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Machine learning in point‑of‑care 
automated classification 
of oral potentially malignant 
and malignant disorders: 
a systematic review 
and meta‑analysis
Ashley Ferro1,2, Sanjeev Kotecha1,2 & Kathleen Fan1,2*

Machine learning (ML) algorithms are becoming increasingly pervasive in the domains of medical 
diagnostics and prognostication, afforded by complex deep learning architectures that overcome 
the limitations of manual feature extraction. In this systematic review and meta-analysis, we 
provide an update on current progress of ML algorithms in point-of-care (POC) automated diagnostic 
classification systems for lesions of the oral cavity. Studies reporting performance metrics on ML 
algorithms used in automatic classification of oral regions of interest were identified and screened by 
2 independent reviewers from 4 databases. Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses (PRISMA) guidelines were followed. 35 studies were suitable for qualitative synthesis, 
and 31 for quantitative analysis. Outcomes were assessed using a bivariate random-effects model 
following an assessment of bias and heterogeneity. 4 distinct methodologies were identified for POC 
diagnosis: (1) clinical photography; (2) optical imaging; (3) thermal imaging; (4) analysis of volatile 
organic compounds. Estimated AUROC across all studies was 0.935, and no difference in performance 
was identified between methodologies. We discuss the various classical and modern approaches 
to ML employed within identified studies, and highlight issues that will need to be addressed for 
implementation of automated classification systems in screening and early detection.

Head and neck cancer (HNC), including of the oral cavity, oropharynx, hypopharynx and larynx, is currently the 
sixth most-common malignancy worldwide, with over 60,000 cases in 2020 in the United States alone1. Squamous 
cell carcinoma accounts for over 90% of cases of cancer of the oral cavity and, despite increasing awareness of 
modifiable risk factors, its incidence continues to increase2. Standard treatment for localised cancers of the oral 
cavity is surgical resection, oftentimes accompanied by neck dissection and flap reconstruction. Although offer-
ing a prospect of disease resolution, these radical resections are associated with significant morbidity, includ-
ing swallowing and articulation difficulties, reduced mobility, chronic pain, significant disfigurement, and the 
accompanying psychosocial impact inherent to these complications3.

Oral Squamous Cell Carcinoma (OSCC) develops through a series of well-established molecular events 
secondary to the interplay between genetic predisposition and exposure to environmental carcinogens. The pro-
gressive acquisition of mutations in proto-oncogenes and tumour suppressor genes with continued carcinogen 
exposure is reflected through a sequence of dysplasia to neoplasia, and accompanied by gross morphological 
changes in the oral mucosa4. Unfortunately, many potentially malignant disorders and early malignancies are 
asymptomatic and subtle, resulting in late presentation and suboptimal outcomes5.

Definitive gold-standard diagnosis of oral potentially malignant and malignant disorders is dependent upon 
biopsy and histopathological evaluation of haematoxylin and eosin-stained sections. This is both invasive and 
time-intensive, requiring the expertise of consultant histopathologists for accurate diagnosis. Limited access to 
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expensive laboratory resources and histopathology expertise is a particular concern for low and middle-income 
countries, areas disproportionally afflicted by OSCC6,7. There is thus a clear need for the development of non-
invasive point-of-care (POC) screening tools for early HNC detection that do not so heavily rely on expertise for 
sample preparation and interpretation. Machine learning may provide the solution to this conundrum.

Machine learning, as a domain of artificial intelligence, involves the ability of an algorithm to learn informa-
tion and draw inferences from patterns within data without explicit programmed instruction (Supplemental 
Table S1). Driven by advancements in computational power and algorithm efficiency, the last decade has wit-
nessed a rapid increase in the complexity of these algorithms. The emergence of artificial neural networks, archi-
tectures mirrored on the structure of the human brain, paved the way for deep learning, a subfield of machine 
learning characterised by multi-layered neural networks capable of automatic feature extraction. These systems 
have already demonstrated exceptional performance in a range of different classification tasks in oncology, 
including prediction of diagnosis, prognosis and treatment response in a range of different malignancies8. In the 
current review, we summarise the current progress of machine learning in POC detection methods for poten-
tially malignant and malignant disorders of the oral cavity, with a particular focus on methods of classification.

Material and methods
This study was completed in keeping with the Preferred Reporting Items for Systematic Reviews and Meta-
Analysis (PRISMA) guidelines.

Search strategy.  A systematic literature search was performed on 13 February 2022 using the following 
databases: PubMed, Embase, the Cochrane Central Register of Controlled Trials, and DBLP (computer science 
bibliography). The following terms were combined to identify relevant records: “artificial intelligence”, “machine 
learning”, “deep learning”, “neural network”, “artificial neural network”, “convolutional neural network”, “genera-
tive adversarial network”, “transfer learning”, “oral cancer”, “oral malignancy”. Additional records were retrieved 
by iteratively scrutinising reference lists of relevant publications.

Inclusion criteria.  Publications were selected for review if they satisfied the following inclusion criteria: 
full texts available in English language; studies using machine learning (of any class) to provide POC diagnostic 
information on intra-oral lesions of interest; studies providing outcomes of model performance compared to 
a human-determined ground truth (gold standard). Ground truth was considered ‘human-determined’ where 
annotations (upon which algorithms were trained and tested against) were made solely based on human histo-
pathologist interpretation of tissue biopsies or through human interpretation of captured images where biopsies 
were not indicated.

Exclusion criteria.  The following exclusion criteria were applied: studies where human ground truth was 
not explicitly confirmed; studies providing only prognostic data; studies providing outcome data on mixed 
malignancies, where outcomes could not be extracted independently for oral pathology; studies incorporating 
clinical/demographic data into predictive models (models not based solely on the detection method), stud-
ies where the ML class was not explicitly stated; review articles, commentaries and expert opinions, and ani-
mal studies. Articles relating to machine learning based on radiological imaging (magnetic resonance imaging, 
computed tomography, positron emission tomography) and biomarkers were excluded, including those studies 
where additional manual sample processing is required before automatic classification (exfoliative cytology and 
brush biopsies).

Data collection.  Titles, abstracts and full texts were independently assessed by two reviewers. Discrepan-
cies were resolved by consensus following discussion between reviewers to minimise selection bias. A custom 
data collection form was used to extract the following data: study title; authors; year of publication, title, category 
of test, sample source, sample size of control, sample size of suspicious lesion/region of interest, ground truth, 
lesion location, AI class, and performance metric. Sample size of the test set, for the purposes of downstream 
analysis, was assumed as the total number of analysed whole images of a given class (ROI vs control). Where 
a study presents multiple models, outcomes from the best-performing model were extracted for downstream 
analysis.

Assessment of risk of bias.  Assessment of bias from identified studies was determined using the QUA-
DAS-2 tool, a scoring system developed for assessing risk of bias in studies of diagnostic accuracy9. Four domains 
are assessed through this scoring system: patient selection; index test; reference standard; and flow and timing. 
Risk of bias is judged as ‘low’, ‘high’ or ‘unclear’ according to scoring in these domains. Discrepancies in scoring 
between reviewers were resolved through consensus. No studies were excluded on the ground of risk of bias; 
instead, risk of bias was highlighted. Deek’s funnel plots were used to assess for publication bias across all studies 
and within each subgroup, and Egger’s regression test was used as a quantitative method to test for funnel plot 
asymmetry. The Duval and Tweedie trim and fill method was used to further examine small-study effects and 
estimate the magnitude of small study bias10. Rücker’s Limit meta-analysis method was additionally used to test 
for small-study effects, for both the main analysis (with all studies) and within each subgroup.

Statistical analysis.  Heterogeneity of outcomes between studies was assessed using Tau2, and Higgin’s I2 
was used to assess the proportion of true variance of a weighted outcome. I2 was interpreted according to the 
Cochrane Collaboration, where 0–40% was considered as low heterogeneity, 30–60% as moderate heterogeneity, 
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50–90% as substantial heterogeneity and > 75% as considerable heterogeneity11. A Cochrane Q statistic p-value 
< 0.10 was accepted as significant. Forest plots for sensitivity and specificity were also used as a visual proxy of 
heterogeneity, following a univariate random-effects meta-analysis using a logit transformation. Since pooling of 
sensitivities and specificities across studies may be misleading, univariate approaches to meta-analyses of diag-
nostic test performance are not recommended. Thus, a bivariate random-effects model for logit-transformed 
pairs of sensitivities and false positive rates was used to provide an estimate of diagnostic test performance12. 
Performance is given as AUROC, and presented as summary ROC (sROC) curves with 95% confidence regions 
for the optimum performance threshold. Performance between different testing modalities, lesion type (e.g. 
OSCC vs benign), and AI type was visually assessed by comparing sROC curves and their respective confidence 
domains, before subgroup analysis through a bivariate diagnostic meta-regression.

Patterns of heterogeneity were further explored through the use of Graphic Display of Study Heterogeneity 
(GOSH) plots for both sensitivity and specificity independently, using a maximum of 1 × 106 randomly fitted 
models given computational demand13. Influential outlying studies were then inferred through unsupervised 
clustering (k-means clustering, density-based spatial clustering of applications with noise (DBSCAN), and Gauss-
ian mixture models) of GOSH plot data. Cooke’s distance was used to determine the influence of a study on 
heterogeneity within a given cluster. A sensitivity analysis was performed following exclusion of those studies 
found likely to be influential. Results of both the primary analysis and sensitivity analysis are provided14. Analy-
sis was performed using the mada package on R version 4.0.0. p values < 0.05, unless otherwise specified, were 
accepted as significant.

Results
The initial literature search identified 1530 studies across the 4 databases, and a further 14 studies were identified 
following iterative review of references (Fig. 1). 1336 studies remained following removal of duplicates. Of these, 
35 studies met the inclusion criteria for downstream analysis (Tables 1, 2 and 3). Four of these studies did not 
report sensitivity and specificity, and were, thus, included in qualitative synthesis only15–18.

The results of the QUADAS-2 tool are provided in Fig. 2 and Supplemental Fig. S1. Eight studies were found 
to have a high risk of bias across any of the 7 domains2,16,21,22,26,28,30,35. Within domain 1, 11% of studies were found 
to have high risk of bias, 26% low risk of bias, and 63% unclear risk of bias. Within domain 2, just 1 study was 
found to have high risk of bias, 43% low risk and 54% unclear risk. Within domain 3, 71% studies were found to 
have a low risk of bias and 29% with unclear risk. In domain 4, 69% had low risk and 31% had unclear risk of bias.

Four broad categories of methodologies were identified in POC detection of oral potentially malignant and 
malignant disorders: (1) classification based on clinical photographs (n = 11)2,19–23,25–29; (2) in vivo imaging using 
intra-oral optical imaging techniques (n = 18)15,17,30,31,33–35,37–45,50; (3) thermal imaging (n = 1)16; (4) analysis of 
volatile organic compounds (VOCs) from breath samples (n = 5)18,46–49. Just 8 studies were published before 
201515,34,37,38,44,48–50. The majority of studies provided data on classification of OSCC vs healthy (n = 13)16,18,19,23,3

1,33,38,42,43,46–49, 8 studies provided data on OSCC/OPMD vs healthy25,26,28,30,37,39–41, 6 on OSCC/OPMD vs benign 
lesions15,17,21,35,36,50, 3 on OSCC vs benign29,34,44, 2 on OSCC vs other (healthy, benign and OPMD)2,45, 1 on OSCC/
OPMD vs benign/healthy20, 1 on OPMD vs healthy27, and 1 on OPMD vs benign22.

Given sample heterogeneity, as indicated by forest plots (Supplementary Fig. S2) of univariate meta-analyses 
and quantitative measures of heterogeneity (sensitivity: Tau2 = 0.37, I2 = 62%, p < 0.001; specificity: Tau2 = 0.70, 
I2 = 84%, p < 0.001), a bivariate random-effects model for logit-transformed pairs of sensitivities and false positive 
rates was used to provide an estimate of diagnostic test performance. Across all studies, the pooled estimates 
for sensitivity and false positive rates (FPR) were 0.892 [95% CI 0.866–0.913] and 0.140 [95% CI 0.108–0.180], 
respectively. The AUC was 0.935 (partial AUC restricted to observed FPRs of 0.877), indicating excellent classi-
fier performance (Table 4; Fig. 3, top left panel).

Graphic Display of Study Heterogeneity (GOSH) plots were used to further explore causes of heterogeneity 
in the extracted data through the application of unsupervised clustering algorithms to identify influential outli-
ers (Supplemental Fig. S3). 4 studies were found to substantially contribute to between-studies heterogeneity 
with respect to sensitivity27,28,33,40, and a further 6 studies were identified as potentially influential with respect to 
specificity20,24,25,33,38,43,46. Exclusion of these studies from a univariate random effects model of sensitivity (N = 27) 
and specificity (N = 24) resulted in a reduction in Higgins I2 to 0.0% [0.0; 42.5] (Tau2 = 0.27, Q(26) = 24.99, 
p = 0.52) for sensitivity and I2 60.8% [38.9; 74.8] (Tau2 = 0.39, Q(23) = 58.7, p < 0.0001). A sensitivity analysis 
was thus performed with influential outliers excluded (Table 4). Although these analyses provide an indication 
of influential outlying studies, they do not inform on the likelihood of small study effects as a contributor of 
identified heterogeneity.

Funnel plots, of both all studies and according to subgroup, were initially used to investigate for small study 
effects (Supplemental Fig. S4). These funnel plots themselves provide an indication of possible publication bias, 
with a number of studies demonstrating both a large effect size and standard error, and the use of contour-
enhancement does appear to identify a scarcity of studies in zones of low significance. Egger’s linear regression 
test supported plot asymmetry within studies reporting on classical machine learning methods (Supplemental 
Table S2). These results should be interpreted with caution, however, and plot asymmetry alone is not pathog-
nomonic of publication bias. To further investigate small study effects as a possible cause for this asymmetry, a 
bias-corrected estimate of the diagnostic odds ratio was determined using Duval and Tweedie’s Trim and Fill 
method, which aims to re-establish symmetry of the funnel plot by imputing ‘missing’ effects, to provide an 
adjusted diagnostic odds ratio that better reflects the true effect when all evidence is considered. This method 
did identify a reduction in effect size, particularly in studies reporting on classical machine learning methods 
in classification, in those examining the use of clinical photographs, and in those classifying OSCC vs Healthy. 
Inspection of the funnel plots for these categories (Supplemental Fig. S4) does appear to show an absence of 
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studies within regions of low significance, supporting a conclusion that reporting bias may contribute to inflation 
of study effects in some subgroups.

A comparison of algorithm performance according to methodology (clinical photographs, thermal imaging 
or analysis of volatile compounds), AI type (modern and classical), and lesion type (OSCC vs Healthy, OSCC/
OPMD vs Benign, OSCC/OPMD vs Healthy) identified no differences in performance, as indicated by overlap 
in confidence regions on sROC curves (Fig. 3), showing uniformly high performance irrespective of group. 
Moreover, bivariate meta-regression found no significant differences in classification performance irrespective 
of methodology, AI type or lesion type (Table 4). A comparison of lesion types undergoing classification was 
limited to OSCC vs Healthy, OSCC/OPMD vs Benign, OSCC/OPMD vs Healthy, given the limited number of 
studies reporting results on other comparisons. Classification performance across subgroups was similar fol-
lowing exclusion of those studies identified as potentially influential.

Just 1 study met the inclusion criteria reporting on the use of thermal imaging in oral cancer detection16. In 
this study, Chakraborty et al. exploited Digital Infrared Thermal Imaging (DITI) as a non-invasive screening 
modality for oral cancer. Their process of detection involves initial detection of left and right regions of interest 
(ROI) from infrared images using a FLIR T 650 SC long infrared camera. Rotation invariant feature extraction 
was then performed on ROI using a Gabor filter, the responses of which are then used as input into a non-linear 
support vector machine (SVM) following transformation using a radial basis function (RBF) kernel. Fivefold 
cross validation on a dataset of 81 malignant, 59 precancerous and 63 normal subjects identified an overall 
accuracy of 84.72% in distinguishing between normal vs malignant subjects.

18 studies used various methods of optical imaging for in-vivo detection of oral potentially malignant and 
malignant disorders15,30,31,33–45,50,51, 16 of which provided sufficient performance metrics for meta-analysis15. All 
studies were prospective in design. Estimates for sensitivity and false positive rate for this modality were 0.882 
[95% CI 0.865–0.896] and 0.118 [0.112–0.197], respectively. AUC for the accompanying sROC curve (Fig. 3) 
was 0.914 (partial AUC of 0.867); again, indicating good classifier performance. The majority of studies exploited 
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perturbation in autofluorescence spectra in oral pathology as the principal method of detection. However, there 
was variation in the source and wavelengths of excitation (Table 2). With exception to 11 studies (which used a 
support vector machine40,45, relevance vector machine38, quadratic discriminant analysis36,39,41,42, Mahalanobis 
distance43, linear discriminant analysis34,52, and decision tree37), the remaining studies demonstrated best per-
formance using neural networks. In studies utilising ANN, data pre-processing was similar, involving some form 
of normalisation to standardise contrast and brightness, before introduction of a size-adjusted image according 
to the base architecture (Supplementary Data S1). The exceptions here were Chan et al., who instead utilised 
a Gabor filter or wavelet transformation from a redox ratio image of FAD and NADH to ultimately generate a 
feature map as input, Wang et al., who used partial least squares discriminant analysis on captured spectra to 
identify features as input, and de Veld et al. who again utilised normalised autofluorescence spectra as input. 3 
studies used augmentation to increase the size of the training dataset for ANN30,33,51. Contrarily, studies utilising 
classical ML techniques for classification were heavily reliant on manual region of interest (ROI) detection and 
manual feature extraction. All studies with exception to James et al. produced a series of spectral intensity-based 
features following normalisation as input for classification. James et al. instead adopted an ensemble approach, 
whereby object detection and feature extraction were automated using ANNs, before introduction into a support 
vector machine for classification. Best overall accuracy within the modern ML group was achieved by Chan et al. 
using Inception (accuracy of 93.3) to classify OSCC vs healthy, and best performance within the classic group 
was achieved by Kumar et al. (accuracy 99.3) using Mahalanobis distance in classification of OSCC vs healthy.

Table 1.   Summary of identified studies using clinical photography as the screening modality.

Study Data source ML classification methods Performance metrics Outcomes (best performing ML)

Clinical photographs

Fu et al.19 Heterogenous dataset from both smartphones 
and SLR cameras

NN based on DenseNet121 architecture, pre-
trained on ImageNet

Sensitivity
Specificity
Accuracy
AUROC
t-SNE

Sensitivity 89.6
Specificity 80.6
Accuracy 84.1
AUROC 0.935

Welikala et al.20 Smartphone images of oral lesions as part of the 
MeMoSA initiative

NN based on ResNet101 architecture, pre-
trained on ImageNet

Sensitivity
Precision
F1

Sensitivity 89.51
Precision 84.77
F1 87.07

Jubair et al.21 Heterogenous dataset from both smartphones 
and SLR cameras

NN based on EfficientNet architecture, pre-
trained on ImageNet

Sensitivity
Specificity
Accuracy
AUROC

Sensitivity 86.7
Specificity 84.5
Accuracy 85.0
AUROC 0.928

Shamim et al.22 Images extracted directly from search engines Multiple pre-trained NNs. Best performing 
algorithm based on VGG19 architecture

Sensitivity
Specificity
Accuracy
AUROC
Tsec

Sensitivity 89.0
Specificity 97.0
Accuracy 0.98
AUROC 0.990
212.09 s

Warin et al.23 Clinical photography. Specific imaging method 
not disclosed

NN based on DenseNet121 architecture, pre-
trained on ImageNet

Sensitivity
Specificity
Precision
AUROC
F1
Grad-CAM

Sensitivity 98.75
Specificity 100
Precision 100
AUROC 0.99
F1 0.99

Lin et al.24 Heterogenous dataset from 4 different smart-
phones

NN based on HRNet-W18 architecture, pre-
trained on ImageNet

Sensitivity
Specificity
Precision
AUROC
F1
Grad-CAM

Sensitivity 83.0
Specificity 96.6
Precision 0.84
AUROC 0.946
F1 0.9

Welikala et al.25 Smartphone images of oral lesions as part of the 
MeMoSA initiative

Multiple pre-trained NNs. Best performing 
algorithm based on VGG19 architecture

Sensitivity
Specificity
Precision
Accuracy
F1
Grad-CAM

Sensitivity 85.7
Specificity 76.4
Precision 0.77
Accuracy 80.9
F1 0.81

Figueroa et al.26 Clinical photographs. Specific imaging method 
not disclosed

NN based on VGG19 architecture, pre-trained 
on ImageNet

Sensitivity
Specificity
Accuracy
Grad-CAM

Sensitivity 74.4
Specificity 89.1
Accuracy 83.8

Warin et al.27 SLR camera NN based on ResNet architecture, pre-trained 
on ImageNet

Sensitivity
Specificity
Precision
AUROC

Sensitivity 98.4
Specificity 91.7
Precision 92.0
AUROC 0.950

Tanriver et al.28
Clinical photographs taken in clinical depart-
ment, supplemented by images from various 
search engines

Multiple pre-trained NNs; best performance 
using EfficientNet-b4 architecture

Sensitivity
Precision
F1

Sensitivity 89.3
Precision 86.2
F1 85.7

Jeyaraj et al.29

Imaging data extracted from UCI irvine 
machine learning repository, the cancer imaging 
archive and the genomic data commons data 
portal

Modified Inception v3 architecture pre-trained 
on ImageNet. Compared to support vector 
machine and deep belief network

Sensitivity
Specificity
Accuracy
AUROC

Sensitivity 98.0
Specificity 94.0
Accuracy 96.6
AUROC 0.965
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Uthoff et al. performed a field-testing study of new hardware developed specifically for intra-oral classification 
of benign and (pre-)malignant lesions. The device in question, designed to provide POC detection in low- and 

Table 2.   Summary of identified studies using optical imaging as the screening modality.

Study Data source ML classification methods Performance metrics Outcomes (best performing ML)

Optical imaging

Uthoff et al.30
Custom smartphone-based dual modality 
device capable of both white light and auto-
fluorescence imaging

NN based on VGG-M architecture, pre-
trained on ImageNet

Sensitivity
Specificity
Precision
NPV
Accuracy
AUROC

Sensitivity 85.0
Specificity 89.0
Precision 0.88
NPV 0.85
Accuracy 86.9
AUROC 0.91

Song et al.17 Smartphone-based intraoral imaging system 
with custom WL probe

NN based on VGG19 architecture, pre-trained 
on ImageNet Accuracy Accuracy 85.6

Chan et al.31 VELscope device32
Classification based ResNet or Inception 
architecture, using either a fully convolutional 
network or feature pyramid network

Sensitivity
Specificity

Sensitivity 98.0
Specificity 88.0

Aubreville et al.33

Confocal Laser Endomicroscopy images of 
oral cavity following IV fluorescein. Images 
extracted from IO videos. CystoFlex UHD 
and Coloflex UHD as imaging devices

Used untrained LeNet-5 architecture with 
patch probability fusion, whole image classi-
fication using pre-trained Inception V3 CNN 
and random forest classifier. Best performance 
using LeNet-5

Sensitivity
Specificity
Accuracy
AUROC

Sensitivity 86.6
Specificity 90.0
Accuracy 88.3
AUROC 80.7

De Veld et al.15
Xe lamp with monochromator for illumina-
tion, a spectrograph and custom set of long-
pass and short-pass filters

NN with base architecture not specified; sin-
gle hidden layer between input and output AUROC AUROC 0.68

Roblyer et al.34

Multispectral digital microscope (MDM), 
measuring white light reflectance, autofluo-
rescence, narrow band reflectance and cross-
polarised light

Linear discriminant analysis
Sensitivity
Specificity
AUROC

Sensitivity 93.9
Specificity 98.1
AUROC 0.981

Caughlin et al.35 Multispectral autofluorescence lifetime imag-
ing (maFLIM) endoscopy

Bespoke neural network using a shared 
encoder and separate paths for signal recon-
struction and classification; classification on 
pixel-pixel basis

Sensitivity
Specificity
Precision
Accuracy
F1

Sensitivity 87.5
Specificity 67.6
Precision 76.3
Accuracy 77.6
F1 0.80

Jo et al.36
Time-domain multispectral FLIM rigid 
endoscope. Emission spectral collected for 
collagen, NADH, FAD

Quadratic discriminant analysis
Sensitivity
Specificity
AUROC

Sensitivity 95
Specificity 87
AUROC 0.91

Francisco et al.37

Portable spectrophotometer with two solid 
state lasers; a diode emitting at 406 nm and 
a double frequency neodymium 523 nm as 
excitation source

Compared naïve bayes, k-Nearest Neighbours 
and decision tree. Decision tree provided best 
performance

Sensitivity
Specificity
Accuracy

Sensitivity 87.0
Specificity 91.2
Accuracy 87.0

Wang et al.19
Fibre optics-based flurospectrometer, using 
Xe lamp with monochromator as excitation 
source

Partial least squares combined with artificial 
neural network—neural network with single 
hidden layer

Sensitivity
Specificity
Precision

Sensitivity 81.0
Specificity 96.0
Precision 88

Majumder et al.38 N2 laser as excitation source Relevance Vector Machine (RVM)
Sensitivity
Specificity
AUROC

Sensitivity 91
Specificity 95
AUROC 0.9

Huang et al.39 VELscope device Quadratic discriminant analysis Sensitivity
Specificity

Sensitivity 92.3
Specificity 97.9

Duran-Sierra et al.40
Multispectral autofluorescence lifetime 
imaging endoscopy (maFLIM); preferential 
excitation of NADH and FAD

Best performance using ensemble approach 
of support vector machine and quadratic 
discriminant analysis

Sensitivity
Specificity
F1
AUROC

Sensitivity 94.0
Specificity 74.0
F1 0.85
AUROC 0.81

Jeng et al.41 VELscope device Used both linear discriminant analysis and 
quadratic discriminant analysis

Sensitivity
Precision
Accuracy
F1
AUROC

Sensitivity 92.0
Precision 0.86
Accuracy 86.0
F1 0.88
AUROC 0.96

Huang et al.42
Custom autofluorescence device, comprising 
two LED continuous wave lamps, for preferen-
tial imaging of NADH and FAD

Quadratic discriminant analysis Sensitivity
Specificity

Sensitivity 94.6
Specificity 85.7

Kumar et al.43
Custom portable autofluorescence device 
using collimating lens and bream splitter; 
405 nm dioxide for excitation

Dimensionality reduction using PCA, before 
Mahalanobis distance classification on first 
11 PCs

Sensitivity
Specificity
Accuracy

Sensitivity 98.7
Specificity 100
Accuracy 98.9

Rahman et al.44

Custom portable imaging system composed 
of modified headlamp system capable of both 
autofluorescence imaging and reflectance 
imaging

Linear discriminant analysis
Sensitivity
Specificity
AUROC

Sensitivity 92.0
Specificity 84.0
AUROC 0.913

James et al.45

Use of a spectral-domain Optical Coherence 
Tomography (OCT) system consisting of a 2D 
scanning long GRID rod probe with a centre 
wavelength of 930 nm

Use of 14 artificial neural networks for 
feature extraction, followed by support vector 
machine for classification. Best performance 
using DenseNet-201 and NASNetMobile in 
delineating OSCC from others

Sensitivity
Specificity
PPV
NPV
Accuracy

Sensitivity 86.0
Specificity 81.0
PPV 51.0
NPV 96.0
Accuracy 81.9
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middle-income countries, comprises an intra-oral probe connecting to a standard widely available smartphone 
that utilises 6 405 nm LEDs for autofluorescence and 4 4000 K LEDs for white light. Classification of autofluores-
cence spectra using a VGG-M architecture provided an accuracy of 86.88%, and AUC of 0.908. Song et al. also 
used a custom smartphone-based intra-oral visualisation system, exploiting 6 405 nm LEDs for excitation. This 
approach, using a VGG-M architecture pretrained on ImageNet, yielded an accuracy of 86.9%, with sensitivity 
of 85.0% and specificity of 88.7%51. Other approaches for achieving autofluorescence in vivo included a xenon 
lamp with monochromator and spectrograph15, multispectral digital microscopy35, time-domain multispec-
tral endogenous fluorescence lifetime imaging FLIM36, N2 laser38, confocal endomicroscopy (CFE)33, portable 
spectrophotometry37,50, and optical coherence tomography45. Notably, although in vivo and providing a prospect 
of POC detection, the approach taken by Aubreville et al. of confocal laser endomicroscopy does require intra-
venous administration of fluorescein prior to imaging and its utility as a POC detection tool may therefore be 
limited33. Both Huang et al. and Jeng et al. used the commercially available VELscope for autofluorescence imag-
ing, though both groups used different approaches to classification. Huang et al. determined the average intensity 
of red, blue and green (RGB) channels and grayscale following grayscale conversion as input into quadratic 

Table 3.   Summary of identified studies using thermal imaging and VOC analysis as the screening modality.

Study Data source ML classification methods Performance metrics Outcomes (best performing ML)

Thermal imaging

Chakraborty et al.16 FLIR T 650 SC long infrared (7.5–13 µm) 
camera Support Vector Machine (SVM) Accuracy Accuracy 84.72

Detection of volatile organic compounds (VOCs)

Van de Goor et al.46
‘Aeonose’ electronic nose—using 3 micro-
hotplate metal-oxide sensors to detect a range 
of VOCs in exhaled breath

Compression of 64 × 36 measurements 
per sensor, using Tensor Decompression 
(Tucker3-like). NN implemented through 
AeoNose software (Aethena software)—base 
architecture not specified

Sensitivity
Specificity
Accuracy
AUROC

Sensitivity 84
Specificity 67
Accuracy 72
AUROC 0.850

Mohamed et al.47
‘Aeonose’ electronic nose—using 3 micro-
hotplate metal-oxide sensors to detect a range 
of VOCs in exhaled breath

Compression of 64 × 36 measurements 
per sensor, using Tensor Decompression 
(Tucker3-like). NN implemented through 
AeoNose software (Aethena software)—base 
architecture not specified

Sensitivity
Specificity
Precision
Accuracy
AUROC

Sensitivity 80
Specificity 77
Precision 67
Accuracy 79
AUROC 0.882

Leunis et al.48
‘DiagNose’ electronic nose—12 metal-oxide 
sensors using four different sensor types: CH4, 
CO, NOx, Pt

Forward selection logistic regression
Sensitivity
Specificity
AUROC

Sensitivity 90
Specificity 80
AUROC 0.850

Hakim et al.49

‘Nanoscale Artificial Nose’ (NA-NOSE) elec-
tronic nose—5 sensors based on gold nano-
spheres with tert-dodecanethiol, hexanathiol, 
2-mercaptobenzoazole, 1-butanethiol, and 
3-methyl-1-butanethiol ligands

Support vector machine (SVM) trains on 
principle components 1 and 2, following PCA 
of sensor measurements

Sensitivity
Specificity
Accuracy

Sensitivity 100
Specificity 92
Accuracy 96

Mentel et al.18
‘BreathSpect’ device, utilising two fold separa-
tion using gas chromatography and mass 
spectrometry to detect VOCs

2-Dimensional output from ‘BreathSpect’ 
device converted to integer arrays. Best classi-
fication performance using logistic regression

Accuracy Accuracy 89

Flow & timing

Reference standard

Index test

Patient selection

0% 25% 50% 75% 100%

Low risk of bias Some concerns High risk of bias

Flow & timing

Reference standard

Index test

Patient selection

0% 25% 50% 75% 100%

Low risk of bias Some concerns High risk of bias

Figure 2.   Summary plots of ‘Risk of bias’ (top panel) and ‘Applicability’ (bottom panel) using the QUADAS-2 
tool.
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discriminant analysis to distinguish between oral potentially malignant/malignant and healthy tissues, report-
ing a sensitivity and specificity of 0.92 and 0.98, respectively39. While feature selection was similar to Huang’s 
group (extracting average intensity and standard deviation of intensity from grayscale-converted RGB images), 
Jeng et al. compared the performance of both linear discriminant analysis (LDA) and quadratic discriminant 
analysis (QDA), reporting an optimal performance using QDA on normalised images of the tongue (sensitivity 
of 0.92, precision 0.86)41.

11 of the 26 identified studies attempted diagnosis of oral potentially malignant or malignant disorders from 
clinical photographs19–29, all of which utilised deep learning through various neural network architectures for 
classification and were retrospective in design (Table 1). All studies using clinical photographs provided perfor-
mance metrics amenable to meta-analysis. Sensitivity and false positive rate were estimated as 0.911 [95%  CI 
0.848–0.950] and 0.118 [95%CI 0.070–0.192], respectively, and AUROC was 0.952 (partial AUC of 0.90; Fig. 3). 
All studies in this category used neural networks for classification. The source of images was variable between 
studies, with 4 studies using smart phone cameras as a potential easily-implementable POC source of data20,24–26, 
2 studies using heterogenous images from various camera types19,21, 3 studies using images from search engines/
repositories22,28,29, and 2 used high resolution single-lens reflex (SLR) cameras23,27. Training and testing sample 
sizes varied between studies (Fig. 5), though 8 of the 11 studies used augmentation to enhance the size of the 
training set, including scaling, shearing, rotation, reflection, and translation19,20,23–28. With exception to Fu et al. 
(who used the Single Shot Multibox Detector (SDD) as a detection network), and Lin et al.24 (who used the 
automatic centre-cropping function of a smartphone grid), all remaining studies within this category depended 
upon manual ROI bounding, thus still requiring a degree of clinical expertise prior to feature extraction and 

Table 4.   Results of main bivariate random effects model of diagnostic test performance, subgroup analysis, 
and sensitivity analysis following removal of influential outliers. a Influential studies removed for sensitivity 
analysis2,20,25,26,30,33,38,43,46.

Category Subgroup
Sensitivity [95% 
CI]

False positive rate 
[95% CI]

AUC [restricted 
AUC]

Diagnostic meta-regression estimate 
(SE); p-value

Sensitivity False positive rate

Main analysis

Overall – 0.892 [0.866; 
0.913]

0.140 [0.108; 
0.180] 0.935 [0.877] – –

AI type
Classical 0.904 [0.878; 

0.925]
0.151 [0.111; 
0.202] 0.915 [0.893] – –

Modern 0.883 [0.839; 
0.916]

0.139 [0.096; 
0.197] 0.932 [0.867] − 0.341 (0.247), 

p = 0.167
− 0.003 (0.320), 
p = 0.994

Modality

Volatile com-
pounds

0.863 [0.764; 
0.924]

0.238 [0.142; 
0.372] 0.889 [0.827] – –

Clinical photo-
graphs

0.911 [0.848; 
0.950]

0.118 [0.070; 
0.192] 0.952 [0.900] 0.401 (0.464), 

p = 0.388
− 0.740 (0.490), 
p = 0.131

Optical imaging 0.882 [0.865; 
0.896]

0.150 [0.112; 
0.197] 0.914 [0.867] 0.328 (0.450), 

p = 0.131
− 0.620 (0.476), 
p = 0.192

Lesion type

OSCC vs healthy 0.868 [0.858; 
0.878]

0.145 [0.093; 
0.218] 0.861 [0.859] – –

OSCC/OPMD vs 
benign

0.875 [0.801; 
0.924]

0.153 [0.063; 
0.326] 0.905 [0.869] − 0.222 (0.342), 

p = 0.516
0.122 (0.490), 
p = 0.803

OSCC/OPMD vs 
healthy

0.874 [0.824;  
0.911]

0.179 [0.115; 
0.268] 0.914 [0.852] 0.205 (0.385), 

p = 0.594
0.205 (0.385), 
p = 0.594

Sensitivity analysis (influential outliers removed)a

Overall – 0.892 [0.871; 
0.910]

0.142 [0.104; 
0.190] 0.883 [0.883] – –

AI type
Classical 0.903 [0.875; 

0.924]
0.176 [0.150; 
0.205] 0.931 [0.867] – –

Modern 0.878 [0.843; 
0.907]

0.118 [0.068; 
0.199] 0.870 [0.870] − 0.248 (0.207), 

p = 0.232
− 0.349 (0.362), 
p = 0.335

Modality

Volatile com-
pounds

0.921 [0.863; 
0.856]

0.157 [0.124; 
0.197] 0.916 [0.912] – –

Clinical photo-
graphs

0.899 [0.861; 
0.928]

0.084 [0.041; 
0.168] 0.920 [0.890] 0.244 (0.433), 

p = 0.574
− 0.784 (0.583), 
p = 0.179

Optical imaging 0.896 [0.868; 
0.238]

0.172 [0.122; 
0.238] 0.904 [0.884] 0.275 (0.419), 

p = 0.512
− 0.127 (0.547), 
p = 0.817

Lesion type

OSCC vs healthy 0.900 [0.861; 
0.929]

0.185 [0.149; 
0.227] 0.919 [0.866] – –

OSCC/OPMD vs 
benign

0.875 [0.801; 
0.924]

0.152 [0.063; 
0.326] 0.905 [0.869] − 0.347 (0.306), 

p = 0.256
0.002 (0.479), 
p = 0.997

OSCC/OPMD vs 
healthy

0.904 [0.863; 
0.934]

0.168 [0.087; 
0.299] 0.910 [0.894] − 0.070 (0.275), 

p = 0.256
0.083 (0.464), 
p = 0.858
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classification. Best overall accuracy, of 99.28, was achieved by Warin et al.23 using DenseNet-161 (pretrained on 
ImageNet) in classification of OSCC from healthy.

Fu et al. developed a two-stage process of classification, exploiting the Single Shot MultiBox Detector (SSD) 
as a detection convolutional neural network to initially define the region of interest, before binary classification 
using DenseNet, pretrained on ImageNet. In addition to demonstrating promising classification performance 
(AUROC 0.970), the developed deep learning algorithm also demonstrated superior performance in classifica-
tion from clinical images compared to blinded non-medical professionals and post-graduate medical students 
majoring in oral and maxillofacial surgery (OMFS). Both identified studies by Welikala et al. adopted a smart 
phone-based approach, with a view to rapid POC detection of oral cancer in low and middle-income countries, 
as part of the Mobile Mouth Screening Anywhere (MeMoSA) initiative. A range of convolutional neural networks 
were trained on provided images, with best classification performance achieved through the VGG-19 architecture 
(Table 1). Both Tanriver et al. and Jeyaraj et al. attempted multiclass classification of either OSCC vs OPMD vs 
benign or normal vs benign vs malignant, respectively. Both used search engines and existing data repositories 
as the source of input data for classification (though Tanriver supplemented these using clinical photography 
within their unit). Transfer learning, with pretraining on ImageNet, performed best using the EfficientNet-b4 
architecture in Tanriver et al., reporting an F1 of 0.86. Jeyaraj modified the Inception v3 architecture, and com-
pared to a support vector machine and deep belief network, reporting a specificity of 0.98 and sensitivity of 0.94.

4 studies provided data on the use of an electronic nose as a POC device to detect malignancy-associated 
volatile compounds from exhaled breath (Table 3), all with exception to Mentel et al. providing outcomes ame-
nable to meta-analysis46–49. All studies were prospective in design. Pooled estimates for sensitivity and false 
positive rate were 0.863 [95% CI 0.764–0.924] and 0.238 [95% CI 0.142–0.372] and AUC was estimated at 0.889 
(partial AUC of 0.827). All 4 studies utilised some form of portable electronic ‘nose’ (eNose) to detect volatile 
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Figure 3.   Summary Receiver Operator Characteristic (sROC) curves to estimate model performance; Top left, 
sROC curve of bivariate model of all studies (AUC 0.935); top right, sROC curves according to methodology; 
bottom left, sROC curves according to AI type; bottom right, sROC curves according to lesion type. AUC for 
subgroups, and results of subgroup analysis are provided in Table 4.
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organic compounds in exhaled breath of either patients with a confirmed diagnosis of malignancy or healthy 
controls. Van der Goor et al. and Mohamed et al. used eNose devices with a combination of micro hotplate 
metal-oxide sensors to detect changes in conductivity with redox reactions of volatile organic compounds on 
heating. Leunis instead analysed air samples using 4 sensor types—CH4, CO, NOx and Pt—and Hakim et al. 
used a device dependent upon spherical gold nanoparticles. Van der Goor et al. and Mohamed et al. both used 
tensor decomposition (Tucker3) to generate a single input vector for training of a neural network from the 
64 × 36 datapoints generated per sensor, achieving sensitivities of 84% and 80%, and specificities 80% and 77% 
in detecting OSCC. Leunis et al. instead used logistic regression in binary classification, using measurements 
from only the NOx sensor to avoid collinearity. This achieved a sensitivity of 90% and specificity of 80%. Hakim 
et al. used Principal Component Analysis (PCA) for initial clustering, before training a linear support vector 
machine on principle components 1 and 2—this method achieved a sensitivity of 100% and specificity of 92%. 
Mental et al. used a commercially available BreathSpect device for sample collection, using two-fold separation 
with gas chromatography and mass spectrometry to detect VOCs. The output from the affiliated software is a 
2-dimensional image representation of both VOC drift time and parts-per-billion. This output was used to train 
various classical machine learning algorithms (k-nearest neighbours, random forest, logistic regression and linear 
discriminant analysis), with best performance of an accuracy of 0.89 using logistic regression.

Several approaches to ML were used across the identified studies in their pursuit for detection of oral poten-
tially malignant and malignant disorders. For clarity, the hierarchical classification presented by Mahmood 
et al. is adopted here53. ML classification algorithms may be subdivided into modern techniques and classical 
techniques (Fig. 4). The majority of identified studies used supervised algorithms for classification (following 
feature selection where necessary), whereby the machine is trained on annotated data. The majority of studies 
reported best outcomes using various architectures of neural networks. All studies on analysis of photographic 
images used deep learning (neural networks with more than one hidden layer), the most popular architecture 
of which being VGG neural networks17,22,25,26,30,51. This is perhaps unsurprising since VGGNet was developed as 
an extension of the revolutionary AlexNet54,55.

Several studies compared multiple different machine learning methods in classification. Shamim et al. used 
transfer learning with multiple convolutional neural networks pretrained on ImageNet, including AlexNet, Goog-
LeNet, VGG19, ResNet50, Inception v3 and SqueezeNet, achieving the optimal performance using the VGG19 
CNN with a sensitivity of 89% and specificity of 97%22. Welikala et al. compared VGG16, VGG19, Inception 
v3, ResNet50 and ResNet101, all pretrained on ImageNet and applied through transfer learning; VGG19 again 
proved to provide the best detection of suspicious lesions from clinical images. Tanriver et al. found optimal 
performance using the EfficientNet-b4 architecture in clinical image classification.

Fifteen studies used “classical” ML algorithms. Roblyer et al. and Rahman et al. used linear discriminant analy-
sis for classification of features extracted from autofluorescence images. Jo et al. and Huang et al. used quadratic 
discriminant analysis. Duran-Sierra et al. exploited an ensemble approach of both quadratic discriminant analysis 
and a support vector machine, demonstrating superior performance in classification of normalised ratios from 
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Figure 4.   Summary of best performing machine learning algorithms adopted by identified studies. The 
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autofluorescence images than the two approaches independently. Francisco et al. used decision trees, Chakraborty 
et al. and Hakim et al. used support vector machines, Majumder et al. a relevance vector machine and Leunis 
et al. used logistic regression. James et al. also adopted an ensemble approach, employing ANN for feature extrac-
tion prior to a support vector machine for classification. Feature selection and reduction for input into classical 
machine learning algorithms was also achieved through a variety of methods, including Principle Component 
Analysis49, tensor decomposition46,47, Gabor feature extraction and discrete wavelet transformation31. The only 
study utilising an unsupervised machine learning approach for classification (rather than feature selection) was 
Kumar et al., who initially used PCA for dimensionality reduction before Mahalanobis distance classification of 
the first 11 identified principal components.

Sample sizes for training and validation sets were hugely variable between studies. Test set sample size ranged 
from 5 per sample31 to 407933. An overview of training and test set sample sizes is provided in Fig. 5. Training 
sample sizes are estimates only, as some papers did not report total sample size post-augmentation, and so only 
the initial training sample size was recorded (and may therefore be underestimated). 16 of the 35 included stud-
ies did not report on software for implementation of machine learning methods. Of those using modern ML 
methods, 7 studies used the Keras application programming interface20,21,23,25,27,33,35, 2 used PyTorch, 1 used the 
Python Scikit-learn machine learning library, 2 studies used proprietary software accompanying the eNose46,47, 
and 1 study used the Deep Learning Toolbox and Parallel Learning Toolbox within MATLAB22. Within studies 
using classical ML methods, 3 studies used MATLAB34,43,45, 1 used Scikit-learn (Python), 1 used SPSS Statistics48, 
and 1 study used WEKA37.

Discussion
Artificial Intelligence is becoming increasingly pervasive in the domains of medical diagnostics and prognos-
tication, afforded by increasingly complex deep learning algorithms that overcome the limitation of manual 
feature extraction. The realisation that a deep learning algorithm could outperform consultant radiologists in 
the diagnosis of lung cancer in 2019 certainly instils a sense of cautious optimism that machine learning may 
provide a feasible solution for automatic cancer detection56. The use of machine learning, however, in transla-
tional medicine is not limited to radiology. Recent developments have allowed prediction of pharmacological 
properties of compounds to enhance drug discovery57, selection of chemotherapy dose regimes58, and predic-
tion of splice variants and transcriptional regulatory mechanisms based on genomics data59. This same level of 
success has unfortunately yet to be translated to head and neck cancer. The purpose of the current study was to 
provide an update on the progress of machine learning in POC testing for potentially malignant and malignant 
disorders of the oral cavity.

Thirty-five studies were identified during the literature review, encompassing 4 categories of testing modali-
ties: (1) assessment of clinical photos; (2) analysis of autofluorescence spectra; (3) detection of volatile organic 
compounds in exhaled air; and (4) thermal imaging. The overall estimates for sensitivity and false positive rates 
for included studies were 0.892 and 0.140, with an AUC of 0.935. These outcomes suggest good classification 
performance. Fu et al. undertook an additional analysis, testing their neural network on intra-oral photographs 
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against blinded human performance with varying expertise. It was found that, on a clinical validation dataset of 
666 images, the algorithm emphatically outperformed a student panel majoring in OMFS and a panel of non-
medical students, and was fairly equivalent in its performance with a panel of oral cancer experts (model accuracy 
of 92.3% compared to expert accuracy of 92.4%), demonstrating the potential of this technique. No differences 
were identified between testing modality, AI type or lesion type with respect to diagnostic test performance.

The true potential in the automatic feature selection and classification from intra-oral white light images is 
that no additional resources, beyond a smartphone and access to an imaging server, are required for POC testing, 
making this modality particularly appealing for screening in low and middle-income countries. The development 
of the Mobile Mouth Screening Anywhere (MeMoSA) phone application by Haron et al.60, provides an interface 
between community-based practitioners (usually a general dental practitioner) and specialists, potentially pro-
viding a POC platform for machine-learning automated diagnosis60. However, there remain limitations with this 
modality with respect to automation. Many studies using clinical photographs still relied upon the expertise of 
an oral and maxillofacial expert for delineation of ROI prior to input into a neural network. Arguably, this is still 
a considerably less resource-intensive exercise than manual classification, and Fu et al. have demonstrated that 
automated boundary box generation is possible without the need for manual human image annotation. The Visual 
Geometry Group Networks (VGGNet) proved particularly effective in classification from images where multiple 
base architectures were compared. VGGNet, as a derivative of AlexNet, provides several additional features to 
both improve classification performance and computational efficiency55. The receptive fields are considerably 
smaller than that of previous architectures, and the introduction of 3 rectified linear activating function (ReLU) 
units allows for more robust discrimination.

In contrast to white-light intra-oral imaging, multispectral optical imaging aims to increase visual contrast 
between non-neoplastic and neoplastic tissue. Autofluorescence spectroscopy has shown promising results in 
the detection of cancer in a number of other locations, including the lung, oesophagus and colon61,62. Tissues 
contain many fluorophores that re-emit light at specific wavelengths following excitation. Examples of such 
fluorophores include NADH, FAD, tryptophan, tyrosine and collagen50. Alterations in tissue architecture and the 
distribution of these fluorophores results in a measurable difference in emissions spectra between healthy and 
neoplastic tissue, providing the basis for the use of tissue autofluorescence as a possible classification method. 
Studies based on this method also showed promising performance, with an estimated AUC of 0.91. However, 
de Veld et al., while demonstrating good classification between neoplastic and healthy tissue, did report poor 
performance of autofluorescence in distinguishing between potentially malignant and malignant disorders rela-
tive to Wang et al., which raises a question of generalisability of this technique between populations15. A number 
of commercial devices are currently available that rely on the principle of tissue autofluorescence in detection of 
oral lesions, showing variable performance across primary studies. These have been comprehensively reviewed 
previously by Mascitti et al.63.

The use of thermal imaging in detection of neoplasia is premised on differences in temperature distribution 
between potentially malignant, malignant and healthy tissue. The use of Digital Infrared Thermal Imaging (DITI) 
has previously shown promise as a non-invasive modality for classification of breast and thyroid disease64,65. Rep-
resenting thermal regions of interest as rotation-invariant multiresolution Gabor filter bank responses allowed 
the input of image-based data into a classical machine learning algorithm in Chakraborty et al., demonstrating 
good classification performance with a RBF kernelized SVM. The rationale here for introducing a pre-processing 
stage (Gabor filter) for feature selection with a classical machine learning technique is unclear, particularly given 
that deep learning architectures optimised for automatic image-based feature selection were available at the 
time of study (AlexNet for example). This perhaps reflects an insufficient pool of available infrared images for 
training a deep learning network, and a modern approach to machine learning using DITI certainly warrants 
further investigation.

The emergence of electronic noses as a means of measuring and analysing volatile compounds in exhaled air 
has accompanied advances in sensor technologies47. Cancer-related VOCs are derived as by-products of cancer 
metabolism, with different cancers displaying a unique signature of VOCs within various bodily compartments66. 
These VOCs are detectable in exhaled air following diffusion from the blood into the alveoli. This approach also 
demonstrated good classification performance across the four identified studies, with an AUC of 0.89.

Although subgroup analysis across all studies identified no significant difference in diagnostic test perfor-
mance between classical and modern classification methods (AUC 0.915 vs AUC 0.932, respectively, p = 0.994), 
a greater resolution comparison of these methods within lesion type and modality was not possible given the 
limited number of studies within these subgroups (indeed, classification within the clinical photograph modality 
was achieved using only ANN). Thus, while it may be true that overall performance is not different across the 
entire cohort of studies, this does not exclude the possibility of differences in performance between modern and 
classical classification methods according to specific classification task and the employed diagnostic test. There are 
potentially sound justifications for why certain ML types were employed in the various studied classification tasks, 
according to the complexity and amount of data generated through the detection method. Classical approaches 
require an initial step of feature extraction and, although algorithms exist for automatic feature extraction from 
images (such as edge detection, corner detection and threshold segmentation), it is still the responsibility of the 
investigator to decide which features are considered important and which to input into classification. End-to-
end learning, through the introduction of a pre-processed image to an ANN, ameliorates this need for intensive 
tuning and manual feature selection67. The major disadvantage here is the computational demand of deep learn-
ing. Within optical imaging and breath testing, 9 studies utilised ANN and 14 used classical ML techniques, 
with no obvious difference in overall diagnostic accuracy according to approach. This is perhaps unsurprising. 
Where manual feature extraction is not overly cumbersome (and features can be generated from spectral data 
with relative ease), and training datasets are comparatively small, classical ML techniques may outperform deep 
learning and avoids the need for big training data and expensive hardware.
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Several issues were common to many of the identified studies. Many studies reported performance metrics 
from internal validation, rather than testing on a discrete external test set to which the algorithm is naïve. Pre-
sumably, internal validation only was performed as a means of optimising the amount of available data for train-
ing. However, even with very large datasets, the absence of a discrete test/validation set results in overfitting and 
poor generalisability to the population at large; that is, the trained algorithm functions only in the narrow context 
within which it is developed68. This does present issues where algorithms are trained on homogenous samples, but 
where substantial heterogeneity is seen in real-world applications, and machine learning algorithms will need to 
demonstrate sound generalisability before widespread adoption as mainstream diagnostic adjuncts. Heterogene-
ity was identified as high throughout univariate analysis of both sensitivity and specificity. A sensitivity analysis, 
excluding influential outlying studies, did support similar results to the main analysis. However, interrogation 
of small study effects did identify a high likelihood of publication bias, particularly in some subgroups, and a 
bias-adjusted model found that diagnostic performance was likely over-estimated. Further, a number of studies 
were ranked as ‘unclear’ across many of the domains of bias and applicability using the QUADAS-2 tool (Fig. 2 
and Supplemental Fig. S1). Across many studies, the methods sections simply provided insufficient information 
to facilitate a reasonable determination of risk of bias.

There are several limitations of the current study. As with any systematic review, there is always potential for 
the search process to miss relevant articles, providing an incomplete summary of the topic of interest. A particu-
lar issue here common to search strategies on automated classification is that classical approaches are often not 
explicitly referred to as machine learning (or similar such key terms). A highly sensitive search strategy, with a 
thorough iterative approach to reference screening, was used to mitigate this limitation.

For a machine learning algorithm to be useful as screening tool, it is not necessary to achieve an equivalent 
accuracy to expert diagnosis. Consider the conventional Papanicolaou (Pap) smear as an example. This screening 
tool, for cervical intra-epithelial neoplasia, has a sensitivity of 51% and a specificity of 66.6%69, but was immensely 
successful in reducing incidence of cervical squamous cell carcinoma prior to its supercedence by HPV detection. 
The current difficulty with detection of potentially malignant and early malignant disorders of the oral cavity is 
the need for expert interpretation of biopsy, a process that is both invasive and time-intensive. Any method that 
is easily implementable and has a sufficient negative-predictive value to exclude non-cases effectively and safely 
will be beneficial, and machine learning has the potential to fill this void.

Increasingly deep neural networks, concomitant with advances in computational power and algorithm effi-
ciency, provide opportunity for automated feature selection from complex data. These advancements have trans-
lated to a number of promising screening methods for detection of oral potentially malignant and malignant 
disorders, including detection from clinical photographs, autofluorescence images and exhaled breath samples. 
The results of the current study provide evidence of reliable lesion classification using these methods, many of 
which provide opportunity for POC screening in low and middle-income countries lacking expert support and 
specialist equipment. Further interrogation of the discussed machine learning implementations in heterogenous 
sample populations is necessary to confirm generalisability.

Data availability
All scripts used for data analyses are available upon request from the corresponding author.
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