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Solution to the problem of bridge 
structure damage identification 
by a response surface method 
and an imperialist competitive 
algorithm
Dan Ye1,2*, Zhe Xu3 & Yangqing Liu2

To increase the efficiency of structural damage identification (SDI) methods and timeously and 
accurately detect initial structural damage, this research develops an SDI method based on a response 
surface method (RSM) and an imperialist competitive algorithm (ICA). At first, a Latin hypercube 
design method is used for experimental design and selection of sample points based on RSM. Then, a 
high-order response surface surrogate model for the target frequency response and stiffness reduction 
factor is established. Finally, analysis of variance is performed to assess the overall goodness-of-
fit and prediction accuracy of the established model. Then the results obtained are combined with 
structural dynamic response data to construct objective functions; furthermore, the optimal solution 
of parameter vector in the objective function is solved based on the ICA. Then damage positioning and 
quantification can be achieved according to location and degree of change in each parameter; finally, 
the RSM-ICA-based SDI method proposed is applied to damage identification of high-dimensional 
damaged simply-supported beam models. To verify the effectiveness of the proposed method, the 
damage identification results are compared with the results obtained from traditional optimization 
algorithms. The results indicate that: average errors in the structural stiffness parameters and natural 
frequency that are identified by the proposed method are 6.104% and 0.134% respectively. The 
RSM-ICA-based SDI method can more accurately identify the location and degree of damages with 
more significantly increased identification efficiency and better precision compared to traditional 
algorithms. This approach provides a novel means of solving SDI problems.

With the increase in the operation time of building structures, the mechanical properties of structures after 
being put into use are deteriorating because of the coupling effect of harsh service environment, degradation 
of internal materials, and complex load, which even threaten the safety of the whole structural system1. Hence, 
how to timeously and accurately identify the position and degree of initial structural damage is of research and 
engineering significance to understanding structural operation states and evolutional trends, ensuring structural 
safety, and predicting structural behavior2.

Structural damage can induce changes in inherent characteristics of dynamic structural parameters, which 
further triggers changes in the dynamic response. Structural damage identification (SDI) issues utilize struc-
tural dynamic responses to realize inversion calculations of the location and degree of damage. The finite ele-
ment model (FEM)-based correction method provides an effective approach to these issues. Its core idea is to 
achieve the minimum error between the analyzed benchmark FEM and dynamic and static load test results. 
By continuing to rectify FEM physical parameters, this method enables the FEM to more precisely characterize 
real structural response3–10. SDI can be therefore realized by comparing the structural parameters before and 
after damage. At present, correction methods of structural finite element model mainly use sensitivity analysis 
methods11–15 and a response surface method (RSM)16–24 to adjust the design parameters. There are multiple 
parameters including degree of freedom and correction parameters involved in correction of real structural FEM 

OPEN

1Chongqing University of Education, Chongqing  400065, China. 2State Key Laboratory of Mountain Bridge and 
Tunnel Engineering, Chongqing Jiaotong University, Chongqing  400074, China. 3Guangxi Communications 
Investiment Group Co., Ltd., Nanning 530022, China. *email: yedan@cque.edu.cn

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-022-17457-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2022) 12:16495  | https://doi.org/10.1038/s41598-022-17457-9

www.nature.com/scientificreports/

analyses. Sensitivity analysis methods show low efficiency as it requires to fulfil repeated iteration calculations 
of FEM; while RSM is a comprehensive experimental technology based on statistical analysis and mathemati-
cal modelling. It uses an approximate hypersurface to replace real structural eigenvalues and complex analytic 
relationship between parameters. The core idea of RSM is to approximate the relationship between structural 
input and output using a simple low order mathematical model by using experimental methods and numerical 
analysis. By doing so, RSM can realize the increase in correction efficiency through avoiding the use of FEM 
in each iteration25. A response surface-based FE model updating procedure for civil engineering structures in 
structural dynamics was proposed by Ren16. Shan D S A integrated a substructure-based finite element model 
updating technique with the correction method of RSM to propose a novel correction method of FEM for beam 
structures, which was applied in FEM correction of a composite cable-stayed bridge17. Ma et al. established 
correction methods of an RSM-based full-scale finite element model for concrete-filled steel tubular bridges, 
suspension bridges, and long-span continuous rigid frame bridges18–24. In recent years, as RSM-based FEM 
corrections have been increasingly reported, RSM still plays increasingly important roles in FEM correction 
in civil engineering, showing potential for development and research value. The method increases the amount 
of calculation in the process of selecting model parameters, thus reducing the computational burden of FEM 
analysis and improving the optimization efficiency and quality. Although RSM has been more widely applied 
in civil engineering, aerospace, and mechanical engineering, it is limited to the model correction and reliability 
analysis of structures, while it is rarely used for SDI.

The core part for RSM is the selection of response surface functions (RSFs). The commonly used RSFs 
include second-order polynomial, artificial neural network (ANN), support vector machine (SVM), and Krig-
ing methods. Box and Wilson26 first proposed RSM, which is then developed and applied to the optimization 
design. Bucher27 proposed the second-order polynomial RSF without cross-terms and determined RSF param-
eters by using an interpolation method. Rajashekhar28 proposed a multi-step iterative RSM. The second-order 
polynomial RSF is simple, intuitive, and applicable in engineering practice. Despite these advantages, traditional 
optimization algorithms (least squares method, Newton’s method, and the Lagrange multiplier method) have 
shortcomings in terms of low calculation accuracy and poor convergence when solving second-order polynomial 
objective functions derived by RSM, so they cannot be applied in practice29–31. To solve the problem, Smith et al. 
introduced the ANN, SVM, and Kriging models to replace the second-order polynomial RSF32–43. Although the 
three RSFs (ANN, SVM, and Kriging) reduce errors, they also raise problems including the onerous computa-
tional burden, and low calculation efficiency. Due to these problems, the three RSFs cannot be readily used by 
engineers engaged in structural damage assessments, that is, they cannot be readily applied in practice. SDI can 
be transformed into non-linear optimization problems via RSM, namely, RSM needs to search for the optimal 
parameter solution of objective functions in a parameter design space. The smaller the objective function opti-
mized, the smaller the error between theoretical models and reality. The FEM can more accurately characterize 
real structural mechanical behaviors. Thus, selecting a reasonable optimization algorithm is the key to tackling 
the problems about FEM corrections. Therefore, the imperialist competitive algorithm (ICA) is used to solve the 
second-order polynomial RSFs, aiming at the low accuracy and poor convergence of traditional optimization 
algorithms in solving second-order polynomial objective functions derived by RSM. This contributes to high 
calculation accuracy, good convergence, and high calculation efficiency of the second-order polynomial objec-
tive function. The RSM-ICA-based SDI method retains the simple and intuitional advantages of second-order 
polynomial RSFs and improves the calculation efficiency and accuracy of objective functions. Therefore, the 
method is more applicable to engineering and opens a new way for practical application of SDI.

The increasingly updating and alternating intelligent bionic optimization algorithms can overcome the limit 
of traditional algorithms. It can obtain abstract mathematical concepts by simulating the behavior of biological 
populations, which has been widely used in solving SDI problems in recent years44–46. The ICA47 proposed by 
Atashpaz-Gargari and Lucas in 2007 is a group random search optimization algorithm inspired by human social 
behaviors. It consists of initializing empires, colony assimilation, colony revolution, and competition among 
empires. ICA demonstrates good proximity search capability when solving the problems involving non-linear 
optimization; in addition, it has advantages including high efficiency in global search, flexible structure, and 
its rapid rate of convergence. Due to these benefits, its application in workshop task scheduling, path planning, 
fault diagnosis, and solving the travelling salesman problem has been broadly studied48–51. To solve the problem 
whereby incorporating the transportation times between the machines into the flexible job-shop scheduling 
arises, an adaptation of the ICA hybridized by a simulated annealing-based local search proposed by Karimi 
was presented48. Sadhu AK proposed a novel evolutionary optimization approach of solving a multi-robot stick-
carrying problem-based ICA49. Zhang Yiyi developed a transformer fault diagnosis model that optimizes the 
SVM by the imperial colonial competition algorithm50. Pei Xiaobing proposed a hybrid ICA for solving issues 
concerning the travelling salesman problem combinatorial optimization51. However, little reach has been con-
ducted into the application of ICA in solving SDI-related issues. ICA delivers a beneficial proximity search 
capability when dealing with non-linear optimization problems. Its application in real engineering can provide 
reference for structural micro-damage identification.

To find a novel idea for solving issues about structural parameter inversion, an RSM-ICA-based SDI method 
is proposed. This aims at the low accuracy and poor convergence of traditional optimization algorithms in solv-
ing second-order polynomial objective functions derived by RSM and attempts to provide a simple, accurate, 
and efficient damage identification method for practical SDI engineering. The damage identification principle 
and process of this new method are expounded in detail. The feasibility and reliability of the method have been 
verified. At first, a high-order response surface surrogate model with natural frequency response and stiffness 
reduction factor is constructed based on RSM. Then, objective functions are generated successively, furthermore, 
the ICA is used to optimize objective function parameters the further to identify the structural damage location 
and severity; lastly, the method is applied to the damage identification of a high-dimensional, locally-damaged, 
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simply-supported beam numerical model to verify its reliability and feasibility. The first section presents an intro-
duction; second section demonstrates the basic principle of RSM, the third section reveals the basic principle of 
ICA, the fourth section discusses the basic principle and application process of the RSM-ICA method; the fifth 
section presents the reliability and feasibility of RSM-ICA using numerical verification; the last section concludes.

RSM
The benchmark function of response surface and experimental design.  The response surface 
benchmark function selected herein is an incomplete second-order polynomial without cross-terms, and 
expressed as

where xi , x2i  is a response surface benchmark function;a,bi , and ci are undetermined coefficients; k is the parameter 
vector; k is the number of parameters (pcs).

Reliable experimental design plays a key role in solving problems involving the contradiction between ensur-
ing the fitting precision when using RSM to substitute models and experimental cost. The number of samples 
is too small to reflect internal relationship between structural responses and parameters, causing reduction in 
fitting precision; the increase in number of sample points can improve precision of the model, while prolongs 
the cost of calculation and analysis. Therefore, it is important to select the finite and most representative sample 
data under the premise of without influencing computational precision.

The Latin hypercube design52 exhibits beneficial space-filling ability, which can reveal overall change using 
the limited number of samples, greatly improving sampling efficiency and precision. Hence, a stratified sampling 
based Latin hypercube design is adopted as an experimental design method.

Response surface fitting and parameter significance analysis.  Equation (1) can be expressed in a 
matrix form as

In Eq. (2):
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T is the vector of coefficients to be determined; n denotes the number of 

samples;Z = ( Z1 Z2 · · · Zn )T is the response value vector.
According to the least squares principle, undetermined coefficient matrix is attained:

Based on stepwise regression analysis, the F-test method is used to perform the significance analysis of 
parameters. This method introduces or eliminates arbitrary parameters from response surface model, which is 
regarded as a stage (one part of a process) for stepwise regression. Each step should be subject to the F test. By 
doing so, that the model before introducing new parameters only contains items that significantly influence input 
values can be ensured. Through repeated introducing parameters, testing and elimination, optimal response 
surface can be acquired. It is assumed that the model contains m parameters, statistical variance is calculated to 
guarantee the significance of the (m + 1)th parameter.

where,SSEm and SSEm+1 are the sum-of-squares error (SSE) for responses of the mth parameter and the (m + 1)
th parameter in RSM; ηm and ηm+1 are the degree of freedom of the mth parameter and the (m + 1)th parameter.

Significance testing criteria of parameters are: in the case of given significance level α , when 
Fm+1 > F1−α(1, n−m− 1) , the significance of the (m + 1)th parameter is high, which needs to be introduced 
into RSM model, otherwise, will be eliminated.

Precision testing of response surfaces.  After establishing the RSM, whether there is such an approxi-
mate expression between structural response and parameters should be judged through analysis of variance 
to ensure that mathematical model can replace FEM to fulfil subsequent calculation and analysis of structural 
response values. The two error indices (multiple correlation coefficient R2 and corrected multiple correlation 
coefficient R2

Adj ) can be used to test the predictive abilities of such response surfaces.
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In Eqs. (5) to (8), SSE denotes the sum of the squares of all deviations; SST is the total sum of squares of all 
deviations; Zi and Ẑi refer to FEM response value and the response value of regression model for the ith sample 
point, with the average value Z = 1

n

n
∑

i=1

Zi.

ICA
ICA is a novel meta-heuristic optimization algorithm that simulates the colonial competitive mechanism of 
empires in the development of human society. The evolutionary power of ICA mainly comes from constant 
competition among empires. The process of ICA includes: initializing empires, colony assimilation and revolu-
tion, and competitions and death of empire groups.

Initializing empires.  In the case of k-dimensional optimization, the location of a country is randomly 
assigned to each decisive variable to obtain a 1 × k matrix, we obtain:

where p1,p2,…,pk are the parameters to be optimized, k is the number of parameters (pcs).
The cost function is used to derive the power of each country

where f (·) is the cost function, the cost function is generally taken as the objective function of the optimization 
problem.

The cost functions of current countries are output and sequenced. The country with a small cost function 
is defined as Nimp of the empire, other countries are defined as Ncol , Npop = Nimp+Ncol is the total number of 
countries (pcs). The colonies can be proportionally assigned. The standardizing cost of empires is processed thus:

where cN is the cost value of the Nth empire; max
i
{ci} is the maximum cost among all empires..

The power of each empire compared to other empires can be expressed using the standardized cost:

where pN is the relative power of the Nth empire.
The colonies are divided among the empires according to their relative power, and the initial number of 

colonies controlled by the Nth empire is:

where round indicates rounding to ensure that the number of each colony is a whole number (pieces).

Assimilation and revolutionary mechanism.  The assimilation mechanism is defined as those empires 
attempt to absorb colonies under an empires’ control to become the part of the empire to enhance their impe-
rial power. The process whereby colonies are constantly moving towards imperial movement, is as shown in 
Fig. 1; Assume that each movement of the colony towards the empire be a random number that obeys a uniform 
distribution x ∼ U(0,β × d) , β(β > 1) denotes that the colony moves closer to the empire,generally β = 2 , d 
is the distance between the colony and the empire. However, the colony does not necessarily move forward fol-
lowing the same direction of movement of the empire, thus a random angle subject to uniform distribution is 
introduced θ ∼ U(−σ , σ) to model this movement; where σ is the parameter adjusting the deviation occurring 
between the parameter in ICA and original movement trace, generally σ = π/4.

The roles of the colony and the empire change dynamically. During the period when the colony moves 
towards the direction of the empire the cost of the colony is lower than the cost of empire, the empire and the 
colony will swap locations.

Competition among different empire groups.  In the competitive process, each empire group attempt 
to occupy the colonies of other empire groups to strengthen their power. The colonies of the empire group with 
weakest total imperial power will be carved up. The total cost of the imperial group consists mainly of its own 
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costs and the costs of the colonies to which it belongs, expressed as, so the cost function of the total imperial 
power of an empire group is expressed as:

where µ is a weighting factor for the colonies’ contribution to the power of the imperial Group, generally µ = 0.2 ; 
f (colNi) is the value of the cost of all colonies in the empire; 

∑NCN
i=1 f (colNi)

/

NCN is the average of the cost of 
all colonies in the empire.

The total cost for empire standardization is determined as follows:

In Eq. (15): max
i
{TCi} is the maximum cost value among all empires. Then the relative power of each empire 

is:

The probability that an empire group occupies the weakest colony of the weakest empire group is

In Eq. (17): r1,r2,…,rN ∼ U(0, 1) is a uniformly distributed random number.
In D, The empire corresponding to the maximum value in D will occupy the weakest colony of the weakest 

empire.

Empires perish.  The empires with weaker power tend to gradually lose their colonies; as all colonies are 
gobbled up, empires perish and become a colony. Consequently, all colonies are ruled by only one empire, and 
the optimal solution can be deduced by algorithm convergence.

SDI based on RSM‑ICA
Description of issues about SDI and mathematical model.  The micro-structural damage changes 
the stiffness parameter. The FEM is corrected following the principle that parameters should match the real 
macro-response. By doing so, the stiffness parameter of damaged structures can be determined. Then, accord-
ing to the location of parameter change and damage severity, the location, quantification, and identification of 
damage can be realized. SDI mathematical models can be transformed into optimized problems, and the optimal 
solution can be obtained using Eq. (18):

where x is the vector of parameters to be corrected; Ze and Zc denote the structural model response and real 
structural response; VLB and VUB represent the upper and lower limits of the structural parameter; while Z(x) 
is a residual error.

Statistic theory and modelling technique are integrated to construct a second-order polynomial RSM for 
structural responses and parameters. Thereafter, the established RSM is combined with the residual functions 
of structural model response and real structural response to achieve visual expression of the objective function.

SDI process.  The flow chart of SDI based on RSM-ICA is demonstrated in Fig. 2.
The SDI process is described as follows:
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s.t.VLB ≤ x ≤ VUB

Figure 1.   The moving path from the colonies to the empire.
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(1)	 RSM is used to determine the relationship between the structural stiffness parameter and an approxima-
tion thereto. On this basis, the residual functions of structural model response and real response can be 
generated as objective functions.

(2)	 An ICA algorithm complied in MATLAB™ is run to optimize the parameters to be corrected, after obtaining 
the optimal corrected imperial location, the vector thereof is seen as the corrected parameter vector.

(3)	 Comparing the changes in structural stiffness parameters before and after correction allows structural 
damage to be identified based on changes in the parameter location and damage severity.

Numerical analysis
Description of the simply‑supported beam model.  Simply-supported beams are a form used in 
bridge structures that are widely applied to existing rural highways in China. Many such bridges were built in 
1960s and 1970s designed with low bearing-capacity reserve. Combined with the increasing vehicle loads, dam-
age has gradually developed in these bridges, so damage identification for such bridges is important to ensur-
ing their safe operation. This research adopts a locally damaged simply-supported beam with a span of 6 m as 
a research object (Fig. 3). Based on RSM-ICA, the SDI of the beam is conducted to confirm the reliability and 
robustness of the proposed method. The cross-section of the beam measures 200 mm × 250 mm, the material 
density is set to 2 500 kg/m3, and material elastic modulus is 320 GPa. Furthermore, the benchmark FEM is 
established based on FEM and the structure of the beam is divided into 11 sections and 10 elements: because 
the structural damage of the beam is simulated considering the ways of stiffness reduction in some elements, the 
reduction of material elastic modulus is used to characterize stiffness reduction. Using an undamaged beam as 
the benchmark FEM model, it is assumed that damage occurs to Elements 2, 3, 5, 6, 8, and 10 in the beam, the 
stiffness of each element is reduced by 10%, 19%, 23%, 8%, 14%, and 15% respectively. The FEM model of this 
locally damaged beam is taken as representative.

Based on first five orders of natural frequencies of the FEM benchmark model and representative model, 
the maximum error of each natural frequency is 5.715% (Table 1). This implies that when a simply-supported 

Figure 2.   Flow chart of SDI based on RSM-ICA.
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beam with simple structure is subjected to local micro-damage, its natural frequency response deviates from 
that of the benchmark model. In consideration of this, the experimental data of a real model are adopted to 
correct the benchmark FEM. The corrected model is found to be able to match the mechanical behavior of real 
beam structures.

Establishment of RSM‑based objective function.  The elastic modulus reduction coefficients x (real 
elastic modulus/benchmark elastic modulus) of 10 elements are treated as the parameters to be corrected, 
namely: the initial parameter vector of the undamaged simply-supported beam is [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 
1.0, 1.0, 1.0]T; the accurate corrected parameter vector of the locally damaged simply-supported beam is [1.0, 
0.9, 0.81, 1.0, 0.77, 0.92, 1.0, 0.86, 1.0, 0.85]T. Given the stiffness of the actual beams in service is likely to weaken 
due to degradation of material properties and environmental erosion, the elastic modulus reduction coefficient 
of beam elements is set to [0.7, 1.0]. A Latin hypercube design is employed to perform experimental design by 
selecting 30 groups of sample point data, which are substituted into numerical models to calculate the first five 
orders of natural frequencies of each sample. All sample points and response values of Latin hypercube design 
are listed in Tables 2 and 3.

Based on stepwise regression theory, the F test method is used to perform significance analysis of parameters. 
The optimal response surface can be obtained by removing the items of insignificance in the case without influ-
encing fitting accuracy. An incomplete second-order polynomial is used to fit the datasets of sample points to 
obtain response surface Eqs. (19)–(23). According to the aforementioned polynomial, three-dimensional draw-
ings of the structural natural frequency response surface, as illustrated in Figs. 4 and 5, the fitting performance 
of RSM is displayed in Table 4.

(19)
Z1 = 5.287+0.928x4+1.111x5+3.097x8+0.244x9+0.129x10+0.202x22+0.360x23+0.703x26+0.550x27−1.477x28

(20)Z2 = 7.109+2.618x1+0.665x2+0.746x4+1.269x5+1.467x6+0.542x9+8.664x10+0.475x27−3.512x210

(21)
Z3 = 24.028+ 0.713x1 + 3.357x2 + 3.185x4 − 12.924x6 + 17.294x8 + 2.653x9

+ 0.769x10 + 2.696x
2

3 + 0.406x
2

5 + 8.008x
2

6 + 1.709x
2

7 − 7.613x
2

8

(22)
Z4 = 25.118+5.015x1+0.753x2+1.294x5+4.323x7+12.727x8+0.421x9+5.132x10+2.254x23+2.497x24+0.697x26−5.244x28

(23)
Z5 = 39.061+ 2.764x1 + 10.094x2 + 6.773x5 + 1.357x7 + 28.824x8 + 17.986x10

+ 2.959x
2

3 + 1.075x
2

4 + 4.604x
2

6 − 13.935x
2

8 + 5.500x
2

9 − 8.853x
2

10

Figure 3.   Numerical model of the simply supported beam.

Table 1.   Comparison of natural vibration frequencies between the benchmark and representative models. 
Error = (benchmark frequency -real frequency)/ benchmark frequency × 100%

Model

Frequency/Hz

First order Second order Third order Fourth order Fifth order

Benchmark model 11.133 20.098 44.245 54.933 98.398

Real model 10.519 19.151 42.104 52.492 92.775

Error/ % 5.515 4.710 4.839 4.443 5.715
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As can be seen from Table 4, five types of multiple correlation coefficients and corrected coefficients all 
approximate to 1, indicating the overall goodness-of-fit and prediction ability of RSM within a certain parameter 
range. The precision obained is sufficient to replace FEM to perform subsequent calculation-based analysis.

ICA‑based on SDI.  To establish the SDI objective function, SDI issues are converted into optimization 
issues based on Eq. (18):

The ICA program compiled in MATLAB™ is used to derive optimal solution of parameters in Eq. (24) and 
the optimal stiffness reduction factor of elements (x1, x2, . . . , x10) meeting the objective function is solved. By 
doing so, the error between the response of the benchmark model and damage model under a given incentive 
is minimized. The ICA parameters are listed in Table 5.

To eliminate the influence of the ergodicity of algorithm initialization, the average value of the optimized 
results over 20 cycles is taken as the optimal parameter vector. The identified results are compared with the results 
identified by genetic algorithm (GA) in MATLAB™ to validate the robustness and accuracy of the proposed 
method. The SDI results identified based on ICA and GA are displayed in Tables 6 and Fig. 6.

As can be seen from Table 6 and Fig. 6, the comparison of elastic modulus reduction coefficient and damage 
values of different sections identified using different algorithms shows that the identification accuracy based on 
ICA is satisfactory with the maximum and mean errors of 11.552% and 6.104% separately in parameter identi-
fication. In comparison, the maximum and mean errors of parameter identification based on GA are separately 
14.693% and 7.774%. Except for damage parameters in Elements 2 and 6, the parameter identification errors 
based on ICA for other elements are significantly lower than those of the GA-based method. The elastic modulus 

(24)



















Min Z(x1, x2, . . . , x10)

= Min [(Z1 − 10.519)2 + (Z2 − 19.151)2 + (Z3 − 42.104)2

+(Z4 − 52.492)2 + (Z5 − 92.775)2]

s.t. 0.7 ≤ x1, x2, . . . , x10 ≤ 1.0

Table 2.   Sample points for Latin hypercube design.

Sample no. X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

1 0.902 0.872 0.769 0.732 0.967 0.970 0.876 0.867 0.896 0.851

2 0.796 0.885 0.944 0.950 0.997 0.834 0.802 0.782 0.724 0.887

3 0.780 0.724 0.896 0.914 0.721 0.861 0.886 0.759 0.731 0.996

4 0.852 0.755 0.926 0.702 0.878 0.714 0.892 0.717 0.961 0.768

5 0.978 0.928 0.934 0.970 0.952 0.776 0.732 0.741 0.835 0.733

6 0.741 0.742 0.786 0.816 0.928 0.951 0.742 0.910 0.935 0.875

7 0.924 0.839 0.717 0.888 0.774 0.905 0.711 0.997 0.997 0.719

8 0.717 0.846 0.810 0.802 0.886 0.702 0.824 0.922 0.913 0.891

9 0.959 0.735 0.731 0.820 0.746 0.765 0.811 0.915 0.943 0.962

10 0.965 0.824 0.889 0.903 0.808 0.899 0.704 0.841 0.743 0.773

11 0.770 0.797 0.958 0.953 0.838 0.949 0.780 0.816 0.886 0.862

12 0.802 0.864 0.757 0.748 0.716 0.814 0.946 0.791 0.767 0.750

13 0.938 0.896 0.969 0.898 0.946 0.929 0.984 0.887 0.974 0.927

14 0.724 0.982 0.992 0.988 0.828 0.940 0.791 0.976 0.851 0.755

15 0.849 0.993 0.873 0.789 0.860 0.873 0.934 0.773 0.754 0.906

16 0.888 0.813 0.910 0.995 0.769 0.847 0.838 0.735 0.791 0.941

17 0.946 0.946 0.744 0.877 0.787 0.881 0.723 0.959 0.877 0.986

18 0.731 0.781 0.772 0.864 0.907 0.724 0.788 0.807 0.921 0.781

19 0.776 0.769 0.822 0.962 0.753 0.739 0.990 0.857 0.830 0.706

20 0.911 0.705 0.798 0.756 0.857 0.987 0.922 0.946 0.812 0.827

21 0.861 0.939 0.869 0.850 0.895 0.742 0.970 0.880 0.778 0.795

22 0.835 0.955 0.843 0.730 0.740 0.801 0.758 0.987 0.789 0.721

23 0.820 0.975 0.830 0.937 0.912 0.969 0.867 0.938 0.870 0.803

24 0.892 0.716 0.852 0.712 0.818 0.784 0.908 0.829 0.711 0.918

25 0.874 0.777 0.728 0.843 0.984 0.858 0.951 0.832 0.707 0.832

26 0.989 0.807 0.907 0.765 0.844 0.997 0.841 0.727 0.954 0.937

27 0.991 0.914 0.705 0.780 0.798 0.797 0.855 0.892 0.904 0.959

28 0.703 0.907 0.990 0.930 0.939 0.919 0.913 0.762 0.841 0.847

29 0.751 0.854 0.977 0.837 0.708 0.754 0.769 0.970 0.801 0.818

30 0.826 0.964 0.816 0.798 0.976 0.820 0.976 0.708 0.987 0.979



9

Vol.:(0123456789)

Scientific Reports |        (2022) 12:16495  | https://doi.org/10.1038/s41598-022-17457-9

www.nature.com/scientificreports/

reduction coefficient in Element 5 after identification is only 0.830, which is the minimum among all identifica-
tion results, indicating the occurrence of a high degree of structural damage at that position.

Table 3.   Responses of the structure.

Sample no. Z1/HZ Z2/HZ Z3/HZ Z4/HZ Z5/HZ

1 10.377 18.920 40.532 50.473 92.659

2 10.404 18.613 40.772 50.899 90.631

3 10.088 18.398 39.903 50.851 87.176

4 9.934 18.010 39.829 49.188 88.738

5 10.228 18.501 40.827 50.551 90.964

6 10.276 18.390 40.154 49.588 91.137

7 10.113 18.237 40.521 49.750 91.067

8 10.052 18.035 40.656 49.733 89.964

9 9.915 18.697 40.102 50.868 88.968

10 10.128 18.429 40.150 50.305 89.436

11 10.398 18.468 41.074 50.691 91.228

12 9.899 17.790 39.546 48.934 87.289

13 10.766 19.430 42.720 53.064 95.055

14 10.553 18.107 42.343 50.837 92.902

15 10.281 18.725 40.631 50.789 91.104

16 10.194 18.740 40.526 51.338 89.240

17 10.128 19.030 40.748 51.156 91.809

18 10.021 17.826 39.825 48.854 88.662

19 10.146 17.700 40.704 50.013 87.520

20 10.336 18.672 40.360 50.865 89.981

21 10.297 18.386 41.258 50.973 90.378

22 9.911 17.757 40.413 49.137 89.475

23 10.627 18.709 41.840 51.179 93.504

24 9.960 18.399 39.449 50.358 87.158

25 10.327 18.657 39.681 50.403 88.895

26 10.272 19.211 40.419 51.107 92.067

27 10.029 18.996 40.402 51.027 90.731

28 10.589 18.440 41.456 50.744 92.159

29 9.968 17.726 41.042 50.030 88.981

30 10.344 19.041 40.797 50.850 92.638

Figure 4.   Response surfaces of frequency Z5 about x1 and x2.
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Figure 5.   Response surface of frequency Z5 about x9 and x10.

Table 4.   Fitting effect of RSM.

RSM Z1 Z2 Z3 Z4 Z5

R2 0.998 0.999 0.997 0.997 0.999

R2

Adj
0.997 0.998 0.995 0.995 0.998

Table 5.   Relevant parameters of ICA.

Parameters
Initial 
country size

The number 
of initial 
empires

Assimilation 
coefficient

Revolution 
rate

Success rate 
of revolution

Weight 
coefficient

Optimal 
dimension of 
parameterization

Upper limits 
of parameters

Lower 
limits of 
parameters

Maximum 
number of 
iterations

Values 50 10 1.5 0.5 0.1 0.2 10 1.0 0.7 100

Table 6.   Comparison of damage identification results. Identification error = (damage value – identified value)/
damage value × 100%

Description Damage value

RSM-ICA RSM-GA

Identified 
values

Identification 
error/% Mean error/%

Identified 
values

Identified 
error/% Mean error/%

Elastic modu-
lus reduction 
factor

X1 1.000 0.942 5.806

6.104

0.929 7.140

7.774

X2 0.900 0.923 2.516 0.910 1.129

X3 0.810 0.904 11.552 0.929 14.693

X4 1.000 0.941 5.891 0.893 10.704

X5 0.770 0.830 7.854 0.838 8.891

X6 0.920 0.878 4.513 0.894 2.853

X7 1.000 0.961 3.933 0.953 4.709

X8 0.860 0.873 1.521 0.904 5.155

X9 1.000 0.892 10.783 0.869 13.143

X10 0.850 0.907 6.668 0.929 9.318

Natural fre-
quency

Z1 10.519 10.532 0.121

0.134

10.535 0.155

0.175

Z2 19.151 19.128 0.123 19.134 0.090

Z3 42.104 42.165 0.143 42.169 0.155

Z4 52.492 52.567 0.144 52.608 0.221

Z5 92.775 92.905 0.140 93.010 0.254
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Mean errors of the first five orders of natural frequencies of the structures identified using the two methods 
are 0.134% and 0.175%, respectively. The identification accuracy of ICA improves significantly. Except for the 
second-order natural frequency of simply-supported beams, errors in the other four natural frequencies all 
reduce to a significant extent. The ICA-based SDI method has higher accuracy and efficiency than the GA-based 
SDI method. The natural frequency of each order for simply-supported beams identified using the proposed 
ICA-based method has an error between 0.121% and 0.144% with the natural frequency of damage models, 
indicating a good match in terms of modeled coincidence. The parameters identified can thus match actual 
macro-responses of a damaged structure.

Conclusion
In this research, an RSM-ICA-based SDI method and its application are elaborated. Local damage to simply-
supported beams is taken as a numerical example to validate the application feasibility of this method in solving 
high-dimensional problems. The main conclusions include:

(1)	 In the inversion process of structural damage problems, the polynomial function between the elastic modu-
lus reduction coefficient and structural responses is constructed based on RSM and the FEM of structures 
is replaced with RSM. This avoids repeated calculations of FEM in the SDI process, which improves SDI 
efficiency.

(2)	 The RSM-ICA-based SDI method shows a distinct calculation process and is capable of accurately iden-
tifying the material parameters of the micro-damage model. It can locate and quantify damaged zones. 
This identification method only needs to consider the first few natural frequencies of structures. Errors of 
identified structural parameter and response are 6.104% and 0.134%, showing a more significant improve-
ment in accuracy compared with conventional algorithms. This method provides an accurate and efficient 
SDI technology.

(3)	 The RSM-ICA-based SDI method can be used in micro-damage identification on large-scale complex 
bridge structures. It is expected to enable bridge health monitoring, bridge safety evaluation, and damage 
prediction to realize precision development by deeply fusing SDI and intelligent algorithms.

Data availability
All data generated or analyzed during this study are included in this published article.
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