Although predictions of the outcomes of 
the climate change–induced habitat shift of tuna species have becomes more positive, studies on the abundance 
and distribution of top predators at each life stage in marine ecosystems remain rare7,12,21,22. More complex 
mechanisms explaining the adaptive capacity, recruitment, and migration of top predators during their various 
life stages. We intend to include data on the diverse gear types used in tuna fishery to capture differences between 
tuna life stages in our subsequent research. Furthermore, comprehensive research informed by data on fisheries 
for species at other trophic levels will be considered to evaluate how climate change affects the top-down control 
of yellowfin tuna.

Materials and methods
Framework of dataset.  We first analysed the spatial distribution and median standardized catch per unit 
effort (CPUE) of the long-term fisheries and climate data (Fig. S1a–c) to see how YFT abundance changes during 
distinct climatic phases. We also established the YFT HSI according to changes in the climate variability phases 
(Fig. S1d–g). Through habitat suitability analysis, we identified the preferred habitats and crucial environmental 
parameters of YFT during distinct climate events. Moreover, we applied wavelet analysis to further explore the 
mechanism underlying the changes in the YFT standardized CPUE and habitat suitability using the decadal 
climate indices (Fig. S1h, i).

Data.  Longline fishery catch data.  Publicly available longline fishery data for the Atlantic, Indian, and Pacif-
ic Oceans for 1971–2018 were obtained from three tuna regional fishery management organizations (tRFMOs; 
Table 2 included the linking of data resource). Fishery data generated or analysed during this study are included 
in this published article (details see the supplementary file for dataset). YFT is divided into four stocks, each of 
which is currently managed by a separate tRFMOS. The effort and catch in the eastern and western parts of both 
the Indian Ocean and Pacific Ocean differed. The western Indian Ocean and western Pacific Ocean accounted 
for over 50% of the effort and catch in each ocean18,41. On the basis of this information, we classified the Indo-
Pacific Ocean into four regions. YFT catch (species by number, depending on the fleet) and operations (number 
of hooks and area coordinates) data from each tRFMO were compiled with a 5° spatial resolution. The monthly 
nominal CPUE was calculated as the number of individual fish captured per 1000 hooks in four regions (i.e., the 
western and eastern Indian and Pacific Oceans) as they related to the currently accepted stocks of the regions, 
as identified by the tRFMOs (Table  2; supplementary file for dataset). Furthermore, standardization of both 
CPUE variables was required because the nominal CPUE can vary substantially in space and time depending on 
gear efficiency, gear configuration, and targeting practices (principally driven by market trends such as fishing 
primarily YFT or bigeye tuna) among other factors. We adopted the standardized CPUE as the YFT abundance 
indicator to investigate YFT variation over time under climate change.

Figure 6.   Mechanism by which multidecadal climate variability affects Indo-Pacific Ocean yellowfin tuna 
abundance and habitat preference.
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The nominal CPUE was categorized according to each grid (latitude × longitude; Fig. S1c), and the YFT spatial 
distribution was plotted to evaluate how YFT migration changed during climate events. The main YFT effort and 
YFT catch data were derived from Japan, Taiwan, Korea, and China in Indian Ocean. In eastern Pacific Ocean, 
the effort and catch were mainly belonged from Japan. It took the occupied over 60% YFT effort and 73% YFT 
catch in IATTC. There are many countries capture the YFT in western and central Pacific Ocean, the effort from 
Taiwanese and Japanese flag, take 59 percent. The other countries included China and Korea, etc. Moreover, 
above-mentioned countries take 90 percent of YFT catch in WCPFC.

Climate indices.  The indices of multidecadal climate phenomena from the same period (1971–2018), that is, 
the AMO, PDO and NPGO, were compiled and calculated on a monthly time-scale, where the original data were 
smoothed (Table 2).

(1)	 The AMO is a natural multidecadal variability in oceanic and atmospheric temperatures, with a range of 
0.4 ◦ C and a periodicity of 60–100 years. However, our fishery data spanned only 57 years. Notably, an 
AMO phase changed occurred during 1997 and 1998. In this study, we retrieved AMO index data that had 
been extended and reconstructed from SST starting in 1948 and averaged the area over the North Atlantic 
(0°N–70°N)53.

(2)	 The PDO index explains crucial climate fluctuations over the North Pacific. This index is defined by the 
leading principal component of SST anomalies north of 20°N. A noteworthy feature of the PDO index is 
the PDO’s extended periods (2–3 decades in duration) of predominantly positive or negative deviation 
from the long‐term mean. Little is known about the mechanisms underlying these periods39.

(3)	 The NPGO is the second most dominant mode of variability in the SSH and SST anomalies of the north-
eastern Pacific Ocean (25°–62°N, 180°–250°E)15. The NPGO index reflects changes in the North Pacific 
gyre circulation and key physical and biological ocean variables, including SST, SSS, SSH, abundance of 
nutrients, and chlorophyll-a15.

Environmental variables.  Monthly environmental data for the period of 1971–2018 were retrieved from the 
Asia–Pacific Data Research Center. These environmental data were analyzed to determine how the local marine 
environment changes during the phase changes of the decadal climate variabilities. Key environmental variables 
of potential relevance to YFT, including SST, SSH, MLD, and SSS, were obtained from the European Centre for 
Medium-Range Weather Forecasts (ECMWF) Ocean Reanalysis System 5 (ORAS5) with 1° spatial resolution54. 
We built up our environmental data resource by obtaining the ECMWF system from Asia–Pacific Data-Research 
Centre (APDRC). The ECMWF ORAS5 system is a new global eddy-permitting ocean and sea-ice packages for 
the reanalysis and modelling of oceanic variability in SST and SSH. The system generates accurate results, as 
verified against independent observational data sets. The data associated with each variable were spatially aggre-
gated to a 5° resolution to align with the resolution of the catch data.

Data analysis.  Standardization of nominal CPUE.  Standardization of CPUE was required because nomi-
nal CPUE can vary spatiotemporally with targeting practices and gear configuration, which can influence fishing 
efficiency55. For example, when standardizing the effort of longline gear targeting tuna, we must consider that the 
depth of the gear has increased over time as fishermen began targeting bigeye tuna, which are generally found 
at greater depths in the water column. The standardized CPUE was visualised for each ocean basin on Q–Q 
plots (Fig. S1b) and used to generate a YFT abundance box plot and to perform PLSR and habitat suitability 
analyses for the conditions associated with climate index phase changes. A generalized linear model was used to 
standardize CPUE, with the main effects considered being year, month, longitude, latitude, and the catch rates 
of albacore and bigeye tuna, in accordance with the following equation:

where CPUE is the nominal CPUE of yellowfin tuna, μ is the intercept, and ε is a normally distributed variable 
with a mean of 0. Because the log-link function cannot handle zero values, a small value (10% of the overall 
mean nominal catch rate) was added to CPUE in accordance with t standardization procedures previously used 
for longline species56,57.

Nominal yellowfin tuna CPUE anomalies.  We calculated the nominal YFT CPUE for each grid (latitude × lon-
gitude; Fig. S1c). Specifically, we identified the anomalies for each climatic event to determine how spatial dis-
tribution varies during such climatic events. The spatial distribution of nominal YFT CPUE anomalies during 
different climatic events in the Indo-Pacific Ocean were calculated as follows:

where n denote the number during the climate indices phases. The number during each climate event 
was recorded and is reported in Table S1. The terms i and j represent longitude (60°–290°) and latitude 
(42.5°N–42.5°S), respectively.

(1)
Log (CPUE + c) = µ+ year + month + latitude + longitude

+ albacore catch rate + bigeye catch rate + ε

(2)CPUEAij =

∑n
1 CPUEij

n
−

∑2018
1971 CPUEij

48
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Pearson correlation.  We separated the standardized CPUE time series data into negative and positive cases 
depending on the phase of decadal climate indices. We used the Pearson correlation to analyse the relationship 
between the standardized CPUE during positive and negative phases. The sample size (number of years) for 
each case (positive or negative phase of each variability) are listed in Table S1. Although one study demonstrated 
that sample size of 25 years or more is sufficient for the Pearson correlation because of limited study periods, the 
sample size of some cases was only 18 years58. Weaver and Koopman (2014), however, observed that a normal 
approximation is more accurate for samples sizes of more than 10 years than the Pearson correlation is59. Yet, 
this approach does not address the problem of computing valid p-values from correlation analyses when the 
assumption of independence is violated. To address this, we performed data analysis using the following steps. 
The Pearson correlations in Statistica 8.0 to determine whether the standardized CPUE of YFT changed signifi-
cantly (i.e., p < 0.05) during the climate index phase changes (Fig. S1b).

PLSR.  Because each environmental parameter has a different degree of influence on YFT, we applied PLSR, 
which is a technique that reduces the predictors to a smaller set especially when the predictors are highly col-
linear. PLSR was used to investigate the influence degree of the environmental parameters on the standardized 
CPUE (Fig.  S1f)60. We also adopted the top 20% of the YFT standardized CPUE instead of the whole YFT 
data set to examine the preferred environmental characteristics of YFT. PLSR is a multivariate linear regres-
sion method to develop models of the correlations of categorical (here, year and month) and continuous (the 
four environmental parameters) predicators with response variables (the top 20% yellowfin tuna standardized 
CPUE) for a given set of samples. PLSR could distinguish which of the categorical and continuous predicators 
were most critical for the response variable. The sorting of each predictor, especially the continuous predicators 
(environmental parameters), allowed us to construct a complete habitat preference model in the next stage. 
PLSR thus provides information about the variables’ correlation structures as well as their structural similarities 
or differences.

VIP.  VIP scores were determined to represent the influence of individual categorical (year, month) and con-
tinuous (the four environmental parameters) predictors on the PLSR model of YFT CPUE in the Indo-Pacific 
Ocean (Fig. S1f). The VIP scores were calculated as the weighted sum of squares of the PLSR weights, which 
involved considering the explanatory power of each latent variable. In the weighted sum of square is defined as 
where the response variable is the top 20% of YFT standardized CPUE and W (VIP scores) is the weight variable. 
The VIP score (weight variable) provide a useful measure for identifying which variables explained the greatest 
amounts of variance in the outcome (top 20% of standardized CPUE). The weighting (VIP score) of each envi-
ronmental parameters was then applied for the habitat suitability analysis. The PLSR analyses were conducted 
using Statistica 8.0.

SI calculation for the four environmental parameters.  The purpose of SI calculation was to quantify 
the environmental preferences of YFT under the conditions of climate index phase changes (Fig. S1e). On the 
basis of the monthly frequency distribution of standardized CPUE, an SI for each environmental variable was 
calculated as follows:

where CPUEymij is the relative abundance index at longitude i and latitude j (the center of each 5 × 5 grid) in 
month m and year y. CPUEmax is the maximum standardized CPUE for each month. The SIs of the environmental 
variables calculated using Eq. (3) were used as observed values to fit SI models with the midpoint of each envi-
ronmental variable’s class interval. Each value was divided by the maximum frequency value to obtain a relative 
frequency distribution before being calculated using the following formulas:

α and β are calculated through the least-squares method of minimizing the residuals between the predicted and 
observed SIs, and i denotes the environmental variables considered61. Using the SI values from each environ-
mental parameter, we could obtain detailed information on Indo-Pacific Ocean YFT habitat preference.

Habitat suitability models.  HSI models are used to estimate habitat suitability for given species on the 
basis of one or more relevant habitat variables (e.g., four environmental parameters used in the study)62,63. Here, 
the HSI is the univariate model output with a value between 0 and 1. The associations between standardized 
CPUE and each of the environmental variables was converted into a curve of SI, which was continuous and 
ranged between 0 and 1. The most common empirical models were used to develop the optimal HSI model, 
including the arithmetic mean model (AMM)61,63,64 and GMM63,64. The GMM has an advantage over the AMM 
in that it is less affected by extreme values in skewed distribution. Therefore, we employed a GMM to develop 
our optimal HSI model63,64. We used the weighting results for habitat suitability (the VIP scores) for each envi-
ronmental parameter into our HSI models as follows:

(3)SIymij =
CPUEymij

CPUEmax

(4)SIi = Exp
[

α(Xi − β)2
]

(5)HSIGMM =

(

n
∏

n−1

SIi ∗Wi

)1/
∑

Wi
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Yellowfin tuna HSI anomalies.  We calculated the HSI of YFT for each grid (latitude × longitude). Specifi-
cally, we identified the anomalies during each climatic event to determine how the spatial distribution of HSI 
varies during such events        (Fig.    S1g) by using the following equation:

Cross‑wavelet coherence analyses.  We used wavelet analysis to investigate how environmental varia-
tions caused by the decadal climatic events affect the habitat suitability and standardized CPUE of YFT (Fig. S1i). 
Fourier spectral analysis is commonly used to analyse periodicity in time series data but assumes that the time 
series is stationary. The time series of climate indices and fishery data are not stationary. We used wavelet analysis 
because it requires no such assumption (7). The wavelet transformation is based on a convolution of a time series 
yn (n = 0…, N − 1, with equal spacing δt ) and a wavelet function. The Morlet wavelet is the most popular complex 
wavelet used in practice and is defined as follows:

where η is a dimensionless time parameter and ω0 is a dimensionless frequency used to balance time and fre-
quency localisation. The wavelet transform of yn is calculated as follows:

where s is a scale such that η = st. By varying s, the wavelet can by extended through time. A 5% significance level 
was set and based on 1000 bootstrap simulations with a spectral synthetic test65. The autoregression coefficient 
was empirically obtained from the time series data. Subsequently, cross-wavelet coherence and phase analyses 
were used to investigate the relationships between PDO or AMO events and the HSI of yellowfin tuna in the 
Indo-Pacific Ocean.

Cross-wavelet coherence and phase analyses represent cross-correlations normalised to the power of a single 
process and are thus not biased by the power of any single series66. We defined the cross-wavelet transformation 
of the two series xn and yn to be WXY

= WXWY∗ , where * denotes a complex conjugation. The wavelet coher-
ence was defined as follows:

where S is a smoothing operator based on a running average.
The wavelet coherence phase was calculated as follows:

where both R2
n(s) and φn(s) are functions of the time index n and scale s. Several studies have detailed the 

mathematics underlying such analyses66,67. The wavelet transform has edge artifacts because the wavelet is not 
completely localised in time, and the finite nature of such images gives rise to edge artifacts in reconstructed 
data. Therefore, a cone of influence can be introduced in which edge effects cannot be ignored66.
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