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Vibration control of a nonlinear 
cantilever beam operating 
in the 3D space
Phuong‑Tung Pham1,2, Quoc Chi Nguyen1, Mahnjung Yoon3 & Keum‑Shik Hong2*

This paper addresses a control problem of a nonlinear cantilever beam with translating base in 
the three-dimensional space, wherein the coupled nonlinear dynamics of the transverse, lateral, 
and longitudinal vibrations of the beam and the base’s motions are considered. The control 
scheme employs two control inputs applied to the beam’s base to control the base’s position while 
simultaneously suppressing the beam’s transverse, lateral, and longitudinal vibrations. According 
to the Hamilton principle, a hybrid model describing the nonlinear coupling dynamics of the beam 
and the base is established: This model consists of three partial differential equations representing 
the beam’s dynamics and two ordinary differential equations representing the base’s dynamics. 
Subsequently, the control laws are designed to move the base to the desired position and attenuate 
the beam’s vibrations in all three directions. The asymptotic stability of the closed-loop system 
is proven via the Lyapunov method. Finally, the effectiveness of the designed control scheme is 
illustrated via the simulation results.

The systems consisting of an elastic cantilever beam fixed on a translating base are found in various practical 
engineering applications, such as master fuel assemblies in nuclear refueling machines, robotic manipulators1, 
and micro-electro-mechanical systems2–4. In these systems, the base’s translational motion can produce large-
amplitude vibrations of the beam in the three-dimensional (3D) space. This vibration becomes a significant 
negative factor in association with the system’s safety and performance. Therefore, it is necessary to analyze and 
control the 3D vibration of the beam, operated by a moving base, to ensure safety and performance.

The flexible cantilever beam is a distributed parameter system with an infinite number of vibration modes. Its 
dynamics are characterized by partial differential equations (PDEs)5–8. When a flexible beam is fixed on a trans-
lating base, the base’s dynamics (as a lumped parameter system) are described by ordinary differential equations 
(ODEs) to be considered simultaneously with the beam’s dynamics. Furthermore, if the amplitudes of the beam’s 
vibrations are large, 3D analysis of the beam’s dynamics should be performed; wherein the nonlinear coupling 
effects between the transverse, lateral, and longitudinal vibrations are considered, see Fig. 1.

The dynamic behaviors of the beam attached to a moving base have been studied in the literature9–12. Park 
et al. developed an equation of motion of the mass-beam-cart system, which is a beam with translating base, 
based on the Hamilton principle13. The system’s natural frequencies were also obtained by using modal analysis. 
Later, the vibration of a flexible beam fixed on a cart and carrying a moving mass was examined via an experimen-
tal study14. However, most researches on the beam attached to a translating base assume that the base moves along 
one direction, restricting the beam’s vibration to a two-dimensional space. In these works, only the transverse 
vibration was considered. For the beam with a translating base in the 3D space, Shah and Hong addressed the 
vibration problem of the master fuel assembly in nuclear refueling machines15. In their work, the nuclear fuel rod 
and the trolley, respectively, were treated as a flexible beam and a carrying base moving on the horizontal plane.

The control problem of distributed parameter systems, whose dynamics is described by PDEs, has been 
investigated in the literature16–21. Boundary control technique, wherein the control input is exerted to the PDE 
through its boundary conditions22–25, is a powerful tool for handling these systems. Contrary to the stationary 
beam, the vibration of the cantilever beam with a moving base can be suppressed via the control input applied at 
the base (i.e., the clamped end of the beam) or the beam’s tip. In this situation, we aim to simultaneously control 
of the base’s position and the beam’s vibration. These objectives can be achieved by either open-loop control26,27 
or closed-loop control15,28–33: The input shaping control is the most feasible and practical open-loop control tech-
nique for beams with a moving base. In a study published by Shah et al.26, model parameters of an underwater 
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system consisting of a beam and a translating base were determined using the model analysis method. Accord-
ingly, the input shaping control law was designed to position the base and suppress the beam’s vibration. Pham 
et al.27 used the model parameters obtained through an experiment to design the input shaping control law for 
a non-uniform beam with a moving base. For the closed-loop control technique, Liu and Chao presented an 
experimental study on implementing the neuro-fuzzy approach to control a beam-cart system28. In their work, 
the piezoelectric transducers located at the beam’s tip were used to suppress the transverse vibration. Another 
closed-loop control of an Euler–Bernoulli beam with a translating base was done by Shah and Hong15, whereas 
the control of a Timoshenko beam attached to a moving base was presented by Pham et al.34.

Most studies on controlling the flexible beam attached to a translating base considered only the linear 
vibrations15,26–28. Under the assumption of small-amplitude vibration, the dynamic tension was ignored. How-
ever, in the case of large-amplitude vibrations, the negligence of the dynamic tension (which makes the beam’s 
dynamics nonlinear) can affect the system’s performance and stability. Also, the existing studies assumed that 
the beam’s vibration occurred in a plane. Thus, only the transverse or lateral vibrations were considered. Even 
though Shah and Hong15 investigate both the transverse and lateral vibrations of an Euler–Bernoulli beam, they 
ignored the coupled dynamics of the transverse and lateral vibrations; that is, the transverse vibration does not 
affect the time-evolution of the lateral vibration and vice versa.

Recently, the 3D vibration analysis of a beam has received significant attention35–40. Do and Pan38 and Do39 
used the Euler–Bernoulli beam model with large-amplitude vibrations to model a flexible riser. The authors 
obtained a model describing the system’s transverse, lateral, and longitudinal vibrations. He et al.41, Ji and Liu42,43, 
and Liu et al.44 investigated the coupled dynamics of a 3D cantilever beam with a tip payload described by a set 
of PDEs and ODEs. Also, control problems of 3D beams, wherein the coupled dynamics of nonlinear vibrations, 
were investigated in the literature. However, these studies have either dealt with a beam attached to a stationary 
base or proposed control strategies wherein control forces/torques were applied to the beam’s tip. The implemen-
tation of control actions at the tip is not feasible or practical, see Fig. 1. It might be possible to put an actuator 
at the tip of a large cantilever beam of a space structure or a riser system. But, for gantry manipulators, surgeon 
robots, and flexible liquid handling robots, implementing the control forces/torques in the tip is not possible 
because the tip has to interact with an object or the environment.

The published papers in the literature on controlling cantilever-beam vibrations are restricted to: (i) The cases 
where the cantilever is affixed on a stationary base, and the free end has 3D motions41–44; and (ii) the beam is 
attached to a translating base, but the considered dynamics are linear by ignoring the coupled dynamics between 
the transversal and lateral vibrations of the beam15,26–28. Thus, the control problem of a nonlinear cantilever beam 
operating in the 3D space without using control input at the tip has not been solved yet.

In this paper, the beam’s longitudinal vibration and axial deformation (which makes the beam’s dynamics 
nonlinear) are further considered. In such cases of large-amplitude vibrations, the omission of longitudinal vibra-
tion and axial deformation can affect the system’s performance and lead to an erroneous result. Henthforth, the 
control problem of the nonlinear 3D vibrations of a beam affixed on a translating base without any additional 
actuators is addressed for the first time. The considered system is represented as a gantry robot consisting of the 
gantry, trolley, and flexible robotic arm depicted in Fig. 1. In the gantry robot, the gantry moves along the k-axis, 
whereas the trolley moves along the j-axis. A flexible robotic arm with a constant length is fixed to the trolley. 
The Hamilton principle is used to develop a novel hybrid model describing the nonlinear coupling dynamics 
of the robotic arm’s transverse, lateral, and longitudinal vibrations, and the rigid body motions of the gantry 
and trolley. Employing the Lyapunov method, boundary control laws are developed for simultaneous control of 
the trolley’s position, the gantry’s position, and the robotic arm’s 3D vibrations. The asymptotic stability of the 
closed-loop system is verified. Finally, the simulation results are provided.

The main contributions of this paper are summarized as follows: (i) A novel dynamic model of a flexible 
beam attached to a translating base, wherein the coupled dynamics of the nonlinear transverse, lateral, and 
longitudinal vibrations and the base’s motions are developed for the first time. (ii) A boundary control strategy 
using the control forces at the base for simultaneous position control and vibration suppression is designed. (iii) 
The asymptotic stability of the closed-loop system is proven by using the Lyapunov method, and simulation 
results are provided.
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Figure 1.   An example of nonlinear cantilever beams operating in the 3D space: (a) Gantry robot. (www.a-​m-c.​
com/​servo-​drives-​for-​gantry-​syste​ms), (b) the defined coordinate system and motions.
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Problem formulation
In Fig. 1, a flexible robotic arm is modeled as a uniform Euler–Bernoulli beam of length l. The motions of the 
gantry and trolley are generated by two control forces fz and fy, respectively. The positions of the trolley and 
gantry are denoted by y(t) and z(t), respectively. The beam’s vibrations in the i, j, and k axes are defined as the 
longitudinal vibration u(x, t), the transverse vibration w(x, t), and the lateral vibration v(x, t), respectively. In 
this study, the subscripts x and t, i.e., (·)x and (·)t, are the partial derivatives with respect to x and t, respectively, 
whereas ẏ and ż denotes the total derivative of y(t) and z(t) in t, respectively. The kinetic energy of the entire 
gantry, trolley, and beam system is given as follows:

where ρ and A are the beam’s mass density and cross-sectional area; m1 and m2 are the gantry’s mass and trolley’s 
mass, respectively. The potential energy due to the axial force, the axial deformation, and the bending moment 
is given as follows:

where P(x) = ρA(l − x)g is the axial force generated by the influence of the gravitational acceleration on the 
beam’s elements45,46, E denotes Young’s modulus, and Iy and Iz indicate the moments of inertia of the beam. The 
axial strain ε(x, t) is given by the following approximation47:

 The virtual work done on the system by the boundary control inputs and the friction is given as follows.

where cw, cu, and cv are the structral damping coefficients (i.e., the subscripts w, u, and v stand for transverse, 
longitudinal, and lateral, respectively). According to Hamilton’s principle, the dynamic model of the considered 
system and the corresponding boundary conditions are obtained as follows.

The dynamics of the considered system are represented by the nonlinear PDE-ODE model in (5)–(12): 
Eqs. (5)–(10) are PDEs describing the transverse, longitudinal, and lateral vibrations of the robotic arm, respec-
tively, whereas the ODEs in (11) and (12) represent the dynamics of the gantry and the trolley, respectively. 
Observably, the beam’s motion affects the gantry and trolley’s motions and vice versa. Additionally, if the potential 
energy caused by the axial deformation is ignored (i.e., ε2 = (ux + w2

x/2+ v2x/2)
2 ∼= 0 ), the nonlinear terms in 

(5), (7), and (9) vanish. Then, the coupling dynamics between the transverse, lateral, and longitudinal vibrations 
can be decoupled.

Controller design
The two control objectives are position control and vibration suppression: (i) Move the gantry and trolley car-
rying the flexible beam to the desired positions, and (ii) suppress the beam’s transverse, lateral, and longitudinal 
vibrations. In this paper, two forces fz and fy applied to the gantry and trolley are used as the control inputs to 
achieve the control objectives. The position errors of the trolley and gantry are defined as follows:
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where yd and zd are the desired positions of the trolley and gantry, respectively. Based on the Lyapunov direct 
method, we design fz and fy to guarantee that the convergences of the vibrations, position errors, and velocities 
of the trolley and gantry to zero are achieved. The following control forces are proposed to stabilize the consid-
ered system.

where Ki (i = 1,2,…,6) are the control parameters. The implementation of these control laws requires the measure-
ment of wxxx(0, t) and vxxx(0, t). In practice, these signals can be obtained by using strain gauge sensors attached 
at the clamped end of the beam.

The following lemmas and assumptions are used for stability analysis of the closed-loop system with the 
control laws given in (15) and (16).

Lemma 1  48. Let ϕ(x, t) ∈ R be a function defined on x ∈ [0, l] and t ∈ [0,∞) that satisfies the boundary condition 
ϕ(0, t) = 0, ∀t ∈ [0,∞), the following inequalities hold.

Furthermore, if φ(x, t) satisfies φ(0, t) = φx(0, t) = 0, ∀t ∈ [0,∞), then the following inequalities hold.

Lemma 2  49. Let ϕ1(x, t),ϕ2(x, t) ∈ R be a function defined on x ∈ [0, l]. Then, the following inequality holds.

Lemma 3  50. If φ(x, t): [0, l] × R+ → R is uniformly bounded, {ϕ(x, t)}x∈[0,l] is equicontinuous on t, and 
lim
t→∞

∫ t
0 �ϕ(x, τ)�

2dτ exists and is finite, then lim
t→∞

�ϕ(x, t)� = 0.

Assumption 1  21. The transverse vibration w(x, t), the lateral vibration v(x, t), and the longitudinal vibration u(x, 
t) of a flexible beam satisfy the following inequalities: u2x ≤ w2

x/2 and u2x ≤ v2x/2 . By using Lemma 1, we obtain.

Assumption 2  51. If the potential energy of the system in (2) is bounded for ∀t ∈ [0,∞) , then wxx(x, t) , wxxx(x, t) , 
vxx(x, t) , and vxxx(x, t) are bounded for ∀t ∈ [0,∞).

Based on the system’s mechanical energy, the following Lyapunov function candidate is introduced:
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where αi (i = 1, 2, 3) and βj (j = 1, 2, …, 9) are positive coefficients.

Lemma 4  The Lyapunov function candidate in (23) is upper and lower bounded as follows.

where �1 and �2 are positive constants, and

Proof of Lemma 4: See Appendix A.

Lemma 5  Under the control laws (15) and (16), the time derivative of the Lyapunov function candidate in (23) is 
upper bounded as follows.

where λ is a positive constant.

Proof of Lemma 5: See Appendix B.

Theorem 1.  Consider a hybrid system described by (5)-(12) under control laws (15–16) and Assumptions 1 and 2. 
Control parameters Ki (i = 1, 2, …, 6) are selected to satisfy the conditions in (A.15)–(A.23), (B.9), (B.17)–(B.22), 
and (B.25)–(B.35). The asymptotic stability of the closed-loop system in the sense that the transverse vibration 
w(x, t), lateral vibration v(x, t), longitudinal vibration u(x, t), and position errors (13) and (14) converge to zero is 
guaranteed. Additionally, the control laws are bounded.

Proof of Theorem: Lemma 4 reveals that the Lyapunov function candidate in (23) is a positive definite. 
According to Lemma 5, we obtain
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 Inequalities (31–37) assure w(x, t), u(x, t), v(x, t), ey , ėy , ez , and ėz are all uniformly bounded. Similarly, we also 
obtain the boundedness of ‖w(x, t)‖2 , ‖wt(x, t)‖

2 , ‖u(x, t)‖2 , ‖ut(x, t)‖2 , ‖v(x, t)‖2 , and ‖vt(x, t)‖2 based on 
Lemmas 4 and 5.

 Additionally, the following results also imply that w(x, t), u(x, t), and v(x, t) are equicontinuous in t.

 Accordingly, we can conclude that lim
t→∞

�w(x, t)� = 0, lim
t→∞

�v(x, t)� = 0 , and lim
t→∞

�u(x, t)� = 0 via Lemma 3.
Furthermore, Lemmas 4 and 5 also imply

 Based on Barbalat’s Lemma, we can conclude that lim
t→∞

∣

∣ey
∣

∣ = 0 and lim
t→∞

|ez | = 0.
Inequality (30) implies the boundedness of V(t). It follows that the potential energy function is also a bounded 

function. Under Assumption 2, wxx(x, t), wxxx(x, t), vxx(x, t), and vxxx(x, t) are bounded. Inequalities (34)-(37) 
reveal that ey , ėy,ez , and ėz are also bounded. Finally, we can conclude that the control laws in (15) and (16) are 
bounded. Theorem 1 is proved.

Simulation results
In this section, numerical simulations are performed to illustrate the effectiveness of the proposed control 
laws. The system parameters used in the numerical simulation are shown in Table 1. According to these system 
parameters, the control gains in (15) and (16) are selected as K1 = 750, K2 = 950, K3 = 1.12 × 104, K4 = 550, K5 = 750, 
and K6 = 2.34 × 104. Control parameters Ki (i = 1, 2,…, 6) are calculated based on design parameters ki, αn, βj, 
and δk (n = 1, 2, 3; j = 1, 2,…, 7; k = 1, 2,…, 9). These design parameters have been selected to satisfy the condi-
tions in (A.15–A.23), (B.9), (B.17–B.22), and (B.25–B.35). Some parameters, such as δ1, δ2, δ4, and α2, can be 
pre-determined based on the necessary conditions of (A.15–A.17) and (A.19). By substituting these parameters 
into (B.9), (B.17), and (B.20), β1, β3, β6, β7, k3, and k6 are calculated. Then, the ranges of β2, δ0, δ3, β4, β8, β5, β9, δ5, 
δ6, δ7, and δ8 can be determined in turn based on (A.21–A.22), (B.19), (B.22), and (B.30)-(B.35). We substitute 
(B.18) into (A.22) and choose large enough values of k1 and k2 such that (A.22) and (B.25–B.26) hold. Similarly, 

(36)e2z (t) ≤ W1 ≤ V/�1 < ∞,

(37)ė2z (t) ≤ W1 ≤ V/�1 < ∞.
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�w(x, τ)�2dτ ≤ −l4 lim

t→∞
(V(t)− V(0))/��1 < ∞,

−�v(x, t)�2 ≥ −l4W1 ≥ −l4V/�1 ≥ l4V̇/��1

(39)⇒ lim
t→∞

∫ t

0
�v(x, τ)�2dτ ≤ −l4 lim

t→∞
(V(t)− V(0))/��1 < ∞,

−�u(x, t)�2 ≥ −l2
∫ l

0
u2x(x, t)dx ≥ −

1

2
l2
∫ l

0
w2
x(x, t)dx ≥ −

1

2
l4W1 ≥ −

1

2
l4V�1 ≥

1

2
l4V̇��1

(40)⇒ lim
t→∞

∫ t

0
�u(x, τ)�2dτ ≤ −

1

2
l4 lim

t→∞
(V(t)− V(0))��1 < ∞.

(41)d�w(x, t)�2/dt = 2

∫ l

0
w(x, t)wt(x, t)dx ≤ �w(x, t)�2 + �wt(x, t)�

2 < ∞,

(42)d�v(x, t)�2/dt = 2

∫ l

0
v(x, t)vt(x, t)dx ≤ �v(x, t)�2 + �vt(x, t)�

2 < ∞,

(43)d�u(x, t)�2/dt = 2

∫ l

0
u(x, t)ut(x, t)dx ≤ �u(x, t)�2 + �ut(x, t)�

2 < ∞.

(44)

−e2y(t) ≥ −W1(t) ≥ −V(t)/�1 ≥ V̇(t)/�1� ⇒ lim
t→∞

∫ t

0
e2y(τ )dτ ≤ − lim

t→∞
(V(t)− V(0))/�1� < ∞,

(45)

−e2z (t) ≥ −W1(t) ≥ −V(t)/�1 ≥ V̇(t)/�1� ⇒ lim
t→∞

∫ t

0
e2z (τ )dτ ≤ − lim

t→∞
(V(t)− V(0))/�1� < ∞.
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we substitute (B.18) into (A.23) and select k4 and k5 to satisfy (A.23) and (B.28–B.29). Finally, α1 and α3 are 
calculated using (B.18) and (B.21).

The simulations were performed by using MATLAB, wherein the finite difference method was utilized to 
determine the approximate solutions for the equations of motion. The approximate solutions’ accuracy and simu-
lation speed depend on the sizes of the time and space steps (i.e., Δt and Δx, respectively). By using a large time 
step size, approximate solutions of PDEs are determined quickly. However, a too-large time step size reduces the 
accuracy of the solution and further leads to instability. Contrarily, the quality of the solutions can be improved 
by selecting a smaller step size. In this case, the simulation duration increases significantly. Therefore, selecting 
appropriate step sizes is necessary to guarantee a balance between accuracy and simulation speed. In this paper, 
the time and space step sizes are selected as follows: Δt = 10–5 and Δx = 0.075.

The dynamic behavior of the proposed control law (15) and (16) is compared with two typical cases: (i) Using 
the traditional PD control law and (ii) using the zero-vibration (ZV) input shaping control. For the input shaping 
control, the ZV input shapers are designed based on the cantilever beam’s natural frequencies and damping ratios. 
The natural frequencies are determined via the solution of the frequency Eq.26, whereas the damping ratios are 
calculated by using the logarithmic decrement algorithm27.

Figures 2 and 3 illustrate the system’s responses under different controllers. Figure 2 shows the trolley’s posi-
tion and gantry’s position, whereas Fig. 3 reveal the vibrations of the beam’s tip. It shows that the PD controller, 
input shaping controller, and the proposed controller can move the trolley and gantry to the desired position 
(i.e., Fig. 2). However, the traditional PD controller cannot deal with the beam’s vibrations, see Fig. 3. In this case, 
vibration suppression was done only based on structural damping; therefore, it requires a significant amount 
of time. Contrary to the PD control, the system’s vibrations under the input shaping control and the proposed 
control law were quickly suppressed, see Fig. 3. Most tip oscillations were eliminated when the trolley and gantry 
reached the desired positions (i.e., at t ≈ 4 s). Furthermore, the proposed control law showed an outstanding 
vibration suppression capability compared with the input shaping control (i.e., see the magnified graphs in 
Fig. 3). The control forces under the proposed control law and suppression of the three vibrations are depicted 
in Figs. 4 and 5.

Table 1.   System parameters.

Parameter Definition Value

l Beam length 1.5 m

h Beam height 0.01 m

b Beam width 0.006 m

A Beam’s cross-section area 0.6 × 10–4 m2

Iy Beam’s initial moment 1.8 × 10–10 m4

Iz Beam’s initial moment 5 × 10–10 m4

ρ Beam’s mass density 2700 kg/m2

E Young’s modulus 69 × 109 Pa

m1 Gantry’s mass 30 kg

m2 Trolley’s mass 20 kg

cw Transverse damping coefficient 0.05 Ns/m

cv Lateral damping coefficient 0.05 Ns/m

cu Longitudinal damping coefficient 0.05 Ns/m

yd Trolley’s desired position 6 m

zd Gantry’s desired position 4 m
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Figure 2.   (a) Trolley’s position and (b) gantry’s position.
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Figures 6 and 7 reveal the robustness of the proposed control law. In Fig. 6, we consider the system under the 
influence of disturbances. Two boundary disturbances, dy(t) = 10sin(20πt) and dz(t) = 8sin(20πt), are applied to 
the trolley and gantry, respectively. As shown in Fig. 6, the proposed control law can still eliminate most of the 
vibrations of the beam system under boundary disturbance. The sensitivity of the proposed control law to the 
measurement noises of the sensors is considered in Fig. 7. In this case, 20% noises are added in the feedback 
signals wxxx(0, t) and vxxx(0, t). Observably, the measurement noises have no significant effects on the responses 
of the closed-loop system under the proposed control law. The simulation results show that the proposed control 
law is not too sensitive to disturbances and measurement noises.
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Figure 5.   Vibrations of the three-dimensional flexible beam under the proposed control law: (a) Transverse 
vibration w(x, t), (b) lateral vibration v(x, t), and (c) longitudinal vibration u(x, t).
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Conclusions
This paper investigated a vibration suppression problem of the three-dimensional cantilever beam fixed on a 
translating base. The equations of motions describing the nonlinear coupling dynamics of the beam’s transverse, 
lateral, longitudinal vibrations, the gantry, and the trolley were developed using the Hamilton principle. Accord-
ingly, the control laws were designed. The asymptotic stability of the closed-loop system in the sense that the 
beam’s transverse vibration, lateral vibration, longitudinal vibration, and gantry’s position error and trolley’s 
position error converge to zero was proven via the Lyapunov method. Simulation results showed the effective-
ness of the proposed control laws. In practical gantry systems, the length of the robotic arm varies in time, and 
the system is subjected to disturbances. Our future work will address extending the current control strategy to 
a varying-length flexible beam with moving base, providing experimental results.

Data availability
The data and codes generated or analyzed in this paper can be available upon the communication with the cor-
responding author.

Appendix A
The proof of Lemma 4 is shown in here. By using Lemmas 1–2, we obtain

(A.1)
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Figure 7.   Vibrations of the beam’s tip under measurement noises in feedback signals: (a) Transverse vibration 
w(l, t), (b) lateral vibration v(l, t), and (c) longitudinal vibration u(l, t).
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According to (A.1)-(A.11), the lower bound of V0 and V1 are given by

Based on (A.12) and (A.13), the lower bound of the Lyapunov function candidate is obtained as follows.

(A.5)
∣

∣ẏey
∣

∣ ≤ ẏ2 + e2y ,

(A.6)
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where �1 = min (�11, �12, ..., �19) and αi,βj , and δk ( i = 1, 2, ..., 6 , j = 1, 2, ..., 9 , and k = 1, 2, ..., 4 ) are selected to 
guarantee that �1n ( i = 1, 2, ..., 9 ) satisfy

Similarly, the upper bound of the Lyapunov function candidate can be obtained by using (A.1)-(A.11), that is

where �2 = max (�21, �22, ..., �211) and

(A.15)�11 = (m1 +m2)/2+ β3l(1− cw/ρA− 1/δ2)− β4 − β5l > 0,

(A.16)�12 = m2/2+ β7l(1− cv/ρA− 1/δ4)− β8 − β9l > 0,

(A.17)�13 = α2 − (ρAβ1δ0 + β3δ2 + β5) > 0,

(A.18)�14 = α2 + ρA/2− δ1ρAβ2 > 0,

(A.19)�15 = α2 − (ρAβ6δ3 + β7δ4 + β9) > 0,

(A.20)�16 = EIy(1/2+α2/ρA)− l4(ρAβ1/δ0 + ρAβ2/4δ1 + β3cw/ρA) > 0,

(A.21)�17 = EIz(1/2+ α2/ρA)− l4(ρAβ6/δ3 + ρAβ2/4δ1 + β7cv/ρA) > 0,

(A.22)�18 = α1/2− (β4 + 2β5l) > 0,

(A.23)�19 = α5/2− (β8 + 2β9l) > 0.

(A.24)

V ≤ [ρAl + (m1 +m2)/2+ β4 + β5l + β3l(1+ cw/ρA+ 1/δ2)]ẏ
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(A.25)�21 = ρAl + (m1 +m2)/2+ β4 + β5l + β3l(1+ cw/ρA+ 1/δ2),

(A.26)�22 = ρAl +m2/2+ β8 + β9l + β7l(1+ cv/ρA+ 1/δ4),

(A.27)�23 = ρA+ ρAβ1δ0 + β3δ2 + β5 + α2,

(A.28)�24 = ρA+ ρAβ6δ3 + β7δ4 + β9 + α2,
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,
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Based on (A.14–A.23) and (A.24–A.25), Lemma 4 is proven.

Appendix B
The proof of Lemma 5 is shown here. The time derivative of V0 is derived as follows.

For notational convenience, ε is used instead of (ux + w2
x/2+v2x/2) (i.e., ε is the axial strain given in (3)). 

Substituting the dynamic model in (5)-(12) into (B.1) yields

By using the boundary conditions and P(l) = 0 , (B.2) can be rewritten as

The time derivative of V1 is derived as follows.
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0
wtdx − 2α2z̈

∫ l

0
vtdx + α1eyẏ + α3ez ż.

V̇0 = −cw

∫ l

0
w2
t dx − cu

∫ l

0
u2t dx − cv

∫ l

0
v2t dx − ẏcw

∫ l

0
wtdx − żcv

∫ l

0
vtdx + EIyẏwxxx(0, t)+ EIz żvxxx(0, t)

+ (m1 +m2)ẏÿ +m2żz̈ − (2cwα2/ρA)

∫ l

0
w2
t dx − (2cuα2/ρA)

∫ l

0
u2t dx − (2cvα2/ρA)

∫ l

0
v2t dx

− 2α2ÿ

∫ l

0
wtdx − 2α2z̈

∫ l

0
vtdx + α1eyẏ + α3ez ż

(B.3)

= −cw(1+ 2α2/ρA)

∫ l

0
w2
t dx − cu(1+ 2α2/ρA)

∫ l

0
u2t dx − cv(1+ 2α2/ρA)

∫ l

0
v2t dx + ẏfy + żfz

− 2α2ÿ

∫ l

0
wtdx − 2α2z̈

∫ l

0
vtdx + α1eyẏ + α3ez ż.
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Using the dynamic model and boundary conditions in (5)-(12) yields

According to (B.3) and (B.5), the time derivative of V is derived as follows.

By using integration by parts and Lemma 1, the following inequality and equation are obtained.

(B.4)

V̇1 = ρAβ1

∫ l

0
w2
t dx + ρAβ1

∫ l

0
wwttdx + β1cw

∫ l

0
wwtdx + ρAβ2

∫ l

0
u2t dx + ρAβ2

∫ l

0
uuttdx + β2cu

∫ l

0
uutdx

+ (β3cw/ρA)

∫ l

0
wt ẏdx + (β3cw/ρA)

∫ l

0
wÿdx + β3

∫ l

0
ÿ(ẏ + wt)dx + β3

∫ l

0
ẏ(ÿ + wtt)dx + β4ÿey

+ β4ẏ
2 + β5

∫ l

0
ẏ(ẏ + wt)dx + β5

∫ l

0
ey(ÿ + wtt)dx + ρAβ6

∫ l

0
v2t dx + ρAβ6

∫ l

0
vvttdx + β6cv

∫ l

0
vvtdx

+ (β7cv/ρA)

∫ l

0
vt żdx + (β7cv/ρA)

∫ l

0
vz̈dx + β7

∫ l

0
z̈(ż + vt)dx + β7

∫ l

0
ż(z̈ + vtt)dx + β8z̈ez

+ β8ż
2 + β9

∫ l

0
ż(ż + vt)dx + β9

∫ l

0
ez(z̈ + vtt)dx.

(B.5)

V̇1 = (β4 + β5l)ẏ
2 + (β8 + β9l)ż

2 + ρAβ1

∫ l

0
w2
t dx + ρAβ2

∫ l

0
u2t dx + ρAβ6

∫ l

0
v2t dx

+ β1

∫ l

0
w(Pwx)xdx + β1

∫ l

0
w(EAεwx)xdx + β2

∫ l

0
EAuεxdx + β6

∫ l

0
v(Pvx)xdx

+ β6

∫ l

0
v(EAεvx)xdx − EIyβ1

∫ l

0
wwxxxxdx − EIzβ6

∫ l

0
vvxxxxdx + (cwβ3l/(m1 +m2)

+β5)

∫ l

0
ẏwtdx + (cwβ4/(m1 +m2)− cwβ5/ρA)

∫ l

0
eywtdx

+ (cvβ7l/m2 + β9)

∫ l

0
żvtdx + (cvβ8/m2 − cvβ9/ρA)

∫ l

0
ezvtdx

+ (β3cw/ρA− ρAβ1)

∫ l

0
wÿdx + (β7cv/ρA− ρAβ6)

∫ l

0
vz̈dx

+ β3

∫ l

0
ÿwtdx + β7

∫ l

0
z̈vtdx + (β3l/(m1 +m2))ẏfy

+ (β4/(m1 +m2))eyfy + (β7l/m2)żfz + (β8/m2)ez fz

+ EIy(β3/ρA− β3l/(m1 +m2))ẏwxxx(0, t)+ EIy(β5/ρA− β4/(m1 +m2))eywxxx(0, t)

+ EIz(β7/ρA− lβ7/m2)żvxxx(0, t)+ EIz(β9/ρA− β8/m2)ezvxxx(0, t).

(B.6)

V̇ = ẏ
[

(β3l/(m1 +m2)+ 1)fy + (β4 + β5l)ẏ + EIy(β3/ρA −β3l/(m1 +m2))wxxx(0, t)+α1ey
]

+ ż
[

(β7l/m2 + 1)fz + (β8 + β9l)ż+EIz(β7/ρA− lβ7/m2)vxxx(0, t)+ α3ez]

− [cw(1+ 2α2/ρA)− ρAβ1]

∫ l

0
w2
t dx − [cu(1+ 2α2/ρA) −ρAβ2]

∫ l

0
u2t dx

− [cv(1+ 2α2/ρA)− ρAβ6]

∫ l

0
v2t dx

+ β1

∫ l

0
w(Pwx)xdx + β1

∫ l

0
w(EAεwx)xdx − EIyβ1

∫ l

0
wwxxxxdx + β2

∫ l

0
EAuεxdx

+ β6

∫ l

0
v(Pvx)xdx + β6

∫ l

0
v(EAεvx)xdx − EIzβ6

∫ l

0
vvxxxxdx

+ (β3cw/ρA− ρAβ1)

∫ l

0
wÿdx + (cwβ3l/(m1 +m2)+ β5)

∫ l

0
ẏwtdx

+ (β7cv/ρA −ρAβ6)

∫ l

0
vz̈dx + (β7lcv/m2 +β9)

∫ l

0
żvtdx

− cw(β5/ρA− β4/(m1 +m2)

∫ l

0
eywtdx − cv(β9/ρA− β8/m2)

∫ l

0
ezvtdx

+ (β3 − 2α2)ÿ

∫ l

0
wtdx + EIy(β5/ρA −β4/(m1 +m2))eywxxx(0, t)+ (β4/(m1 +m2))eyfy

+ (β7 − 2α2)z̈

∫ l

0
vtdx + EIz(β9/ρA− β8/m2)ezvxxx(0, t)+ (β8/m2)ez fz .
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where δ5 is a positive constant. It is noted that the inequalities w4
x ≪ w2

x and v4x ≪ v2x are used in (B.7). By letting 
βi satisfy the following conditions

and using Lemmas 1 and 2 for the terms 
∫ l
0 ẏwtdx , 

∫ l
0 eywtdx , 

∫ l
0 żvtdx , and 

∫ l
0 ezvtdx of (B.6), we obtain

where

 In (B.10–B.12), δi (i = 6, 7, 8, 9) are positive constants. Substituting the control laws in (15) and (16) into (B.11) 
and (B.12), respectively, yields

where 

(B.7)

β1

∫ l

0
w(Pwx)xdx + β1

∫ l

0
w(EAεwx)xdx + β2

∫ l

0
u(EAεux)xdx

+ β6

∫ l

0
v(Pvx)xdx + β6

∫ l

0
v(EAεvx)xdx

≤ −β1

∫ l

0
Pw2

xdx − β6

∫ l

0
Pv2xdx + δ5EAl

2

(

∫ l

0
w2
xxdx +

∫ l

0
v2xxdx

)

−
(

β2 −
(

(2β1 − β2)
2 + (2β6 − β2)

2
)

/4δ5
)

EA

∫ l

0
ε2dx,

(B.8)−β1EIy

∫ l

0
wwxxxxdx = −β1EIy

∫ l

0
w2
xxdx; −EIzβ6

∫ l

0
vvxxxxdx = −β6EIz

∫ l

0
v2xxdx

(B.9)
β3 = β7 = 2α2β3cw/ρA = ρAβ1, β7cv/ρA = ρAβ6, β5/ρA−β4/(m1+m2) ≥ 0, β9/ρA−β8/m2 ≥ 0

(B.10)

V̇ ≤ −[cw(1+ 2α2/ρA)− ρAβ1 − cwδ7(β5/ρA−β4/(m1 +m2)) −δ6(cwβ3l/(m1 +m2)+ β5)]

∫ l

0
w2
t dx

− [cu(1+ 2α2/ρA) −ρAβ2]

∫ l

0
u2t dx

− [cv(1+ 2α2/ρA) − ρAβ6 − δ9cv(β9/ρA −β8/m2)−δ8(β7lcv/m2 + β9)]

∫ l

0
v2t dx

−
(

β1EIy −δ5EAl
2
)

∫ l

0
w2
xxdx −

(

β6EIz − δ5EAl
2
)

∫ l

0
v2xxdx

−max (β1,β6)

∫ l

0
P
(

w2
x + v2x

)

dx −
(

β2 −
(

(2β1 − β2)
2 + (2β6 − β2)

2
)

/4δ5
)

∫ l

0
EAε2dx + Dy + Dz

(B.11)

Dy =
[

(β3l/(m1 +m2)+ 1)fy + ((cwβ3l/(m1 +m2)+ β5)l/δ6 +β4 + β5l)ẏ

+ EIy(β3/ρA− β3l/(m1 +m2))wxxx(0, t)+ α1ey
]

ẏ

+ (cwl(β5/ρA− β4/(m1 +m2))/δ7)e
2
y + EIy(β5/ρA− β4/(m1 +m2))eywxxx(0, t)

+ (β4/(m1 +m2))eyfy ,

(B.12)

Dz =
[

(β7l/m2 + 1)fz + (β8 + β9l + (β7lcv/m2 + β9)l/δ8)ż

+EIz(β7/ρA− β7l/m2)vxxx(0, t)+ α3ez]ż

+ (cvl(β9/ρA− β8/m2)/δ9)e
2
z + EIz(β9/ρA− β8/m2)ezvxxx(0, t)+ (β8/m2)ez fz .

(B.13)

Dy = −[k1 − β4 − β5l − (cwβ3l/(m1 +m2)+ β5)l/δ6]ẏ
2

− [k2β4/(β3l +m1 +m2)− cwl(β5/ρA −β4/(m1 +m2))/δ7]e
2
y

+
(

β3EIy/ρA− β3lEIy/(m1 +m2) −k3)ẏwxxx(0, t)+ (α1 − k2 − k1β4/(β3l +m1 +m2))eyẏ

+
(

β5EIy/ρA− β4EIy/(m1 +m2) −k3β4/(β3l +m1 +m2))eywxxx(0, t),

(B.14)

Dz = −[k4 − β8 − β9l − (β7lcv/m2 + β9)l/δ8]ż
2

− [k5β8/(β7l +m2)− cvl(β9/ρA− β8/m2)/δ9]e
2
z

+ (β7EIz/ρA− β7lEIz/m2 − k6)żvxxx(0, t)+ (α3 − k5 − k4β8/(β7l +m2))ez ż

+ (β9EIz/ρA −β8EIz/m2 − k6β8/(β7l +m2))ezvxxx(0, t)

(B.15)ki = (β3l/(m1 +m2)+ 1)Ki , i = 1, 2, 3,



16

Vol:.(1234567890)

Scientific Reports |        (2022) 12:13811  | https://doi.org/10.1038/s41598-022-16973-y

www.nature.com/scientificreports/

If the following conditions hold

then (B.10) can be rewritten as follows.

Inequality (B.23) leads to the following result

where �3 = min (�31, �32, ..., �311) and coefficients αi , βj , and δk (i = 1, 2,…, 6, j = 1, 2,…,9, and k = 1, 2,…,8) satisfy 
the conditions:

(B.16)kj = (β7l/m2 + 1)Kj , j = 4, 5, 6.

(B.17)EIy(β3/ρA− β3l/(m1 +m2))− k3 = 0,

(B.18)α1 − k2 − k1β4/(β3l +m1 +m2) = 0,

(B.19)EIz(β9/ρA− β8/m2)− k6β8/(β7l +m2) = 0,

(B.20)EIz(β7/ρA− β7l/m2)− k6 = 0,

(B.21)α3 − k5 − k4β8/(β7l +m2) = 0,

(B.22)EIy(β5/ρA− β4/(m1 +m2))− k3β4/(β3l +m1 +m2) = 0

(B.23)

V̇ ≤ −[k1 − β4 − β5l − (cwβ3l/(m1 +m2)+ β5)l/δ6]ẏ
2

− [k4 − β8 −β9l − (β7lcv/m2 + β9)l/δ8]ż
2

− [k2β4/(β3l +m1 +m2) −cwl(β5/ρA− β4/(m1 +m2))/δ7]e
2
y

− [k5β8/(β7l +m2) −cvl(β9/ρA− β8/m2)/δ9]e
2
z

− [cw(1+ 2α2/ρA)− ρAβ1 − δ6(cwβ3l/(m1 +m2)+ β5)− cwδ7(β5/ρA −β4/(m1 +m2))]

∫ l

0
w2
t dx

− [cv(1+ 2α2/ρA)− ρAβ6 −δ8(cvβ7l/m2 + β9)− δ9cv(β9/ρA − β8/m2)]

∫ l

0
v2t dx

− [cu(1+ 2α2/ρA)− ρAβ2]

∫ l

0
u2t dx − E

(

β1Iy − δ5Al
2
)

∫ l

0
w2
xxdx − E

(

β6Iz − δ5Al
2
)

∫ l

0
v2xxdx

−max (β1,β6)

∫ l

0
P(w2

x + v2x)dx −
(

β2 −
(

(2β1 − β2)
2 + (2β6 − β2)

2/4δ5
))

∫ l

0
EAε2dx.

(B.24)V̇ ≤ −�3W2

(B.25)�31 = k1 − β4 − β5l − (cwβ3l/(m1 +m2)+ β5)l/δ6 ≥ 0,

(B.26)�32 = k2β4/(β3l +m1 +m2)− cw(β5/ρA− β4/(m1 +m2))l/δ7 ≥ 0,

(B.27)�33 = max (β1,β6) ≥ 0,

(B.28)�34 = k4 − β8 − β9l − l(cvβ7l/m2 + β9)/δ8 ≥ 0,

(B.29)�35 = k5β8/(β7l +m2)− cvl(β9/ρA− β8/m2)/δ9 ≥ 0,

(B.30)�36 = cu(1+ 2α2/ρA)− ρAβ2 ≥ 0,

(B.31)
�37 = cw(1+ 2α2/ρA)−ρAβ1−δ6(cwβ3l/(m1 +m2)+ β5)−cwδ7(β5/ρA− β4/(m1 +m2) ≥ 0,

(B.32)�38 = cv(1+ 2α2/ρA)− ρAβ6 − δ8(cvβ7l/m2 + β9)− δ9cv(β9/ρA− β8/m2) ≥ 0,

(B.33)�39 = E
(

β1Iy − δ5Al
2
)

≥ 0,

(B.34)�310 = E
(

β6Iz − δ5Al
2
)

≥ 0,

(B.35)�311 = β2 −
(

(2β1 − β2)
2 + (2β6 − β2)

2
)

/4δ5 ≥ 0.
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Based on Lemma 4, the following inequality is derived

where � = �3/�2 . Accordingly, Lemma 5 is proven.
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